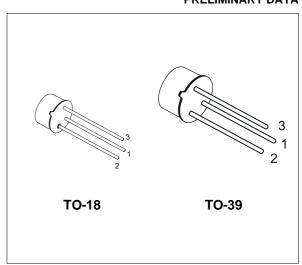
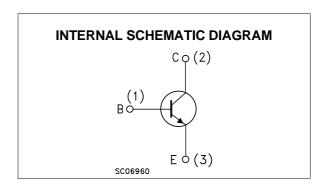
阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".




HIGH SPEED SWITCHES

PRELIMINARY DATA

DESCRIPTION

The 2N2219A and 2N2222A are silicon Planar Epitaxial NPN transistors in Jedec TO-39 (for 2N2219A) and in Jedec TO-18 (for 2N2222A) metal case. They are designed for high speed switching application at collector current up to 500mA, and feature useful current gain over a wide range of collector current, low leakage currents and low saturation voltage.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vсво	Collector-Base Voltage (I _E = 0)	75	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	40	V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	6	V
Ic	Collector Current	0.6	А
I _{CM}	Collector Peak Current (t _p < 5 ms)	0.8	Α
P _{tot}	Total Dissipation at $T_{amb} \le 25$ °C for 2N2219A for 2N2222A at $T_C \le 25$ °C for 2N2219A for 2N2222A	0.8 0.5 3 1.8	W W W
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

February 2003 1/7

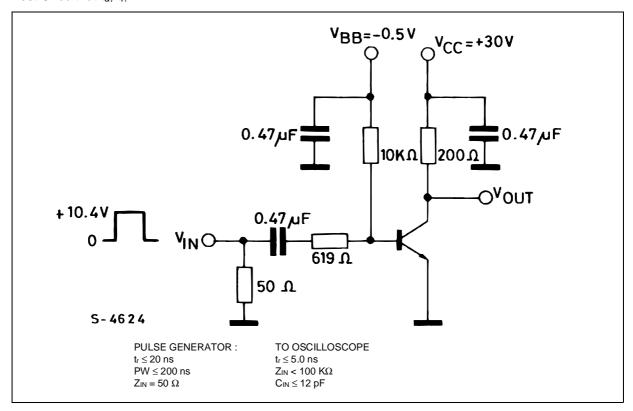
THERMAL DATA

			TO-39	TO-18	
R _{thj-case}	Thermal Resistance Junction-Case	Max	50	83.3	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	187.5	300	°C/W

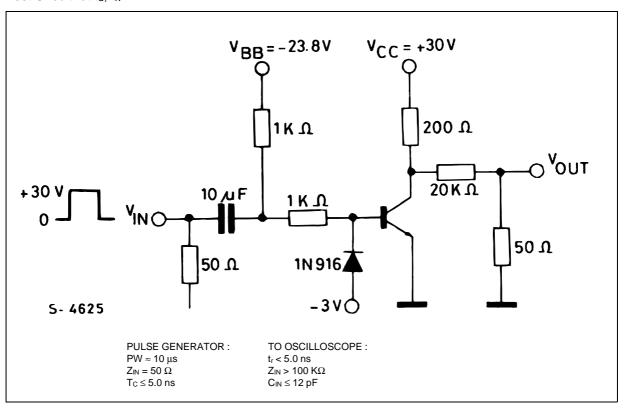
ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cut-off Current (I _E = 0)	$V_{CB} = 60 \text{ V}$ $V_{CB} = 60 \text{ V}$ $T_j = 150 \text{ °C}$			10 10	nΑ μΑ
I _{CEX}	Collector Cut-off Current (V _{BE} = -3V)	V _{CE} = 60 V			10	nA
I _{BEX}	Base Cut-off Current (V _{BE} = -3V)	VCE = 60 V			20	nA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 3 V			10	nA
V _{(BR)CBO}	Collector-Base Breakdown Voltage (I _E = 0)	I _C = 10 μA	75			V
V _{(BR)CEO*}	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = 10 mA	40			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = 10 μA	6			V
$V_{CE(sat)^*}$	Collector-Emitter Saturation Voltage	$I_{C} = 150 \text{ mA}$ $I_{B} = 15 \text{ mA}$ $I_{C} = 500 \text{ mA}$ $I_{B} = 50 \text{ mA}$			0.3 1	V V
$V_{BE(sat)^*}$	Base-Emitter Saturation Voltage	$I_{C} = 150 \text{ mA}$ $I_{B} = 15 \text{ mA}$ $I_{C} = 500 \text{ mA}$ $I_{B} = 50 \text{ mA}$	0.6		1.2 2	V V
h _{FE} *	DC Current Gain	$\begin{array}{llllllllllllllllllllllllllllllllllll$	35 50 75 100 40 50		300	
h _{fe} *	Small Signal Current Gain	I _C = 1 mA	50 75		300 375	
f⊤	Transition Frequency	I _C = 20 mA V _{CE} = 20 V f = 100 MHz		300		MHz
СЕВО	Emitter-Base Capacitance	I _C = 0 V _{EB} = 0.5 V f = 100KHz			25	pF
Ссво	Collector-Base Capacitance	I _E = 0 V _{CB} = 10 V f = 100 KHz			8	pF
R _{e(hie)}	Real Part of Input Impedance	I _C = 20 mA V _{CE} = 20 V f = 300MHz			60	Ω

^{*} Pulsed: Pulse duration = 300 μs, duty cycle ≤ 1 %


ELECTRICAL CHARACTERISTICS (continued)

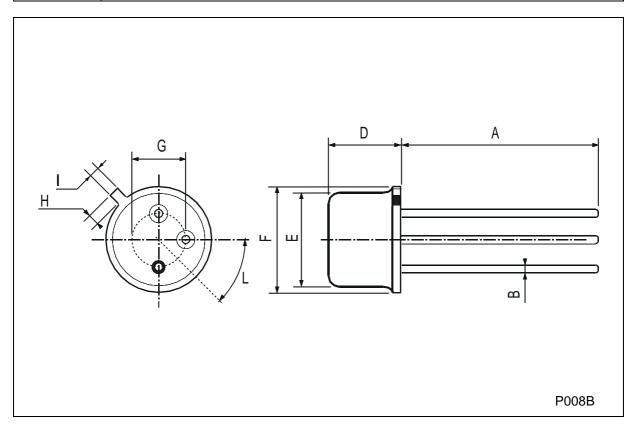
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
NF	Noise Figure	$I_C = 0.1 \text{ mA}$ $V_{CE} = 10 \text{ V}$ $f = 1 \text{KHz}$ $R_g = 1 \text{K}\Omega$		4		dB
h _{ie}	Input Impedance	$I_{C} = 1 \text{ mA}$ $V_{CE} = 10 \text{ V}$ $I_{C} = 10 \text{ mA}$ $V_{CE} = 10 \text{ V}$	2 0.25		8 1.25	kΩ kΩ
h _{re}	Reverse Voltage Ratio	I _C = 1 mA V _{CE} = 10 V I _C = 10 mA V _{CE} = 10 V			8 4	10 ⁻⁴ 10 ⁻⁴
h _{oe}	Output Admittance	I _C = 1 mA V _{CE} = 10 V I _C = 10 mA V _{CE} = 10 V	5 25		35 200	μS μS
t _d **	Delay Time	$V_{CC} = 30 \text{ V}$ $I_{C} = 150 \text{ mA}$ $I_{B1} = 15 \text{ mA}$ $V_{BB} = -0.5 \text{ V}$			10	ns
t _r **	Rise Time	V _{CC} = 30 V I _C = 150 mA I _{B1} = 15 mA V _{BB} = -0.5 V			25	ns
t _s **	Storage Time	$V_{CC} = 30 \text{ V}$ $I_{C} = 150 \text{ mA}$ $I_{B1} = -I_{B2} = 15 \text{ mA}$			225	ns
t _f **	Fall Time	V _{CC} = 30 V I _C = 150 mA I _{B1} = -I _{B2} = 15 mA			60	ns
r _{bb'} C _{b'c}	Feedback Time Constant	I _C = 20 mA V _{CE} = 20 V f = 31.8MHz			150	ps


^{*} Pulsed: Pulse duration = 300 μs, duty cycle ≤ 1 %

** See test circuit

Test Circuit fot t_d, t_{r.}

Test Circuit fot td, tr.


TO-18 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		12.7			0.500	
В			0.49			0.019
D			5.3			0.208
E			4.9			0.193
F			5.8			0.228
G	2.54			0.100		
Н			1.2			0.047
I			1.16			0.045
L	45°			45°		

TO-39 MECHANICAL DATA

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	12.7			0.500		
В			0.49			0.019
D			6.6			0.260
E			8.5			0.334
F			9.4			0.370
G	5.08			0.200		
Н			1.2			0.047
ı			0.9			0.035
L	45° (typ.)					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

