

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

2N720A

EPITAXIAL PLANAR NPN

HIGH VOLTAGE GENERAL PURPOSE

DESCRIPTION

The 2N790A is a silicon Planar Epitaxial NPN transistor in Jedec TO-18 metal case. It is suitable for a wide variety of amplifier and switching applications.

ABSOLUTE MAXIMUM RATINGS

loan'(S	Parameter	Value	Unit
Vсво	Collector-Base Voltage (I _E = 0)	120	V
VCEO	Collector-Emitter Voltage $(I_B = 0)$	80	V
V _{EBO}	Emitter-Base Voltage $(I_C = 0)$	7	V
lc	Collector Current	500	mA
P _{tot}	Total Dissipation at $T_{amb} \le 25$ °C at $T_C \le 25$ °C	0.5 1.8	<pre> </pre>
T _{stg}	Storage Temperature	-55 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

THERMAL DATA

R _{thj-case}	Thermal Res	sistance	Junction-Case	Max	83.3	°C/W
R _{thj-amb}	Thermal Res	sistance	Junction-Ambient	Max	300	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.
I _{CBO}	Collector Cut-off Current (I _E = 0)	V _{CB} = 90 V			10
V _(BR) CBO	Collector-Base Breakdown Voltage (I _E = 0)	I _C = 100 μA	120		
$V_{(BR)CEO*}$	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = 30 mA	80		
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	IE = 100 μA	7		
I _{EBO}	Emitter Cut-off Current $(I_E = 0)$	V _{EB} = 5 V			10
$V_{CE(sat)^*}$	Collector-Emitter Saturation Voltage	$I_{C} = 50 \text{ mA}$ $I_{B} = 5 \text{ mA}$ $I_{C} = 150 \text{ mA}$ $I_{B} = 15 \text{ mA}$		0,0	1.2 5
$V_{BE(sat)}*$	Base-Emitter Saturation Voltage	$I_{C} = 50 \text{ mA}$ $I_{B} = 5 \text{ mA}$ $I_{C} = 150 \text{ mA}$ $I_{B} = 15 \text{ mA}$	2		0.9 1.3
h _{FE} *	DC Current Gain		20 35 40		120
h _{fe} *	Small Signal Current Gain	I _C = 50 mA V _{CE} = 10 V f = 20 MHz	2.5		
Ссво	Collector-Base Capacitance	$I_E = 0$ $V_{CB} = 10$ V $f = 1$ MHz			15
СЕВО	Emitter-Base Capacitance	$I_{C} = 0$ $V_{EB} = 0.5 V$ $f = 1 MHz$			85
50					

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А		12.7			0.500		
В			0.49			0.019	
D			5.3			0.208	
E			4.9			0.193	
F			5.8			0.228	
G	2.54			0.100		CIL	
н			1.2			0.047	
I			1.16	L. P.	< r	0.045	
L	45°			45°			

solete Product(s) - Obsolete Product(s) Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

4/4