# 阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

# **Read Statement**

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".



### BC307/308/309

### **Switching and Amplifier Applications**

• Low Noise: BC309



## **PNP Epitaxial Silicon Transistor**

### **Absolute Maximum Ratings** $T_a$ =25°C unless otherwise noted

| Symbol           | Parameter                   | Value     | Units |  |
|------------------|-----------------------------|-----------|-------|--|
| V <sub>CES</sub> | Collector-Emitter Voltage   |           |       |  |
|                  | : BC307                     | -50       | V     |  |
|                  | : BC308/309                 | -30       | V     |  |
| $V_{CEO}$        | Collector-Emitter Voltage   |           |       |  |
|                  | : BC307                     | -45       | V     |  |
|                  | : BC308/309                 | -25       | V     |  |
| $V_{EBO}$        | Emitter-Base Voltage        | -5        | V     |  |
| I <sub>C</sub>   | Collector Current (DC)      | -100      | mA    |  |
| P <sub>C</sub>   | Collector Power Dissipation | 500       | mW    |  |
| T <sub>J</sub>   | Junction Temperature        | 150       | °C    |  |
| T <sub>STG</sub> | Storage Temperature         | -55 ~ 150 | °C    |  |

| Electrical Characteristics | T <sub>a</sub> =25°C unless otherwise noted |
|----------------------------|---------------------------------------------|
|----------------------------|---------------------------------------------|

| Symbol                | Parameter                                                     | Test Condition                                                                                                                     | Min.       | Тур.          | Max.         | Units          |
|-----------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|--------------|----------------|
| BV <sub>CEO</sub>     | Collector-Emitter Breakdown Voltage<br>: BC307<br>: BC308/309 | I <sub>C</sub> = -2mA, I <sub>B</sub> =0                                                                                           | -45<br>-25 |               |              | V              |
| BV <sub>CES</sub>     | Collector-Emitter Breakdown Voltage : BC307 : BC308/309       | I <sub>C</sub> = -10μA, V <sub>BE</sub> =0                                                                                         | -50<br>-30 |               |              | V              |
| BV <sub>EBO</sub>     | Emitter-Base Breakdown Voltage                                | I <sub>E</sub> = -10μA, I <sub>C</sub> =0                                                                                          | -5         |               |              | V              |
| I <sub>CES</sub>      | Collector Cut-off Current<br>: BC307<br>: BC308/309           | V <sub>CE</sub> = -45V, V <sub>BE</sub> =0<br>V <sub>CE</sub> = -25V, V <sub>BE</sub> =0                                           |            | -2<br>-2      | -15<br>-15   | nA<br>nA       |
| h <sub>FE</sub>       | DC Current Gain                                               | V <sub>CE</sub> = -5V, I <sub>C</sub> = -2mA                                                                                       | 120        |               | 800          |                |
| V <sub>CE</sub> (sat) | Collector-Emitter Saturation Voltage                          | $I_{C}$ = -10mA, $I_{B}$ = -0.5mA<br>$I_{C}$ = -100mA, $I_{B}$ = -5mA                                                              |            | -0.5          | -0.3         | V<br>V         |
| V <sub>BE</sub> (sat) | Collector-Base Saturation Voltage                             | I <sub>C</sub> = -10mA, I <sub>B</sub> = -0.5mA<br>I <sub>C</sub> = -100mA, I <sub>B</sub> = -5mA                                  |            | -0.7<br>-0.85 |              | V<br>V         |
| V <sub>BE</sub> (on)  | Base-Emitter On Voltage                                       | V <sub>CE</sub> = -5V, I <sub>C</sub> = -2mA                                                                                       | -0.55      | -0.62         | -0.7         | V              |
| f <sub>T</sub>        | Current Gain Bandwidth Product                                | V <sub>CE</sub> = -5V, I <sub>C</sub> = -10mA, f=50MHz                                                                             |            | 130           |              | MHz            |
| C <sub>ob</sub>       | Output Capacitance                                            | V <sub>CB</sub> = -10V, I <sub>E</sub> =0, f=1MHz                                                                                  |            |               | 6            | pF             |
| C <sub>ib</sub>       | Input Capacitance                                             | V <sub>EB</sub> = -0.5V, I <sub>C</sub> =0, f=1MHz                                                                                 |            | 12            |              | pF             |
| NF                    | Noise Figure                                                  | $V_{CE}$ = -5V, $I_{C}$ = -0.2mA, $R_{G}$ =2K $\Omega$ , f=1KHz $V_{CE}$ = -5V, $I_{C}$ = -0.2mA $R_{G}$ =2K $\Omega$ , f=30~15KHz |            | 2             | 10<br>4<br>4 | dB<br>dB<br>dB |

# h<sub>FE</sub> Classification

| Classification  | А         | В         | С         |
|-----------------|-----------|-----------|-----------|
| h <sub>FE</sub> | 120 ~ 220 | 180 ~ 460 | 380 ~ 800 |

## **Typical Characteristics**

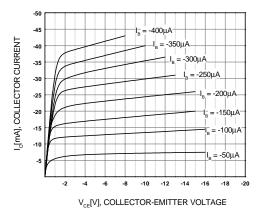



Figure 1. Static Characteristic

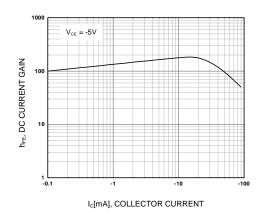



Figure 2. DC current Gain

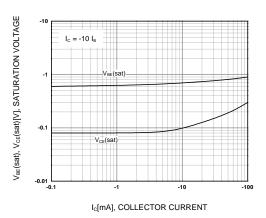



Figure 3. Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage

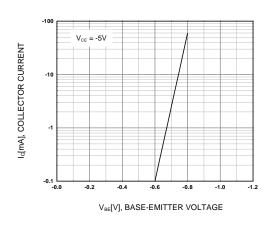



Figure 4. Base-Emitter Capacitance

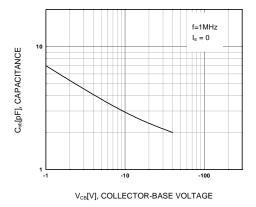
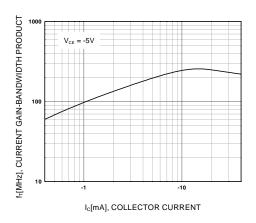
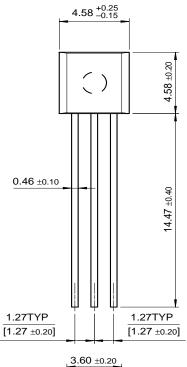
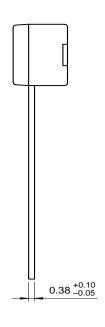
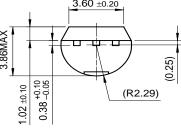



Figure 5. Collector Output Capacitance



Figure 6. Current Gain Bandwidth Product

©2002 Fairchild Semiconductor Corporation Rev. A2, August 2002

TO-92







#### **TRADEMARKS**

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx™                | FACT™               | ImpliedDisconnect™     | PACMAN™                  | SPM™                  |
|----------------------|---------------------|------------------------|--------------------------|-----------------------|
| ActiveArray™         | FACT Quiet series™  | ISOPLANAR™             | POP™                     | Stealth™              |
| Bottomless™          | FAST <sup>®</sup>   | LittleFET™             | Power247™                | SuperSOT™-3           |
| CoolFET™             | FASTr™              | MicroFET™              | PowerTrench <sup>®</sup> | SuperSOT™-6           |
| $CROSSVOLT^{TM}$     | FRFET™              | MicroPak™              | QFET™                    | SuperSOT™-8           |
| DOME™                | GlobalOptoisolator™ | MICROWIRE™             | QS™                      | SyncFET™              |
| EcoSPARK™            | GTO™                | MSX™                   | QT Optoelectronics™      | TinyLogic™            |
| E <sup>2</sup> CMOS™ | HiSeC™              | MSXPro™                | Quiet Series™            | TruTranslation™       |
| EnSigna™             | $I^2C^{TM}$         | $OCX^{TM}$             | RapidConfigure™          | UHC™                  |
| Across the board.    | Around the world.™  | OCXPro™                | RapidConnect™            | UltraFET <sup>®</sup> |
| The Power Franchise™ |                     | OPTOLOGIC <sup>®</sup> | SILENT SWITCHER®         | VCX <sup>TM</sup>     |
| Programmable Ad      | ctive Droop™        | OPTOPLANAR™            | SMART START™             |                       |

#### **DISCLAIMER**

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

### **PRODUCT STATUS DEFINITIONS**

#### **Definition of Terms**

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                            |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In<br>Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                                    |
| Preliminary              | First Production          | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.                                                       |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.                                                   |