

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

BTA06 and BTB06 Series

SNUBBERLESS™, LOGIC LEVEL & STANDARD

6A TRIACs

Table 1: Main Features

Symbol	Value	Unit
I _{T(RMS)}	6	А
V _{DRM} /V _{RRM}	600 and 800	V
I _{GT (Q1})	5 to 50	mA

DESCRIPTION

Available either in through-hole or surface-mount packages, the **BTA06** and **BTB06** triac series is suitable for general purpose AC switching. They can be used as an ON/OFF function in applications such as static relays, heating regulation, induction motor starting circuits... or for phase control operation in light dimmers, motor speed controllers,...

The snubberless and logic level versions (BTA/ BTB...W) are specially recommended for use on inductive loads, thanks to their high commutation performances.

By using an internal ceramic pad, the BTA series provides voltage insulated tab (rated at $2500V_{RMS}$) complying with UL standards (File ref.: E81734).

Table 3	: Abs	olute	Maximum	Ratings
---------	-------	-------	---------	---------

Table 2: Order Codes

Part Number	Marking
BTA06-xxxxxRG	See page table 8 on
BTB06-xxxxRG	page 6

Symbol	Paramet	er		Value	Unit
	RMS on-state current (full sine		$T_{c} = 110^{\circ}C$	6	۸
'T(RMS)	wave)	TO-220AB Ins.	$T_c = 105^{\circ}C$	0	~
ITOM	Non repetitive surge peak on-state	F = 50 Hz	t = 20 ms	60	Δ
'1SM	TSM current (full cycle, T_j initial = 25°C)		t = 16.7 ms	63	~
l²t	I ² t Value for fusing	t _p = 10 ms		21	A²s
dl/dt	Critical rate of rise of on-state current I_G = 2 x I_{GT} , $t_r \leq$ 100 ns	F = 120 Hz	T _j = 125°C	50	A/µs
I _{GM}	Peak gate current	t _p = 20 μs	T _j = 125°C	4	А
P _{G(AV)}	Average gate power dissipation $T_j = 125^{\circ}C$			1	W
T _{stg} T _j	Storage junction temperature range Operating junction temperature range			- 40 to + 150 - 40 to + 125	°C

February 2006

BTA06 and BTB06 Series

Tables 4: Electrical Characteristics (T_j = $25^{\circ}C$, unless otherwise specified)

SNUBBERLESS and Logic Level (3 quadrants)

Symbol	Symbol Test Conditions Quadrant				BTA06 /	/ BTB06	i	Unit
Symbol				тw	SW	CW	BW	Unit
I _{GT} (1)	$V_{-} = 12 V_{-} B_{-} = 30 O_{-}$	- -	MAX.	5	10	35	50	mA
V _{GT}		- -	MAX.		1.	.3		V
V _{GD}	$\label{eq:V_D} \begin{array}{c} V_{D} = V_{DRM} & R_{L} = 3.3 \ k\Omega \\ T_{j} = 125^\circC \end{array} \qquad \qquad I - II - III$		MIN.	0.2				V
I _H (2)	I _T = 100 mA		MAX.	10	15	35	50	mA
l.	lo = 1 2 lot	-	ΜΔΧ	10	25	50	70	mΔ
·L		II WAX.	15	30	60	80		
dV/dt (2)	$V_D = 67 \% V_{DRM}$ gate open $T_j = 125^{\circ}C$		MIN.	20	40	400	1000	V/µs
	$(dV/dt)c = 0.1 V/\mu s T_j = 125^{\circ}C$			2.7	3.5	-	-	
(dl/dt)c (2)	$(dV/dt)c = 10 V/\mu s$ $T_j = 125^{\circ}C$		MIN.	1.2	2.4	-	-	A/ms
	Without snubber $T_j = 125^{\circ}C$;		-	-	3.5	5.3	

Standard (4 quadrants)

Symbol	Test Conditions	ns Quadrant		BTA06	/ BTB06	Unit
Symbol	Test conditions	Quadrant		С	В	Onit
lot (1)		- -	ΜΔΧ	25	50	mΑ
GIVY	$V_D = 12 V$ $R_L = 30 \Omega$	IV	W0 0 C.	50	100	1117 (
V _{GT}		ALL	MAX.	1.3		V
V _{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $T_j = 125^{\circ}C$ ALL		MIN.	0.2		V
I _H (2)	I _T = 500 mA		MAX.	25	50	mA
I.	$l_{0} = 1.2 l_{0T}$	I - III - IV	ΜΔΧ	40	50	mΔ
·L			101/177.	80	100	
dV/dt (2)	$V_D = 67 \% V_{DRM}$ gate open $T_j = 125^{\circ}C$		MIN.	200	400	V/µs
(dV/dt)c (2)	$(dI/dt)c = 2.7 \text{ A/ms}$ $T_j = 125^{\circ}$	°C	MIN.	5	10	V/µs

Table 5: Static Characteristics

Symbol	Test Conditions			Value	Unit
V _{TM} (2)	$I_{TM} = 8.5 \text{ A}$ $t_p = 380 \ \mu \text{s}$	T _j = 25°C	MAX.	1.55	V
V _{t0} (2)	Threshold voltage	T _j = 125°C	MAX.	0.85	V
R _d (2)	Dynamic resistance	T _j = 125°C	MAX.	60	mΩ
I _{DRM}	Voon = Voon	$T_j = 25^{\circ}C$	ΜΔΧ	5	μA
I _{RRM}		T _j = 125°C	1		mA

57

Note 1: minimum I_{GT} is guaranted at 5% of I_{GT} max.

Note 2: for both polarities of A2 referenced to A1.

Symbol	Paramete	Value	Unit	
But ()	lunction to case (AC)	TO-220AB	1.8	°C/M
Tith(j-c) JUNCION to case (AC		TO-220AB Insulated	2.7	0, 11
R _{th(j-a)}	Junction to ambient	TO-220AB TO-220AB Insulated	60	°C/W

Table 6: Thermal resistance

Figure 3: Relative variation of thermal impedance versus pulse duration

57

Figure 2: RMS on-state current versus case temperature (full cycle)

3/7

Figure 5: Surge peak on-state current versus number of cycles

Figure 7: Relative variation of gate trigger current, holding current and latching current versus junction temperature (typical values)

Figure 9: Relative variation of critical rate of decrease of main current versus (dV/dt)c (typical values) (Standard types)

Figure 6: Non-repetitive surge peak on-state current for a sinusoidal pulse with width $t_p < 10$ ms and corresponding value of l^2t

Figure 8: Relative variation of critical rate of decrease of main current versus (dV/dt)c (typical values) (Snubberless & logic level types)

Figure 10: Relative variation of critical rate of decrease of main current versus junction temperature

47/

Table 7: Product Selector

Part Number	Voltag	Voltage (xxx)		Type	
r ai t Number	600 V	800 V	Jensitivity	Type	Package
BTA/BTB06-xxxB	Х	Х	50 mA	Standard	TO-220AB
BTA/BTB06-xxxBW	Х	Х	50 mA	Snubberless	TO-220AB
BTA/BTB06-xxxC	Х	Х	25 mA	Standard	TO-220AB
BTA/BTB06-xxxCW	Х	Х	35 mA	Snubberless	TO-220AB
BTA/BTB06-xxxSW	Х	Х	10 mA	Logic level	TO-220AB
BTA/BTB06-xxxTW	Х	Х	5 mA	Logic Level	TO-220AB

BTB: non insulated TO-220AB package

					DIMEN	SIONS	i	
		REF.	Mi	llimete	rs		Inches	
			Min.	Тур.	Max.	Min.	Тур.	Max.
В	с	Α	15.20		15.90	0.598		0.625
ØI	b2	a1		3.75			0.147	
		a2	13.00		14.00	0.511		0.551
↓ L	F	В	10.00		10.40	0.393		0.409
		b1	0.61		0.88	0.024		0.034
A		b2	1.23		1.32	0.048		0.051
		С	4.40		4.60	0.173		0.181
	c2	c1	0.49		0.70	0.019		0.027
	<u>←→</u> _	c2	2.40		2.72	0.094		0.107
12 a2		е	2.40		2.70	0.094		0.106
		F	6.20		6.60	0.244		0.259
	M	ØI	3.75		3.85	0.147		0.151
	↔ c1	14	15.80	16.40	16.80	0.622	0.646	0.661
e		L	2.65		2.95	0.104		0.116
		12	1.14		1.70	0.044		0.066
		13	1.14		1.70	0.044		0.066
		М		2.60			0.102	

Figure 12: TO-220AB (insulated and non insulated) Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: <u>www.st.com</u>.

Table 8: Ordering Information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
BTA/BTB06-xxxyzRG	BTA/BTB06-xxxyz	TO-220AB	2.3 g	50	Tube

Note: xxx = voltage, yy = sensitivity, z = type

Table 9: Revision History

Date	Revision	Description of Changes
Apr-2002	5A	Last update.
13-Feb-2006	6	TO-220AB delivery mode changed from bulk to tube. ECOPACK statement added.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

57