阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

ASD ${ }^{\text {TM }}$
 AC Switch Family

MAIN APPLICATIONS

- AC on-off static switching in appliance \& industrial control systems
- Drive of low power high inductive or resistive loads like
- relay, valve, solenoid, dispenser
- pump, fan, micro-motor
- low power lamp bulb, door lock

FEATURES

- Blocking voltage : V $\mathrm{DRM} / \mathrm{V}_{\mathrm{RRM}}=500 \mathrm{~V}$
- Clamping voltage : $\mathrm{V}_{\mathrm{CL}}=600 \mathrm{~V}$
- Nominal current : $I_{T(R M S)}=0.2 \mathrm{~A}$
- Gate triggering current : $\mathrm{I}_{\mathrm{GT}}<5 \mathrm{~mA}$
- Switch integrated driver
- Triggering current is sourced by the gate
- SO-8 package:
- drive reference COM connected to 2 cooling pins - 3.5 mm creepage distance from pin OUT to other pins

BENEFITS

- Needs no external overvoltage protection
- Enables equipment to meet IEC61000-1-5 \& IEC 335-1
- Reduces component count by up $\pm 036 \%$
- Interfaces directly with a microcurtroller
- Eliminates any stressing gite kick back on microcontroller
- Allows straightfo "ara connection of several ACS ${ }^{\text {TM }}$ on saric couling pad.

DESC 2ITIION

$T_{\text {in? }} A^{\prime}$ CS102 belongs to the AC line switch family b.i!i around the ASD ${ }^{\text {TM }}$ concept. This high performance device is able to control an up to 0.3 A load device.
The ACS ${ }^{\top M}$ switch embeds a high voltage clamping structure to absorb the inductive turn off energy and a gate level shifter driver to separate the digital controller from the main switch. It is triggered with a negative gate current flowing out of the gate pin.
For further technical information, please refer to AN1172 application note.

FUNCTIONAL DIAGRAM

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter			Value	Unit
$\mathrm{V}_{\text {DRM }} / \mathrm{V}_{\text {RRM }}$	Repetitive peak off-state voltage		$\mathrm{Tj}=125^{\circ} \mathrm{C}$	500	V
$\mathrm{It}_{\text {(RMS }}$	RMS on-state current full cycle sine wave 50 to 60 Hz	TO-92	Tamb $=100^{\circ} \mathrm{C}$	0.2	A
		SO-8	Tamb $=100^{\circ} \mathrm{C}$	0.2	A
$I_{\text {TSM }}$	Non repetitive surge peak on-state current Tj initial $=25^{\circ} \mathrm{C}$, full cycle sine wave		$\mathrm{F}=50 \mathrm{~Hz}$	7.3	A
			$\mathrm{F}=60 \mathrm{~Hz}$	8	A
dl/dt	Critical rate of repetitive rise of on-state current $\mathrm{I}_{\mathrm{G}}=10 \mathrm{~mA}$ with $\mathrm{tr}=100 \mathrm{~ns}$		$\mathrm{F}=120 \mathrm{~Hz}$	20	A/ $\mu \mathrm{s}$
VPP	Non repetitive line peak pulse voltage		note 1	2	kV
Tstg	Storage temperature range			-40 to +150	${ }^{\circ} \mathrm{C}$
Tj	Operating junction temperature range			- 30 to + 125	${ }^{\circ} \mathrm{C}$
TI	Maximum lead temperature for soldering during 10s			260	${ }^{\circ} \mathrm{C}$

Note 1: according to test described by IEC61000-4-5 standard \& Figure 3.
SWITCH GATE CHARACTERISTICS (maximum values)

Symbol	Parameter	Value	Unit
$\mathrm{P}_{\mathrm{G}(\mathrm{AV})}$	Average gate power dissipation	0.1	W
I_{GM}	Peak gate current $\left(\mathrm{tp}=20_{\mu} \mathrm{s}\right)$	1	A
$\mathrm{~V}_{\mathrm{GM}}$	Peak positive gate voltage (respect to the pin COM)	5	V

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
Rth (j-a)	Junction to ambient	TO-92	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		$\mathrm{SO}^{*}{ }^{\circ}$	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rth (j-l)	Junction to leads for full AC line cycle conduction	TO-92	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$

* with 40 mm 2 copper (ex: $35 \mu \mathrm{~m}$) surface under "com" pins

ELECTRICAL CHARACTERISTICS

For either positive or negative polarity of pin OUT voltage respect to pin COM voltage excepted note 3^{*}.

Symbol	Test Conditions			Values	Unit
IGT	Vout $=12 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=140 \Omega$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	MAX	5	mA
V_{GT}	Vout $=12 \mathrm{~V}$ R $\mathrm{R}_{\mathrm{L}}=140 \Omega$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	MAX	0.9	V
$V_{G D}$	$V_{\text {OUT }}=V_{\text {DRM }} \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega$	$\mathrm{Tj}=125^{\circ} \mathrm{C}$	MIN	0.15	V
IH	lout $=100 \mathrm{~mA}$ gate open	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	TYP	20	mA
			MAX	tbd	
a_{L}	$\mathrm{I}_{\mathrm{G}}=20 \mathrm{~mA}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	TYP	25	mA
			MAX	tbd	
$\mathrm{V}_{\text {TM }}$	lout $=0.3 \mathrm{~A} \quad \mathrm{tp}=380 \mu \mathrm{~s}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	MAX	1.2	V
IDRM IRRM	$\begin{aligned} & V_{\text {OUT }}=V_{\text {DRM }} \\ & V_{\text {OUT }}=V_{\text {RRM }} \end{aligned}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	MAX	2	$\mu \mathrm{A}$
		$\mathrm{Tj}=125^{\circ} \mathrm{C}$	MAX	200	
dV/dt	V Out $=400 \mathrm{~V}$ gate open	$\mathrm{Tj}=110^{\circ} \mathrm{C}$	MIN	300	V/us
(dl/dt)c *(Note 3)	$(\mathrm{dV} / \mathrm{dt}) \mathrm{c}=5 \mathrm{~V} / \mu \mathrm{s}$ l $\mathrm{lout}^{\text {c }} 0$	$\mathrm{Tj}=110^{\circ} \mathrm{C}$	MIN	0.1	A/ms
	$(\mathrm{dV} / \mathrm{dt}) \mathrm{c}=10 \mathrm{~V} / \mu \mathrm{s}$ lout <0			0.15	
V_{CL}	$\mathrm{I}_{\mathrm{CL}}=1 \mathrm{~mA} \quad \mathrm{tp}=1 \mathrm{~ms}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	TYP	600	V

[^0]
AC LINE SWITCH BASIC APPLICATION

The ACS102 device is well adapted to washing machines, dish washers, tumble driers, refrigerators, water heaters, and cookware. It has been designed especially to switch on \& off low power loads such as solenoids, valves, relays, dispensers, micro-motors, pumps, fans, door locks, and low power lamps bulbs.

Pin COM : Common drive reference, to connect to the power line neutral
Pin G : Switch Gate input to connect to the digital controller through a resistor
Pin OUT : Switch Output, to connect to the load
This ACS ${ }^{\top \mathrm{M}}$ switch is triggered with a negative gate current flowing out of the gate pin G . It can be driven directly by the digital controller through a resistor as shown on the typical application diagram. No protection device are required between the gate and COM terminals.
The SO-8 version allows to connect several ACS102 devices on the same cooling PCB pad which is the COM pin.
In appliance systems, the ACS102 switch intends to drive low power loads in full cycle ON / OFF mode. The turn off commutation characteristics of these loads are described in Table 1.
Thanks to its thermal and turn-off commutation characteristics, the ACS102 switch drives a load, such as door lock, lamp, relay, valve and micro motor, up to 0.2 A without any turn-off aid circuit. Switching off the ACS within one full AC line cycle will extend its current up to 0.3 A .

Table 1: Low power load turn off commutation requirement (230V AC applications).

LOAD	Load IRMS current (A)	POWER FACTOR	(dI/dt)c	(dV/dt)c	TURN-OFF DELAY
$(\mathrm{A} / \mathrm{ms})$		(ms)			
Door lock, lamp	<0.2	1	<0.1	<0.15	<10
Relay Valve Dispenser Micro-motor	<0.2	>0.7	<0.1	<5	<10
Pump Fan	<0.3	>0.2	<0.15	<10	<20

TYPICAL APPLICATION DIAGRAM

HIGH INDUCTIVE SWITCH-OFF OPERATION

At the end of the last conduction half-cycle, the load current reaches the holding current level I_{H}, and the ACS ${ }^{\text {TM }}$ switch turns off. Because of the inductance L of the load, the current flows through the avalanche diode D and decreases linearly to zero. During this time, the voltage across the switch is limited to the clamping voltage V_{CL}.
The energy stored in the inductance of the load depends on the holding current I_{H} and the inductance (up to 10 H); it can reach about 20 mJ and is dissipated in the clamping diode section. The ACS ${ }^{\text {TM }}$ switch sustains the turn off energy, because its clamping section is designed for that purpose.

Fig. 1: Turn-off operation of the ACS102 switch with an electro valve: waveform of the gate current I_{G}, pin OUT current lout \& voltage $\mathrm{V}_{\text {OUt }}$.

Fig. 2: ACS102 switch static characteristic.

AC LINE TRANSIENT VOLTAGE RUGGEDNESS

The ACS102 switch is able to withstand safely the AC line transient voltages either by clamping the low energy spikes or by breaking over under high energy shocks.
The test circuit of the figure 3 is representative of the final ACS $^{\top}$ M application and is also used to stress the ACS ${ }^{\text {TM }}$ switch according to the IEC61000-4-5 standard conditions. Thanks to the load, the ACS ${ }^{\text {TM }}$ switch withstands the voltage spikes up to 2 kV above the peak line voltage. It will break over safely even on resistive load where the turn on current rate of increase is high as shown on figure 4 . Such non repetitive test can be done 10 times on each AC line voltage polarity.

Fig. 3: Overvoltage ruggedness test circuit for resistive and inductive loads according to IEC61000-4-5 standard.
$R=150 \Omega, L=5 \mu H, V_{P P}=2 k V$.

Fig. 4: Current and Voltage of the ACS™ during IEC61000-4-5 standard test with $R=150 \Omega, L=5 \mu \mathrm{H}$ $\& V_{P P}=2 k V$.

Fig. 5: Maximum power dissipation versus RMS on-state current.

Fig. 7-1: Relative variation of thermal impedance junction to ambient versus pulse duration (ACS102-5TA) (TO-92).

Fig. 8: Relative variation of gate trigger current versus junction temperature.

Fig. 6: RMS on-state current versus ambient temperature.

Fig. 7-2: Relative variation of thermal impedance junction to ambient versus pulse duration (printed circuit board FR4, e(Cu) $=35 \mu \mathrm{~m}, \mathrm{~S}(\mathrm{Cu})=40 \mathrm{~mm}^{2}$ under "com" pins) (ACS102-5T1) (SO-8).

Fig. 9: Relative variation of holding and latching current versus junction temperature.

Fig. 10: Surge peak on-state current versus number of cycles.

Fig. 12: On-state characteristics (maximum values).

Fig. 11: Non-repetitive surge peak on-state current for a sinusoidal pulse with width $\mathrm{tp}<10 \mathrm{~ms}$, and corresponding value of I^{2} t.

Fig. 13: Thermal resistance junction to ambient versus copper surface under tab (Epoxy printed circuit board FR4, copper thickness under "com" pins: $35 \mu \mathrm{~m}$) (ACS102-5T1).

Fig. 14: Relative variation of critical (dl/dt)c versus junction temperature (ACS102-5T1).
(dl/dt)c $[\mathrm{Tj}] /(\mathrm{dl} / \mathrm{dt}) \mathrm{c}\left[\mathrm{Tj}=110^{\circ} \mathrm{C}\right]$

ORDERING INFORMATION

PACKAGE OUTLINE MECHANICAL DATA SO-8

	REF.	DIMENSIONS			
		Millimetres		Inches	
		Min.	Max.	Min.	Max.
	A	1.35	1.75	0.053	0.069
	A1	0.1	0.25	0.004	0.010
	A2	1.10	1.65	0.043	0.065
	B	0.33	0.51	0.013	0.020
	C	0.19	0.25	0.007	0.010
	D	4.80	5.00	0.189	0.197
	E	3.80	4.00	0.150	0.157
	e	1.27 Typ.		0.05 Typ.	
	H	5.80	6.20	0.228	0.244
	h	0.25	0.50	0.010	0.019
	L	0.40	1.27	0.016	0.050
	k	$8^{\circ}(\max)$			
	ddd	0.100		0.004	

PACKAGE FOOT PRINT
SO-8

ACS102-5Tx
PACKAGE OUTLINE MECHANICAL DATA
TO-92 (Plastic)

OTHER INFORMATION

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
ACS102-5TA	ACS102	TO-92	0.2 g	2500	Bulk
ACS102-5TA-TR	ACS102	TO-92	0.2 g	2000	Tape \& reel
ACS102-5T1	ACS102	SO-8	0.11 g	100	Tube
ACS102-5T1-TR	ACS102	SO-8	0.11 g	2500	Tape \& reel

ASD and ACS are a trademarks of STMicroelectronics.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

[^0]: tbd = to be defined

