

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

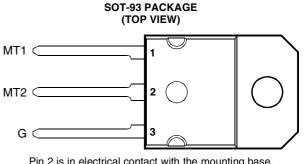
本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.


2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

BOURNS®

- High Current Triacs
- 25 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- 175 A Peak Current
- Max I_{GT} of 50 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT
TIC263D		400	
Depetitive peak off state voltage (see Nate 1)		600	V
Repetitive peak off-state voltage (see Note 1) TIC 263S	VDRM	700	
TIC263N		800	
Full-cycle RMS on-state current at (or below) 60°C case temperature (see Note 2)	I _{T(RMS)}	25	A
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)	I _{TSM}	175	A
Peak gate current	I _{GM}	±1	A
Operating case temperature range	т _с	-40 to +110	°C
Storage temperature range	T _{stg}	-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds	TL	230	°C

NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.

2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 60°C derate linearly to 110°C case temperature at the rate of 500mA/°C.

3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of peak reverse volta ge and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V _D = Rated V _{DRM}	$I_{G} = 0$	T _C = 110°C			±2	mA
I _{GT}		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		15	50	mA
	Gate trigger	V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-30	-50	
	current	$V_{supply} = -12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-20	-50	
		V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		32		
V _{GT}		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.8	2	v
	Gate trigger	$V_{supply} = +12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.8	-2	
	voltage	V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.8	-2	
		V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.8	2	
V _T	On-state voltage	I _T = ±35.2 A	l _G = 50 mA	(see Note 4)		±1.5	±1.7	V

† All voltages are with respect to Main Terminal 1.

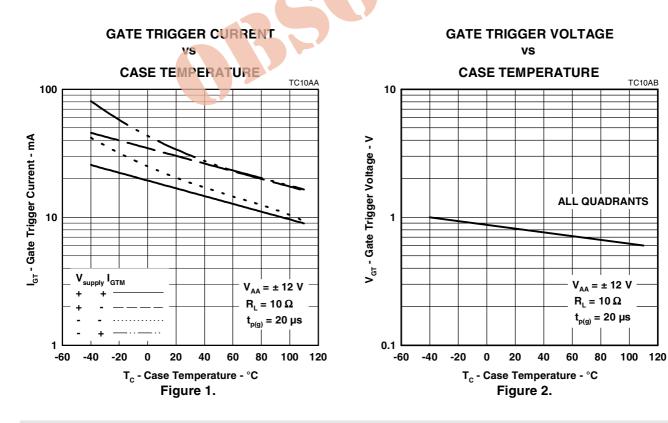
NOTE 4: This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

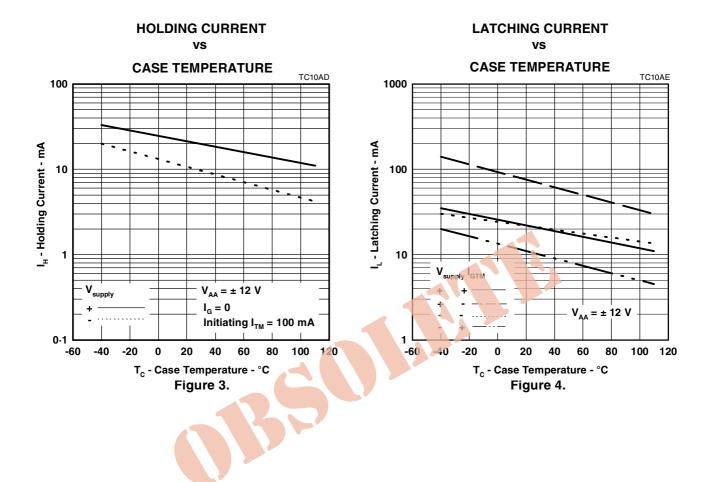
	PARAMETER		TEST CONDITIONS			ТҮР	MAX	UNIT
l	Holding current	V _{supply} = +12 V†	l _G = 0	Init' I _T = 100 mA		20	40	mA
Ч		V _{supply} = -12 V†	$I_{G} = 0$	Init' I _T = -100 mA		-10	-40	
IL.	Latching current	V _{supply} = +12 V†	(see Note 5)			20		mA
		V _{supply} = -12 V†			-20			
dv/dt	Critical rate of rise of	V _D = Rated V _D	I _G = 0	T _C = 110°C		±450		V/µs
uv/ut	off-state voltage			1 _C = 110 0				
dy/dt	Critical rise of	V _D = Rated V _D		$T_{\rm C} = 80^{\circ}{\rm C}$		±1		V/µs
dv/dt _(c)	commutation voltage	$di/dt = 0.5 I_{T(RMS)}/ms$		$I_T = 1.4 I_{T(RMS)}$				v/µs
di/dt	Critical rate of rise of	V _D = Rated V _D	I _{GT} = 50 mA	$I_{GT} = 50 \text{ mA}$ $T_{C} = 110^{\circ}\text{C}$		±100		A/µs
	on -state current	di _G /dt = 50 mA/µs		1 _C = 110 0				-π/μ5


† All voltages are with respect to Main Terminal 1.

NOTE 5: The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu s$, $t_r = \le 15 \ ns$, $f = 1 \ kHz$.

thermal characteristics

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.52	°C/W
R_{\thetaJA}	Junction to free air thermal resistance			36	°C/W



PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

TYPICAL CHARACTERISTICS

PRODUCT INFORMATION