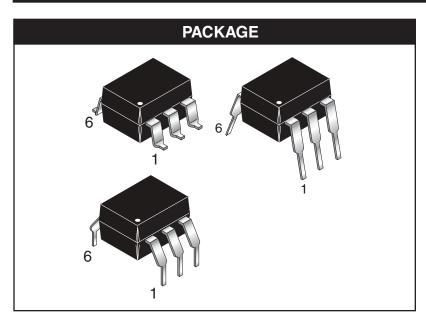
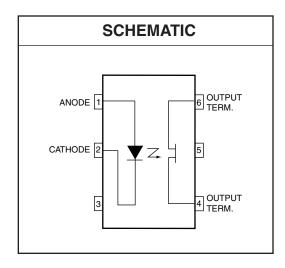
阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。


Read Statement


- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

FAIRCHILD SEMICONDUCTOR®

PHOTO FET OPTOCOUPLERS

H11F1 H11F2 H11F3

DESCRIPTION

The H11F series consists of a Gallium-Aluminum-Arsenide IRED emitting diode coupled to a symmetrical bilateral silicon photodetector. The detector is electrically isolated from the input and performs like an ideal isolated FET designed for distortion-free control of low level AC and DC analog signals. The H11F series devices are mounted in dual in-line packages.

FEATURES

As a remote variable resistor

- $\leq 100\Omega$ to ≥ 300 M Ω
- ≥ 99.9% linearity
- ≤ 15 pF shunt capacitance
- ≥ 100 GΩ I/O isolation resistance

As an analog switch

- · Extremely low offset voltage
- 60 V_{pk-pk} signal capability
- No charge injection or latch-up
- t_{on} , $t_{off} \le 15 \mu S$
- UL recognized (File #E90700)
- VDE recognized (File #E94766)
 - Ordering option '300' (e.g. H11F1.300)

APPLICATIONS

As a variable resistor -

- Isolated variable attenuator
- · Automatic gain control
- · Active filter fine tuning/band switching

As an analog switch -

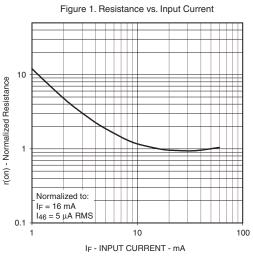
- · Isolated sample and hold circuit
- Multiplexed, optically isolated A/D conversion

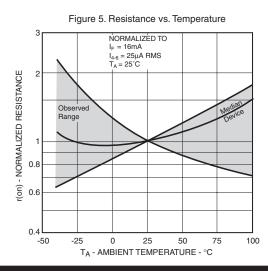
H11F1 H11F2 H11F3

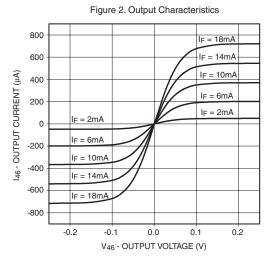
Absolute Maximum Ratings (T _A = 25°C unless otherwise specified)						
Parameter	Symbol	Device	Value	Units		
TOTAL DEVICE						
Storage Temperature	T _{STG}	All	-55 to +150	°C		
Operating Temperature	T _{OPR}	All	-55 to +100	°C		
Lead Solder Temperature	T _{SOL}	All	260 for 10 sec	°C		
EMITTER						
Continuous Forward Current	I _F	All	60	mA		
Reverse Voltage	V _R	All	5	V		
Forward Current - Peak (10 µs pulse, 1% duty cycle)	I _{F(pk)}	All	1	А		
LED Power Dissipation 25°C Ambient				mW		
Derate Linearly From 25°C	P_{D}	All	1.33	mW/°C		
DETECTOR						
Detector Power Dissipation @ 25°C	В	All	300	mW		
Derate linearly from 25°C	P_{D}	All	4.0	mW/°C		
Progledown Voltage (either polarity)	BV ₄₋₆	H11F1, H11F2	±30	V		
Breakdown Voltage (either polarity)		H11F3	±15	V		
Continuous Detector Current (either polarity)	I ₄₋₆	All	±100	mA		

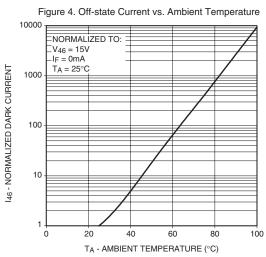
ELECTRICAL CHARACTERISTICS (T_A = 25°C Unless otherwise specified.)

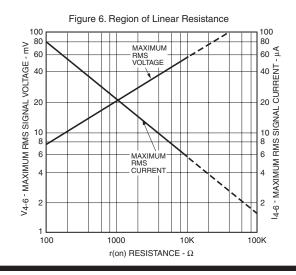
INDIVIDUAL COMPONENT CHARACTERISTICS							
Parameter	Test Conditions	Symbol	Device	Min	Тур*	Max	Unit
EMITTER							
Input Forward Voltage	$I_F = 16 \text{ mA}$	V _F	All		1.3	1.75	V
Reverse Leakage Current	V _R = 5 V	I _R	All			10	μΑ
Capacitance	V = 0 V, f = 1.0 MHz	CJ	All		50		pF
OUTPUT DETECTOR							
Breakdown Voltage	$I_{4-6} = 10\mu A, I_F = 0$	BV ₄₋₆	H11F1, H11F2	30			V
Either Polarity			H11F3	15			
Off-State Dark Current	$V_{4-6} = 15 \text{ V}, I_F = 0$	I ₄₋₆	All			50	nA
On-State Dark Current	$V_{4-6} = 15 \text{ V}, I_F = 0, T_A = 100^{\circ}\text{C}$		All			50	μA
Off-State Resistance	$V_{4-6} = 15 \text{ V}, I_F = 0$	R ₄₋₆	All	300			MΩ
Capacitance	$V_{4-6} = 15 \text{ V}, I_F = 0, f = 1 \text{MHz}$	C ₄₋₆	All			15	pF

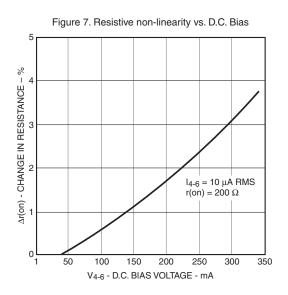



H11F1 H11F2 H11F3

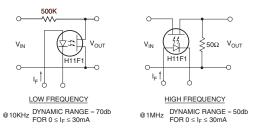

ISOLATION CHARACTERISTICS						
Parameter	Test Conditions	Symbol	Min	Тур*	Max	Units
Input-Output Isolation Voltage	f = 60Hz, t = 1 min.	V _{ISO}	5300			Vac (rms)
Isolation Resistance	V _{I-O} = 500 VDC	R _{ISO}	10 ¹¹			Ω
Isolation Capacitance	V _{I-O} = 0, f = 1.0 MHz	C _{ISO}			2	pF


TRANSFER CHARACTERISTICS (T _A = 25°C Unless otherwise specified.)							
DC Characteristics	Test Conditions	Symbol	Device	Min	Тур*	Max	Units
			H11F1			200	
On-State Resistance	I _F = 16 mA, I ₄₋₆ = 100 μA	R ₄₋₆	H11F2			330	Ω
			H11F3			470	
			H11F1			200	
On-State Resistance	I _F = 16 mA, I ₆₋₄ = 100 μA	R ₆₋₄	H11F2			330	Ω
			H11F3			470	
Resistance, non-linearity and assymetry	$I_F = 16mA$, $I_{4-6} = 25 \mu A RMS$, $f = 1kHz$		All			0.1	%
AC Characteristics	Test Conditions	Symbol	Device	Min	Тур*	Max	Units
Turn-On Time	$R_L = 50\Omega, I_F = 16\text{mA}, V_{4-6} = 5V$	t _{on}	All			25	μS
Turn-Off Time	$R_L = 50\Omega, I_F = 16\text{mA}, V_{4-6} = 5V$	t _{off}	All			25	μS


H11F1 H11F2 H11F3

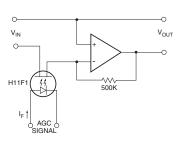


H11F1 H11F2 H11F3

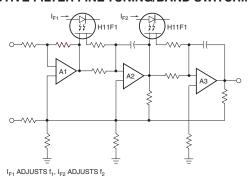


H11F1 H11F2 H11F3

TYPICAL APPLICATIONS

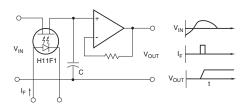

AS A VARIABLE RESISTOR

ISOLATED VARIABLE ATTENUATORS

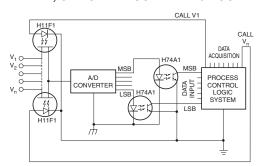

Distortion free attenuation of low level A.C. signals is accomplished by varying the IRED current, $I_{\rm F}$ Note the wide dynamic range and absence of coupling capacitors; D.C. level shifting or parasitic feedback to the controlling function.

AUTOMATIC GAIN CONTROL

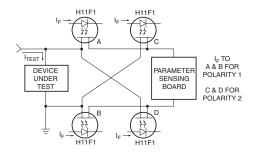
This simple circuit provides over 70db of stable gain control for an AGC signal range of from 0 to 30mA. This basic circuit can be used to provide programmable fade and attack for electronic music.


ACTIVE FILTER FINE TUNING/BAND SWITCHING

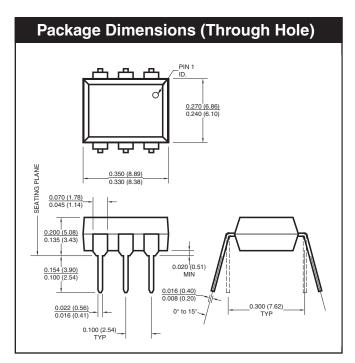
The linearity of resistance and the low offset voltage of the H11F allows the remote tuning or band-switching of active filters without switching glitches or distortion. This schematic illustrates the concept, with current to the H11F1 IRED's controlling the filter's transfer characteristic.

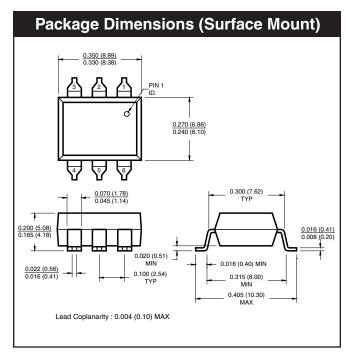

AS AN ANALOG SIGNAL SWITCH

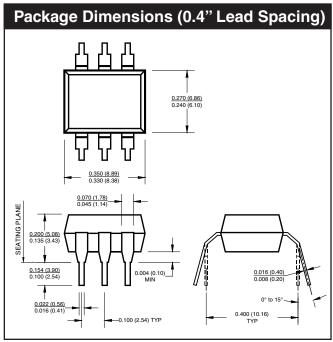
ISOLATED SAMPLE AND HOLD CIRCUIT

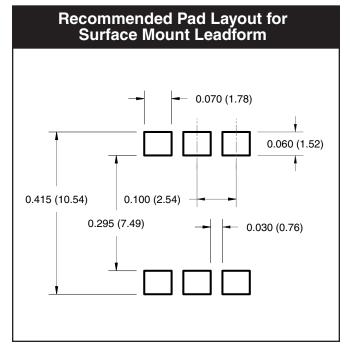

Accuracy and range are improved over conventional FET switches because the H11F has no charge injection from the control signal. The H11F also provides switching of either polarity input signal up to 30V magnitude.

MULTIPLEXED, OPTICALLY-ISOLATED A/D CONVERSION


The optical isolation, linearity and low offset voltage of the H11F allows the remote multiplexing of low level analog signals from such transducers as thermocouplers, Hall effect devices, strain gauges, etc. to a single A/D converter.


TEST EQUIPMENT - KELVIN CONTACT POLARITY

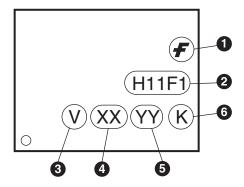



In many test equipment designs the auto polarity function uses reed relay contacts to switch the Kelvin Contact polarity. These reeds are normally one of the highest maintenance cost items due to sticking contacts and mechanical problems. The totally solid-State H11F eliminates these troubles while providing faster switching.

H11F1 H11F2 H11F3

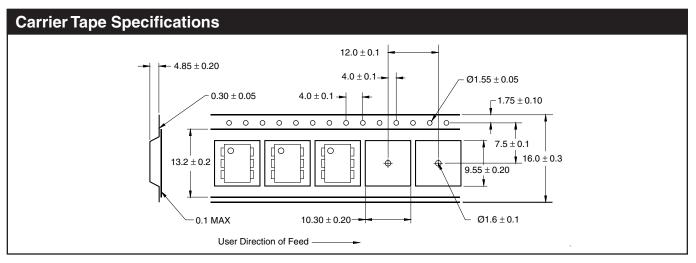
NOTE

All dimensions are in inches (millimeters)



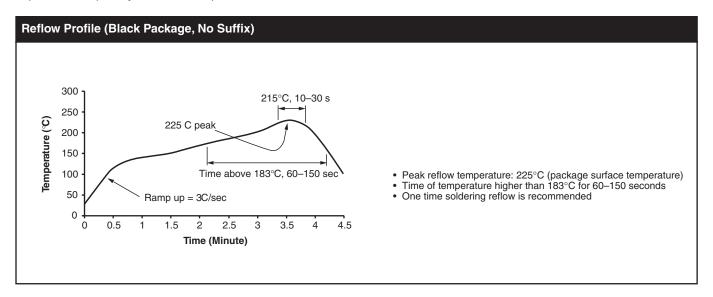
H11F1 H11F2 H11F3

ORDERING INFORMATION


Option	Order Entry Identifier	Description
S	.S	Surface Mount Lead Bend
SD	.SD	Surface Mount; Tape and Reel
W	.W	0.4" Lead Spacing
300	.300	VDE 0884
300W	.300W	VDE 0884, 0.4" Lead Spacing
3S	.3S	VDE 0884, Surface Mount
3SD	.3SD	VDE 0884, Surface Mount, Tape and Reel

MARKING INFORMATION

Definitions				
1	Fairchild logo			
2	Device number			
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)			
4	Two digit year code, e.g., '03'			
5	Two digit work week ranging from '01' to '53'			
6	Assembly package code			


H11F1 H11F2 H11F3

NOTE

All dimensions are in inches (millimeters)

Tape and reel quantity is 1,000 units per reel

H11F1 H11F2 H11F3

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.