阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

Trimmer Potentiometers

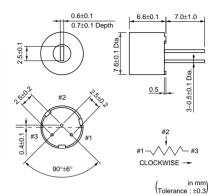
Lead Sealed Type Multi-turns PV12/PV37/PV23/PV22/PV36 Series

PV12 Series

■ Features

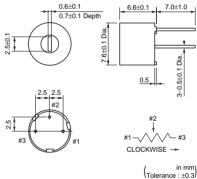
- 1. The unique inner gear system recognizes the position of the center of the shaft of the potentiometer.
- 2. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 3. Available for ultrasonic cleaning after soldering
- 4. Clutch mechanism prevents excessive wiper rotation.

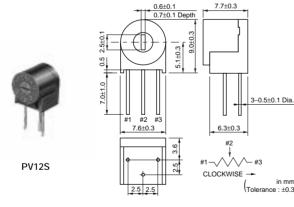
■ Applications

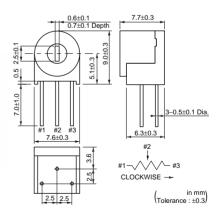

2. Professional cameras 1. HDTVs

3. CATV 4. FAX 5. Printers 6. Sensors

7. Switching power supplies


PV12H

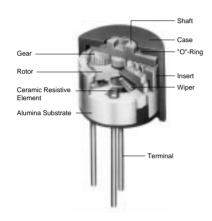



PV12P

PV12T

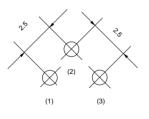
Part Number	Power Rating	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR
PV12□100A01	0.5W(70°C)	Flow/Soldering Iron	4	10ohm ±10%	±100ppm/°C
PV12□200A01	0.5W(70°C)	Flow/Soldering Iron	4	20ohm ±10%	±100ppm/°C
PV12□500A01	0.5W(70°C)	Flow/Soldering Iron	4	50ohm ±10%	±100ppm/°C
PV12□101A01	0.5W(70°C)	Flow/Soldering Iron	4	100ohm ±10%	±100ppm/°C
PV12□201A01	0.5W(70°C)	Flow/Soldering Iron	4	200ohm ±10%	±100ppm/°C
PV12□501A01	0.5W(70°C)	Flow/Soldering Iron	4	500ohm ±10%	±100ppm/°C
PV12□102A01	0.5W(70°C)	Flow/Soldering Iron	4	1k ohm ±10%	±100ppm/°C
PV12□202A01	0.5W(70°C)	Flow/Soldering Iron	4	2k ohm ±10%	±100ppm/°C
PV12□502A01	0.5W(70°C)	Flow/Soldering Iron	4	5k ohm ±10%	±100ppm/°C
PV12□103A01	0.5W(70°C)	Flow/Soldering Iron	4	10k ohm ±10%	±100ppm/°C

Continued from the preceding page.

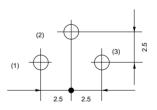

Part Number	Power Rating	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR
PV12□203A01	0.5W(70°C)	Flow/Soldering Iron	4	20k ohm ±10%	±100ppm/°C
PV12□503A01	0.5W(70°C)	Flow/Soldering Iron	4	50k ohm ±10%	±100ppm/°C
PV12□104A01	0.5W(70°C)	Flow/Soldering Iron	4	100k ohm ±10%	±100ppm/°C
PV12□204A01	0.5W(70°C)	Flow/Soldering Iron	4	200k ohm ±10%	±100ppm/°C
PV12□504A01	0.5W(70°C)	Flow/Soldering Iron	4	500k ohm ±10%	±100ppm/°C
PV12□105A01	0.5W(70°C)	Flow/Soldering Iron	4	1M ohm ±10%	±100ppm/°C
PV12□205A01	0.5W(70°C)	Flow/Soldering Iron	4	2M ohm ±10%	±100ppm/°C

Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$

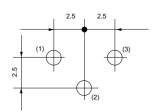
The blank column is filled with the code of adjustment direction and lead type (H, P, T and S).


The order quantity should be an integral multiple of the "Minimum Quantity".

■ Construction


■ Mounting Holes

PV12H


(Tolerance:±0.1) in mm

PV12P/PV12S

(Tolerance:±0.1) in mm

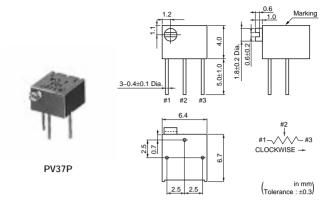
PV12T

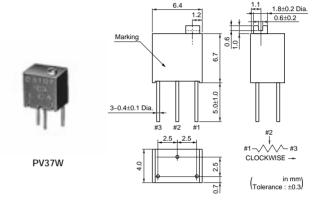
Tolerance:±0.1 \
in mm

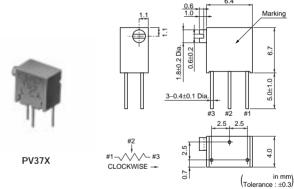
■ Characteristics

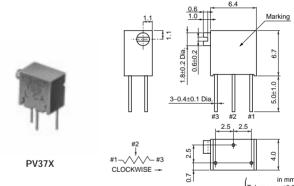
Tomporatura Cuala	ΔTR	±2%
Temperature Cycle	ΔV.S.S.	±1%
Llumiditu	ΔTR	±2%
Humidity	IR	100Mohm min.
Vibration (20C)	ΔTR	±1%
Vibration (20G)	ΔV.S.S.	±1%
Ch I. (100C)	ΔTR	±1%
Shock (100G)	ΔV.S.S.	±1%
Tomporatura Load Life	ΔTR	±3%
Temperature Load Life	ΔV.S.S.	±2%
Law Tamparatura Evpagura	ΔTR	±3%
Low Temperature Exposure	ΔV.S.S.	±1.5%
High Tomporature Europeure	ΔTR	±3%
High Temperature Exposure	ΔV.S.S.	±1.5%
Rotational Life (200 cycles)	ΔTR	±3%

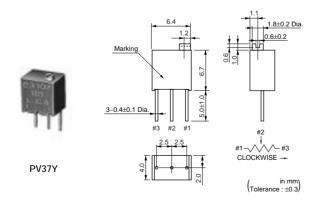
 $\begin{array}{ll} \Delta TR & : Total \ Resistance \ Change \\ \Delta V.S.S. & : Voltage \ Setting \ Stability \\ IR & : Insulation \ Resistance \end{array}$

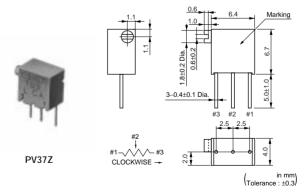

PV37 Series


■ Features


- 1. Smaller volume (about one-third) than 25-turns potentiometer
- 2. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 3. Available for ultrasonic cleaning after soldering
- 4. Clutch mechanism prevents excessive wiper rotation.
- 5. 5 standard terminal styles
- 6. Both Top and side adjustment directions
- 7. To be complied with RoHS directive by new Cd free cermet resistive material. Pb free terminals with Sn plating.


■ Applications

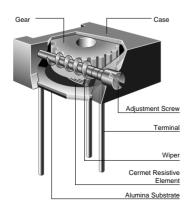

- 1. Measuring instruments 2. OA equipment
- 3. Medical equipment 4. Power supply
- 5. Base station for cellular phone



Part Number	Power Rating	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR
PV37□100C01	0.25W(85°C)	Flow/Soldering Iron	12	10ohm ±10%	±150ppm/°C
PV37□200C01	0.25W(85°C)	Flow/Soldering Iron	12	20ohm ±10%	±150ppm/°C
PV37□500C01	0.25W(85°C)	Flow/Soldering Iron	12	50ohm ±10%	±150ppm/°C

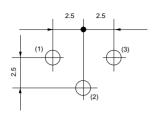
Part Number	Power Rating	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR
PV37□101C01	0.25W(85°C)	Flow/Soldering Iron	12	100ohm ±10%	±150ppm/°C
PV37□201C01	0.25W(85°C)	Flow/Soldering Iron	12	200ohm ±10%	±150ppm/°C
PV37□501C01	0.25W(85°C)	Flow/Soldering Iron	12	500ohm ±10%	±150ppm/°C
PV37□102C01	0.25W(85°C)	Flow/Soldering Iron	12	1k ohm ±10%	±150ppm/°C
PV37□202C01	0.25W(85°C)	Flow/Soldering Iron	12	2k ohm ±10%	±150ppm/°C
PV37□502C01	0.25W(85°C)	Flow/Soldering Iron	12	5k ohm ±10%	±150ppm/°C
PV37□103C01	0.25W(85°C)	Flow/Soldering Iron	12	10k ohm ±10%	±150ppm/°C
PV37□203C01	0.25W(85°C)	Flow/Soldering Iron	12	20k ohm ±10%	±150ppm/°C
PV37□253C01	0.25W(85°C)	Flow/Soldering Iron	12	25k ohm ±10%	±150ppm/°C
PV37□503C01	0.25W(85°C)	Flow/Soldering Iron	12	50k ohm ±10%	±150ppm/°C
PV37□104C01	0.25W(85°C)	Flow/Soldering Iron	12	100k ohm ±10%	±150ppm/°C
PV37□204C01	0.25W(85°C)	Flow/Soldering Iron	12	200k ohm ±10%	±150ppm/°C
PV37□254C01	0.25W(85°C)	Flow/Soldering Iron	12	250k ohm ±10%	±150ppm/°C
PV37□504C01	0.25W(85°C)	Flow/Soldering Iron	12	500k ohm ±10%	±150ppm/°C
PV37□105C01	0.25W(85°C)	Flow/Soldering Iron	12	1M ohm ±10%	±150ppm/°C
PV37□205C01	0.25W(85°C)	Flow/Soldering Iron	12	2M ohm ±10%	±150ppm/°C
PV37□100C31	0.25W(85°C)	Flow/Soldering Iron	12	10ohm ±10%	±150ppm/°C
PV37□200C31	0.25W(85°C)	Flow/Soldering Iron	12	20ohm ±10%	±150ppm/°C
PV37□500C31	0.25W(85°C)	Flow/Soldering Iron	12	50ohm ±10%	±150ppm/°C
PV37□101C31	0.25W(85°C)	Flow/Soldering Iron	12	100ohm ±10%	±150ppm/°C
PV37□201C31	0.25W(85°C)	Flow/Soldering Iron	12	200ohm ±10%	±150ppm/°C
PV37□501C31	0.25W(85°C)	Flow/Soldering Iron	12	500ohm ±10%	±150ppm/°C
PV37□102C31	0.25W(85°C)	Flow/Soldering Iron	12	1k ohm ±10%	±150ppm/°C
PV37□202C31	0.25W(85°C)	Flow/Soldering Iron	12	2k ohm ±10%	±150ppm/°C
PV37□502C31	0.25W(85°C)	Flow/Soldering Iron	12	5k ohm ±10%	±150ppm/°C
PV37□103C31	0.25W(85°C)	Flow/Soldering Iron	12	10k ohm ±10%	±150ppm/°C
PV37□203C31	0.25W(85°C)	Flow/Soldering Iron	12	20k ohm ±10%	±150ppm/°C
PV37□253C31	0.25W(85°C)	Flow/Soldering Iron	12	25k ohm ±10%	±150ppm/°C
PV37□503C31	0.25W(85°C)	Flow/Soldering Iron	12	50k ohm ±10%	±150ppm/°C
PV37□104C31	0.25W(85°C)	Flow/Soldering Iron	12	100k ohm ±10%	±150ppm/°C
PV37□204C31	0.25W(85°C)	Flow/Soldering Iron	12	200k ohm ±10%	±150ppm/°C
PV37□254C31	0.25W(85°C)	Flow/Soldering Iron	12	250k ohm ±10%	±150ppm/°C
PV37□504C31	0.25W(85°C)	Flow/Soldering Iron	12	500k ohm ±10%	±150ppm/°C
PV37□105C31	0.25W(85°C)	Flow/Soldering Iron	12	1M ohm ±10%	±150ppm/°C
PV37□205C31	0.25W(85°C)	Flow/Soldering Iron	12	2M ohm ±10%	±150ppm/°C

Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$

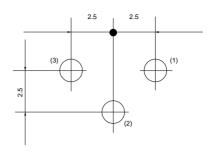

The blank column is filled with the code of adjustment direction and lead type (P, X, Y, W and Z).

The order quantity should be an integral multiple of the "Minimum Quantity".

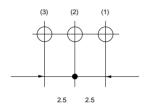
The last three digits express the individual specification codes. C01 for standard type and C31 for radial taping type (PV37Y/PV37Z series only).


Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)	Remarks
PV37□100A01	0.25(85°C)	Flow/Soldering Iron	12	10 ohm±10%	±100	
PV37□200A01	0.25(85°C)	Flow/Soldering Iron	12	20 ohm±10%	±100	
PV37□500A01	0.25(85°C)	Flow/Soldering Iron	12	50 ohm±10%	±100	
PV37□101A01	0.25(85°C)	Flow/Soldering Iron	12	100 ohm±10%	±100	
PV37□201A01	0.25(85°C)	Flow/Soldering Iron	12	200 ohm±10%	±100	
PV37□501A01	0.25(85°C)	Flow/Soldering Iron	12	500 ohm±10%	±100	
PV37□102A01	0.25(85°C)	Flow/Soldering Iron	12	1k ohm±10%	±100	
PV37□202A01	0.25(85°C)	Flow/Soldering Iron	12	2k ohm±10%	±100	
PV37□502A01	0.25(85°C)	Flow/Soldering Iron	12	5k ohm±10%	±100	
PV37□103A01	0.25(85°C)	Flow/Soldering Iron	12	10k ohm±10%	±100	
PV37□203A01	0.25(85°C)	Flow/Soldering Iron	12	20k ohm±10%	±100	
PV37□253A01	0.25(85°C)	Flow/Soldering Iron	12	25k ohm±10%	±100	
PV37□503A01	0.25(85°C)	Flow/Soldering Iron	12	50k ohm±10%	±100	
PV37□104A01	0.25(85°C)	Flow/Soldering Iron	12	100k ohm±10%	±100	
PV37□204A01	0.25(85°C)	Flow/Soldering Iron	12	200k ohm±10%	±100	
PV37□254A01	0.25(85°C)	Flow/Soldering Iron	12	250k ohm±10%	±100	
PV37□504A01	0.25(85°C)	Flow/Soldering Iron	12	500k ohm±10%	±100	
PV37□105A01	0.25(85°C)	Flow/Soldering Iron	12	1M ohm±10%	±100	Non Standard
PV37□205A01	0.25(85°C)	Flow/Soldering Iron	12	2M ohm±10%	±100	Product
PV37□100A31	0.25(85°C)	Flow/Soldering Iron	12	10 ohm±10%	±100	(Cd included)
PV37□200A31	0.25(85°C)	Flow/Soldering Iron	12	20 ohm±10%	±100	(Ca iriciadea)
PV37□500A31	0.25(85°C)	Flow/Soldering Iron	12	50 ohm±10%	±100	
PV37□101A31	0.25(85°C)	Flow/Soldering Iron	12	100 ohm±10%	±100	
PV37□201A31	0.25(85°C)	Flow/Soldering Iron	12	200 ohm±10%	±100	
PV37□501A31	0.25(85°C)	Flow/Soldering Iron	12	500 ohm±10%	±100	
PV37□102A31	0.25(85°C)	Flow/Soldering Iron	12	1k ohm±10%	±100	
PV37□202A31	0.25(85°C)	Flow/Soldering Iron	12	2k ohm±10%	±100	
PV37□502A31	0.25(85°C)	Flow/Soldering Iron	12	5k ohm±10%	±100	
PV37□103A31	0.25(85°C)	Flow/Soldering Iron	12	10k ohm±10%	±100	
PV37□203A31	0.25(85°C)	Flow/Soldering Iron	12	20k ohm±10%	±100	
PV37□253A31	0.25(85°C)	Flow/Soldering Iron	12	25k ohm±10%	±100	
PV37□503A31	0.25(85°C)	Flow/Soldering Iron	12	50k ohm±10%	±100	
PV37□104A31	0.25(85°C)	Flow/Soldering Iron	12	100k ohm±10%	±100	
PV37□204A31	0.25(85°C)	Flow/Soldering Iron	12	200k ohm±10%	±100	
PV37□254A31	0.25(85°C)	Flow/Soldering Iron	12	250k ohm±10%	±100	
PV37□504A31	0.25(85°C)	Flow/Soldering Iron	12	500k ohm±10%	±100	
PV37□105A31	0.25(85°C)	Flow/Soldering Iron	12	1M ohm±10%	±100	
PV37□205A31	0.25(85°C)	Flow/Soldering Iron	12	2M ohm±10%	±100	

■ Construction


■ Mounting Holes

PV37P


(Tolerance:±0.1

PV37W/PV37X

(Tolerance ±0.1) in mm

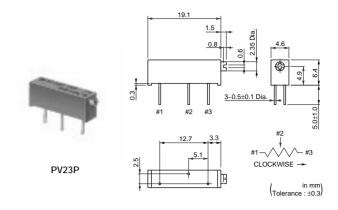
PV37Y/PV37Z

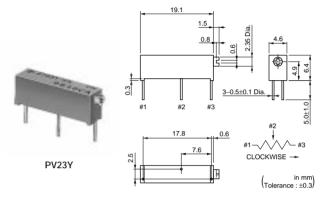
(Tolerance:±0.1) in mm

■ Characteristics

	ΔTR	±1%
Temperature Cycle	ΔV.S.S.	±1%
	ΔTR	±2%
Humidity	IR	100Mohm min.
	ΔTR	±1%
Vibration (20G)	ΔV.S.S.	±1%
Cl I (100C)	ΔTR	±1%
Shock (100G)	ΔV.S.S.	±1%
T	ΔTR	±2%
Temperature Load Life	ΔV.S.S.	±1%
Low Tomporature Evpanure	ΔTR	±1%
Low Temperature Exposure	ΔV.S.S.	±1%
High Topporature Functure	ΔTR	±2%
High Temperature Exposure	ΔV.S.S.	±1%
Dotational Life (200 avales)	ΔTR	R≦100ohm ±3%
Rotational Life (200 cycles)		R>100ohm ±2%

 $\begin{array}{lll} \Delta TR & : Total \ Resistance \ Change \\ \Delta V.S.S. : Voltage \ Setting \ Stability \\ IR & : Insulation \ Resistance \\ R & : Standard \ Total \ Resistance \\ \end{array}$


PV23 Series


■ Features

- 1. Small size (4.6x6.4x19.1mm) and high power rating (0.75W at 70deg.C)
- 2. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 3. Available for ultrasonic cleaning after soldering
- 4. Clutch mechanism prevents excessive wiper rotation.
- To be complied with RoHS directive by new Cd free cermet resistive material. Pb free terminals with Sn plating.

■ Applications

- 1. Measuring instruments 2. FAX
- 3. Copier
- 4. Printers
- 5. Sensors

2M ohm ±10%

Part Number	Power Rating	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR
PV23□100C01	0.75W(70°C)	Flow/Soldering Iron	15	10ohm ±10%	±150ppm/°C
PV23□200C01	0.75W(70°C)	Flow/Soldering Iron	15	20ohm ±10%	±150ppm/°C
PV23□500C01	0.75W(70°C)	Flow/Soldering Iron	15	50ohm ±10%	±150ppm/°C
PV23□101C01	0.75W(70°C)	Flow/Soldering Iron	15	100ohm ±10%	±150ppm/°C
PV23□201C01	0.75W(70°C)	Flow/Soldering Iron	15	200ohm ±10%	±100ppm/°C
PV23□501C01	0.75W(70°C)	Flow/Soldering Iron	15	500ohm ±10%	±100ppm/°C
PV23□102C01	0.75W(70°C)	Flow/Soldering Iron	15	1k ohm ±10%	±100ppm/°C
PV23□202C01	0.75W(70°C)	Flow/Soldering Iron	15	2k ohm ±10%	±100ppm/°C
PV23□502C01	0.75W(70°C)	Flow/Soldering Iron	15	5k ohm ±10%	±100ppm/°C
PV23□103C01	0.75W(70°C)	Flow/Soldering Iron	15	10k ohm ±10%	±100ppm/°C
PV23□203C01	0.75W(70°C)	Flow/Soldering Iron	15	20k ohm ±10%	±100ppm/°C
PV23□503C01	0.75W(70°C)	Flow/Soldering Iron	15	50k ohm ±10%	±100ppm/°C
PV23□104C01	0.75W(70°C)	Flow/Soldering Iron	15	100k ohm ±10%	±100ppm/°C
PV23□204C01	0.75W(70°C)	Flow/Soldering Iron	15	200k ohm ±10%	±100ppm/°C
PV23□504C01	0.75W(70°C)	Flow/Soldering Iron	15	500k ohm ±10%	±100ppm/°C
PV23□105C01	0.75W(70°C)	Flow/Soldering Iron	15	1M ohm ±10%	±100ppm/°C

15

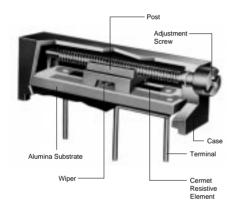
Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$

PV23 205C01

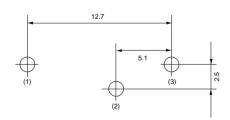
The blank column is filled with the code of adjustment direction and lead type (P and Y).

Flow/Soldering Iron

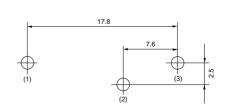
The order quantity should be an integral multiple of the "Minimum Quantity".


0.75W(70°C)

±100ppm/°C


Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)	Remarks
PV23□100A01	0.75(70°C)	Flow/Soldering Iron	15	10 ohm±10%	±100	
PV23□200A01	0.75(70°C)	Flow/Soldering Iron	15	20 ohm±10%	±100	
PV23□500A01	0.75(70°C)	Flow/Soldering Iron	15	50 ohm±10%	±100	
PV23□101A01	0.75(70°C)	Flow/Soldering Iron	15	100 ohm±10%	±100	
PV23□201A01	0.75(70°C)	Flow/Soldering Iron	15	200 ohm±10%	±100	
PV23□501A01	0.75(70°C)	Flow/Soldering Iron	15	500 ohm±10%	±100	
PV23□102A01	0.75(70°C)	Flow/Soldering Iron	15	1k ohm±10%	±100	
PV23□202A01	0.75(70°C)	Flow/Soldering Iron	15	2k ohm±10%	±100	Non Standard
PV23□502A01	0.75(70°C)	Flow/Soldering Iron	15	5k ohm±10%	±100	Product
PV23□103A01	0.75(70°C)	Flow/Soldering Iron	15	10k ohm±10%	±100	(Cd included)
PV23□203A01	0.75(70°C)	Flow/Soldering Iron	15	20k ohm±10%	±100	
PV23□503A01	0.75(70°C)	Flow/Soldering Iron	15	50k ohm±10%	±100	
PV23□104A01	0.75(70°C)	Flow/Soldering Iron	15	100k ohm±10%	±100	
PV23□204A01	0.75(70°C)	Flow/Soldering Iron	15	200k ohm±10%	±100	
PV23□504A01	0.75(70°C)	Flow/Soldering Iron	15	500k ohm±10%	±100	
PV23□105A01	0.75(70°C)	Flow/Soldering Iron	15	1M ohm±10%	±100	
PV23□205A01	0.75(70°C)	Flow/Soldering Iron	15	2M ohm±10%	±100	

■ Construction



■ Mounting Holes

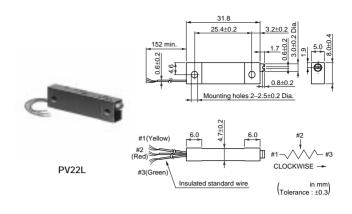
PV23P PV23Y

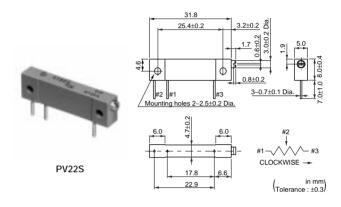
(Tolerance:±0.1) (Tolerance:±0.1) in mm

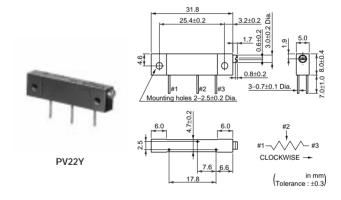
■ Characteristics

Tanananahana Ossala	ΔTR	±2%
Temperature Cycle	ΔV.S.S.	±1%
Liveridity	ΔTR	±2%
Humidity	IR	100Mohm min.
Vibration (200)	ΔTR	±1%
Vibration (20G)	ΔV.S.S.	±1%
Ch I. (FOC)	ΔTR	±1%
Shock (50G)	ΔV.S.S.	±1%
T	ΔTR	±3%
Temperature Load Life	ΔV.S.S.	±1%
Law Tanananah wa Firmanina	ΔTR	±1%
Low Temperature Exposure	ΔV.S.S.	±1%
High Tomporature Evacure	ΔTR	±2%
High Temperature Exposure	ΔV.S.S.	±1%
Rotational Life (200 cycles)	ΔTR	±3%

 $\begin{array}{ll} \Delta TR & : Total \ Resistance \ Change \\ \Delta V.S.S. & : Voltage \ Setting \ Stability \\ IR & : Insulation \ Resistance \end{array}$

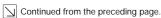

PV22 Series


■ Features


- 1. High power rating (1W at 70 deg.C)
- 2. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 3. Available for ultrasonic cleaning after soldering
- 4. Clutch mechanism prevents excessive wiper rotation.
- 5. To be complied with RoHS directive by new Cd free cermet resistive material. Pb free terminals with Sn plating.

■ Applications

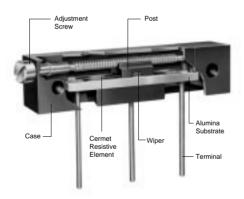
- 2. FAX 1. Measuring instruments
- 3. Copier
- 4. Printers
- 5. Sensors



Part Number	Power Rating	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR
PV22□100C01	1.0W(70°C)	Flow/Soldering Iron	22	10ohm ±10%	±100ppm/°C
PV22□200C01	1.0W(70°C)	Flow/Soldering Iron	22	20ohm ±10%	±100ppm/°C
PV22□500C01	1.0W(70°C)	Flow/Soldering Iron	22	50ohm ±10%	±100ppm/°C
PV22□101C01	1.0W(70°C)	Flow/Soldering Iron	22	100ohm ±10%	±100ppm/°C
PV22□201C01	1.0W(70°C)	Flow/Soldering Iron	22	200ohm ±10%	±100ppm/°C
PV22□501C01	1.0W(70°C)	Flow/Soldering Iron	22	500ohm ±10%	±100ppm/°C
PV22□102C01	1.0W(70°C)	Flow/Soldering Iron	22	1k ohm ±10%	±100ppm/°C
PV22□202C01	1.0W(70°C)	Flow/Soldering Iron	22	2k ohm ±10%	±100ppm/°C
PV22□502C01	1.0W(70°C)	Flow/Soldering Iron	22	5k ohm ±10%	±100ppm/°C
PV22□103C01	1.0W(70°C)	Flow/Soldering Iron	22	10k ohm ±10%	±100ppm/°C
PV22□203C01	1.0W(70°C)	Flow/Soldering Iron	22	20k ohm ±10%	±100ppm/°C
PV22□503C01	1.0W(70°C)	Flow/Soldering Iron	22	50k ohm ±10%	±100ppm/°C
PV22□104C01	1.0W(70°C)	Flow/Soldering Iron	22	100k ohm ±10%	±100ppm/°C
PV22□204C01	1.0W(70°C)	Flow/Soldering Iron	22	200k ohm ±10%	±100ppm/°C
PV22□504C01	1.0W(70°C)	Flow/Soldering Iron	22	500k ohm ±10%	±100ppm/°C
PV22□105C01	1.0W(70°C)	Flow/Soldering Iron	22	1M ohm ±10%	±100ppm/°C

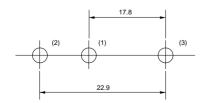
muRata

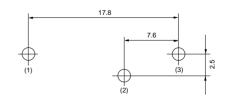
Part Number	Power Rating	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR
PV22□205C01	1.0W(70°C)	Flow/Soldering Iron	22	2M ohm ±10%	±100ppm/°C


Operating Temperature Range: -55 to 150 $^{\circ}\text{C}$

The blank column is filled with the code of adjustment direction and lead type (L, S and Y).

The order quantity should be an integral multiple of the "Minimum Quantity".


Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)	Remarks
PV22□100A01	1.0(70°C)	Flow/Soldering Iron	22	10 ohm±10%	±100	
PV22□200A01	1.0(70°C)	Flow/Soldering Iron	22	20 ohm±10%	±100	
PV22□500A01	1.0(70°C)	Flow/Soldering Iron	22	50 ohm±10%	±100	
PV22□101A01	1.0(70°C)	Flow/Soldering Iron	22	100 ohm±10%	±100	
PV22□201A01	1.0(70°C)	Flow/Soldering Iron	22	200 ohm±10%	±100	
PV22□501A01	1.0(70°C)	Flow/Soldering Iron	22	500 ohm±10%	±100	
PV22□102A01	1.0(70°C)	Flow/Soldering Iron	22	1k ohm±10%	±100	
PV22□202A01	1.0(70°C)	Flow/Soldering Iron	22	2k ohm±10%	±100	Non Standard
PV22□502A01	1.0(70°C)	Flow/Soldering Iron	22	5k ohm±10%	±100	Product
PV22□103A01	1.0(70°C)	Flow/Soldering Iron	22	10k ohm±10%	±100	(Cd included)
PV22□203A01	1.0(70°C)	Flow/Soldering Iron	22	20k ohm±10%	±100	
PV22□503A01	1.0(70°C)	Flow/Soldering Iron	22	50k ohm±10%	±100	
PV22□104A01	1.0(70°C)	Flow/Soldering Iron	22	100k ohm±10%	±100	
PV22□204A01	1.0(70°C)	Flow/Soldering Iron	22	200k ohm±10%	±100	
PV22□504A01	1.0(70°C)	Flow/Soldering Iron	22	500k ohm±10%	±100	
PV22□105A01	1.0(70°C)	Flow/Soldering Iron	22	1M ohm±10%	±100	
PV22□205A01	1.0(70°C)	Flow/Soldering Iron	22	2M ohm±10%	±100	


■ Construction

■ Mounting Holes

PV22S PV22Y

Tolerance:±0.1 Tolerance:±0.1 in mm

Continued on the following page.

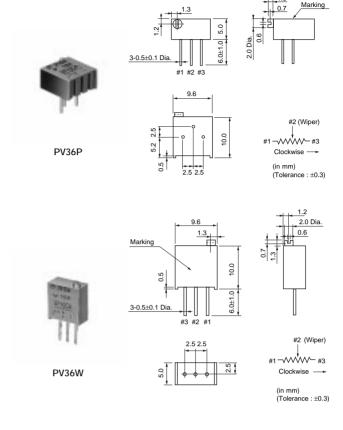
Continued from the preceding page.

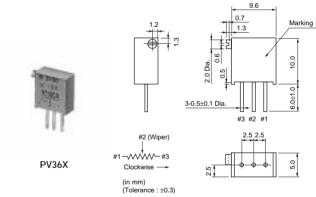
■ Characteristics

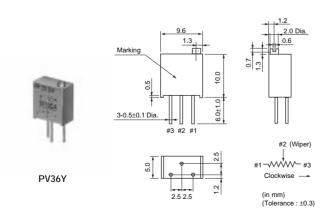
Tomporatura Cuala	ΔTR	±2%
Temperature Cycle	ΔV.S.S.	±1%
11	ΔTR	±2%
Humidity	IR	100Mohm min.
Vibration (20C)	ΔTR	±1%
Vibration (20G)	ΔV.S.S.	±1%
Ch I. (FOC)	ΔTR	±1%
Shock (50G)	ΔV.S.S.	±1%
Tomporatura Load Life	ΔTR	±3%
Temperature Load Life	ΔV.S.S.	±1%
Law Tamparatura Evpagura	ΔTR	±1%
Low Temperature Exposure	ΔV.S.S.	±1%
High Tomporature Europeure	ΔTR	±2%
High Temperature Exposure	ΔV.S.S.	±1%
Rotational Life (200 cycles)	ΔTR	±2%

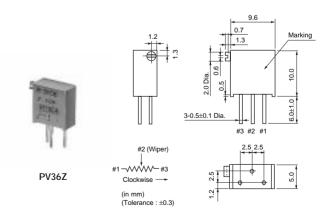
 ΔTR : Total Resistance Change ΔV.S.S. : Voltage Setting Stability : Insulation Resistance

66


PV36 Series


■ Features


- 1. High resolution 25-turns enables precision adjustment easily.
- 2. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 3. Available for ultrasonic cleaning after soldering
- 4. Clutch mechanism prevents excessive wiper rotation.
- 5. 5 standard terminal styles
- 6. Both Top and side adjustment directions.
- To be complied with RoHS directive by new Cd free cermet resistive material. Pb free terminals with Sn plating.


■ Applications

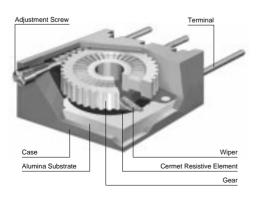
- 1. Measuring instruments 2. OA equipment
- 3. Medical equipment 4. Power supply
- 5. Base station for cellular phone

Part Number	Power Rating	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR
PV36□100C01	0.5W(70°C)	Flow/Soldering Iron	25	10ohm ±10%	±150ppm/°C
PV36□200C01	0.5W(70°C)	Flow/Soldering Iron	25	20ohm ±10%	±150ppm/°C
PV36□500C01	0.5W(70°C)	Flow/Soldering Iron	25	50ohm ±10%	±150ppm/°C

A	Continued	from	the	preceding	pag

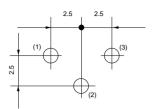
Part Number	Power Rating	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR
PV36□101C01	0.5W(70°C)	Flow/Soldering Iron	25	100ohm ±10%	±150ppm/°C
PV36□201C01	0.5W(70°C)	Flow/Soldering Iron	25	200ohm ±10%	±100ppm/°C
PV36□501C01	0.5W(70°C)	Flow/Soldering Iron	25	500ohm ±10%	±100ppm/°C
PV36□102C01	0.5W(70°C)	Flow/Soldering Iron	25	1k ohm ±10%	±100ppm/°C
PV36□202C01	0.5W(70°C)	Flow/Soldering Iron	25	2k ohm ±10%	±100ppm/°C
PV36□502C01	0.5W(70°C)	Flow/Soldering Iron	25	5k ohm ±10%	±100ppm/°C
PV36□103C01	0.5W(70°C)	Flow/Soldering Iron	25	10k ohm ±10%	±100ppm/°C
PV36□203C01	0.5W(70°C)	Flow/Soldering Iron	25	20k ohm ±10%	±100ppm/°C
PV36□253C01	0.5W(70°C)	Flow/Soldering Iron	25	25k ohm ±10%	±100ppm/°C
PV36□503C01	0.5W(70°C)	Flow/Soldering Iron	25	50k ohm ±10%	±100ppm/°C
PV36□104C01	0.5W(70°C)	Flow/Soldering Iron	25	100k ohm ±10%	±100ppm/°C
PV36□204C01	0.5W(70°C)	Flow/Soldering Iron	25	200k ohm ±10%	±100ppm/°C
PV36□254C01	0.5W(70°C)	Flow/Soldering Iron	25	250k ohm ±10%	±100ppm/°C
PV36□504C01	0.5W(70°C)	Flow/Soldering Iron	25	500k ohm ±10%	±100ppm/°C
PV36□105C01	0.5W(70°C)	Flow/Soldering Iron	25	1M ohm ±10%	±100ppm/°C
PV36□205C01	0.5W(70°C)	Flow/Soldering Iron	25	2M ohm ±10%	±100ppm/°C
PV36□100C31	0.5W(70°C)	Flow/Soldering Iron	25	10ohm ±10%	±150ppm/°C
PV36□200C31	0.5W(70°C)	Flow/Soldering Iron	25	20ohm ±10%	±150ppm/°C
PV36□500C31	0.5W(70°C)	Flow/Soldering Iron	25	50ohm ±10%	±150ppm/°C
PV36□101C31	0.5W(70°C)	Flow/Soldering Iron	25	100ohm ±10%	±150ppm/°C
PV36□201C31	0.5W(70°C)	Flow/Soldering Iron	25	200ohm ±10%	±100ppm/°C
PV36□501C31	0.5W(70°C)	Flow/Soldering Iron	25	500ohm ±10%	±100ppm/°C
PV36□102C31	0.5W(70°C)	Flow/Soldering Iron	25	1k ohm ±10%	±100ppm/°C
PV36□202C31	0.5W(70°C)	Flow/Soldering Iron	25	2k ohm ±10%	±100ppm/°C
PV36□502C31	0.5W(70°C)	Flow/Soldering Iron	25	5k ohm ±10%	±100ppm/°C
PV36□103C31	0.5W(70°C)	Flow/Soldering Iron	25	10k ohm ±10%	±100ppm/°C
PV36□203C31	0.5W(70°C)	Flow/Soldering Iron	25	20k ohm ±10%	±100ppm/°C
PV36□253C31	0.5W(70°C)	Flow/Soldering Iron	25	25k ohm ±10%	±100ppm/°C
PV36□503C31	0.5W(70°C)	Flow/Soldering Iron	25	50k ohm ±10%	±100ppm/°C
PV36□104C31	0.5W(70°C)	Flow/Soldering Iron	25	100k ohm ±10%	±100ppm/°C
PV36□204C31	0.5W(70°C)	Flow/Soldering Iron	25	200k ohm ±10%	±100ppm/°C
PV36□254C31	0.5W(70°C)	Flow/Soldering Iron	25	250k ohm ±10%	±100ppm/°C
PV36□504C31	0.5W(70°C)	Flow/Soldering Iron	25	500k ohm ±10%	±100ppm/°C
PV36□105C31	0.5W(70°C)	Flow/Soldering Iron	25	1M ohm ±10%	±100ppm/°C
PV36□205C31	0.5W(70°C)	Flow/Soldering Iron	25	2M ohm ±10%	±100ppm/°C

Operating Temperature Range: -55 to 125 °C


The blank column is filled with the code of adjustment direction and lead type (P, X, Y, W and Z).

The order quantity should be an integral multiple of the "Minimum Quantity".

The last three digits express the individual specification codes. C01 for standard type and C31 for radial taping type (PV36W/PV36X series only).

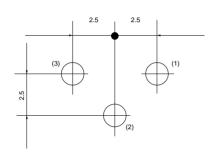

Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)	Remarks
PV36□100A01	0.5(70°C)	Flow/Soldering Iron	25	10 ohm±10%	±100	
PV36□200A01	0.5(70°C)	Flow/Soldering Iron	25	20 ohm±10%	±100	
PV36□500A01	0.5(70°C)	Flow/Soldering Iron	25	50 ohm±10%	±100	
PV36□101A01	0.5(70°C)	Flow/Soldering Iron	25	100 ohm±10%	±100	
PV36□201A01	0.5(70°C)	Flow/Soldering Iron	25	200 ohm±10%	±100	
PV36□501A01	0.5(70°C)	Flow/Soldering Iron	25	500 ohm±10%	±100	
PV36□102A01	0.5(70°C)	Flow/Soldering Iron	25	1k ohm±10%	±100	
PV36□202A01	0.5(70°C)	Flow/Soldering Iron	25	2k ohm±10%	±100	
PV36□502A01	0.5(70°C)	Flow/Soldering Iron	25	5k ohm±10%	±100	
PV36□103A01	0.5(70°C)	Flow/Soldering Iron	25	10k ohm±10%	±100	
PV36□203A01	0.5(70°C)	Flow/Soldering Iron	25	20k ohm±10%	±100	
PV36□253A01	0.5(70°C)	Flow/Soldering Iron	25	25k ohm±10%	±100	
PV36□503A01	0.5(70°C)	Flow/Soldering Iron	25	50k ohm±10%	±100	
PV36□104A01	0.5(70°C)	Flow/Soldering Iron	25	100k ohm±10%	±100	
PV36□204A01	0.5(70°C)	Flow/Soldering Iron	25	200k ohm±10%	±100	
PV36□254A01	0.5(70°C)	Flow/Soldering Iron	25	250k ohm±10%	±100	
PV36□504A01	0.5(70°C)	Flow/Soldering Iron	25	500k ohm±10%	±100	
PV36□105A01	0.5(70°C)	Flow/Soldering Iron	25	1M ohm±10%	±100	Non Standard
PV36□205A01	0.5(70°C)	Flow/Soldering Iron	25	2M ohm±10%	±100	Product
PV36□100A31	0.5(70°C)	Flow/Soldering Iron	25	10 ohm±10%	±100	(Cd included)
PV36□200A31	0.5(70°C)	Flow/Soldering Iron	25	20 ohm±10%	±100	(Ca iriciadea)
PV36□500A31	0.5(70°C)	Flow/Soldering Iron	25	50 ohm±10%	±100	
PV36□101A31	0.5(70°C)	Flow/Soldering Iron	25	100 ohm±10%	±100	
PV36□201A31	0.5(70°C)	Flow/Soldering Iron	25	200 ohm±10%	±100	
PV36□501A31	0.5(70°C)	Flow/Soldering Iron	25	500 ohm±10%	±100	
PV36□102A31	0.5(70°C)	Flow/Soldering Iron	25	1k ohm±10%	±100	
PV36□202A31	0.5(70°C)	Flow/Soldering Iron	25	2k ohm±10%	±100	
PV36□502A31	0.5(70°C)	Flow/Soldering Iron	25	5k ohm±10%	±100	
PV36□103A31	0.5(70°C)	Flow/Soldering Iron	25	10k ohm±10%	±100	
PV36□203A31	0.5(70°C)	Flow/Soldering Iron	25	20k ohm±10%	±100	
PV36□253A31	0.5(70°C)	Flow/Soldering Iron	25	25k ohm±10%	±100	
PV36□503A31	0.5(70°C)	Flow/Soldering Iron	25	50k ohm±10%	±100	
PV36□104A31	0.5(70°C)	Flow/Soldering Iron	25	100k ohm±10%	±100	
PV36□204A31	0.5(70°C)	Flow/Soldering Iron	25	200k ohm±10%	±100	
PV36□254A31	0.5(70°C)	Flow/Soldering Iron	25	250k ohm±10%	±100	
PV36□504A31	0.5(70°C)	Flow/Soldering Iron	25	500k ohm±10%	±100	
PV36□105A31	0.5(70°C)	Flow/Soldering Iron	25	1M ohm±10%	±100	
PV36□205A31	0.5(70°C)	Flow/Soldering Iron	25	2M ohm±10%	±100	

■ Construction



■ Mounting Holes

PV36P


PV36W/X

(Tolerance:±0.1

(Tolerance:±0.1) in mm

PV36Y/Z

(Tolerance ±0.1) in mm

■ Characteristics

Tomporatura Cuala	ΔTR ±2%			
Temperature Cycle	ΔV.S.S. ±1%			
I I considitor	ΔTR ±2%			
Humidity	IR 100Mohm min.			
Vibration (20C)	ΔTR ±1%			
Vibration (20G)	ΔV.S.S. ±1%			
Charl (100C)	ΔTR ±1%			
Shock (100G)	ΔV.S.S. ±1%			
Tomporatura Load Life	ΔTR ±3%			
Temperature Load Life	ΔV.S.S. ±1%			
Low Temperature Exposure	ΔTR ±2%			
Low remperature Exposure	ΔV.S.S. ±1%			
High Tomporature Expecure	ΔTR ±3%			
High Temperature Exposure	ΔV.S.S. ±1%			
Detational Life (200 evalue)	ΔTR R≦1kohm, R≧500kohm ··· ±5%			
Rotational Life (200 cycles)	1kohm <r<500kohm td="" ±3%<="" ···=""></r<500kohm>			

 $\begin{array}{lll} \Delta TR & : Total \ Resistance \ Change \\ \Delta V.S.S. : Voltage \ Setting \ Stability \\ IR & : Insulation \ Resistance \\ R & : Standard \ Total \ Resistance \\ \end{array}$

PV12/PV37/PV23/PV22/PV36 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%RH.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under

■ Notice (Rating)

- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- 2. The maximum input voltage to a trimmer potentiometer should not exceed (P.R)^1/2 or the maximum operating voltage, whichever is smaller.
- 3. The maximum input current to a trimmer potentiometer should not exceed (P/R)^1/2 or the allowable wiper current, whichever is smaller.

the following environmental conditions:

- Corrosive gaseous atmosphere
 (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid

(Ex. Oil, Medical liquid, Organic solvent, etc.)

- (3) Dusty / dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

■ Notice (Soldering and Mounting)

- 1. Soldering
- (1) Standard soldering condition
 - (a) Flow soldering:

>Pre-heating temp. 80-100 deg. C >Soldering temp. 260 deg. C max.

>Soldering time 3 sec. max.

- (b) Soldering iron:
 - >Temperature of tip 300 deg. C max.
 - >Soldering time 3 sec. max.
 - >Wattage of iron 40W max.

Before using other soldering conditions than those listed above, please consult with Murata factory representative prior to using. If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer potentiometer may deviate from the specified characteristics.

- (2) To minimize mechanical stress when adjusting, the trimmer potentiometer should be mounted onto PCB without gap.
- (3) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.
- 2. Mounting
- (1) Use PCB hole to meet the pin of the trimmer potentiometer. If the trimmer potentiometer installs into insufficient PCB hole, the

- trimmer potentimeter may be damaged by mechanical stress.
- (2) Do not apply excessive force (preferably 9.8N (Ref.; 1kgf) max.), when the trimmer potentiometer is mounted to the PCB.
- Cleaning
- (1) Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please consult with a Murata factory representative prior to using.
- (2) The total cleaning time by cold dipping, vapor and ultrasonic washing (conditions as below) method should be less than 3 minutes.
- (3) For ultra-sonic cleaning, the available condition is as follows.
 - >Power: 600W (67 liter) max.
 - >Frequency: 28kHz
 - >Temperature: Ambient temperature

Due to the ultra-sonic cleaning equipment's peculiar self-resonance point and that the cleaning compatibility usually depends on the jig construction and/or the cleaning condition such as the depth of immersion, please check the cleaning equipment to determine the suitable conditions.

If the trimmer potentiometer is cleaned by other conditions, the trimmer potentiometer may be damaged.

PV12/PV37/PV23/PV22/PV36 Series Notice

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the screwdrivers below.
 - * Recommended screwdriver for manual adjustment ENGINEER INC.: DA-40

(Murata P/N: KMDR180)

We can supply the screwdrivers above.

If you place order, please specify the Murata P/N.

2. Don't apply more than 9.8N (Ref.; 1kgf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is

- Notice (Other)
- Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- 2. Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

- applied, the trimmer potentiometer may not function.
- When adjusting with an adjustment tool, the applied force to the adjustment screw should not exceed
 N (Ref.; 500gf). If excessive force is applied, the trimmer potentiometer may not function due to damage.
- 4. When using a lock paint to fix slot position, please use adhesive resin without chlorine or sulfur (Three-bond "1401 series").

SMD Sealed Type/Lead Sealed Type Specifications and Test Methods

The following describes trimmer potentiometer testing conducted by Murata Manufacturing Co., Ltd. in accordance with MIL-R-22097 (Military specification for variable resistors, non-wirewound) and MIL-STD-202 (Test methods for electronic and electrical component parts).

No.	Item			Test I	Methods		
		against a stop. The position	ng of the c device. Us	ontact arm and ter se the test voltage	minal sho specified	ould be the in Table	1 and #3) with the contact arm positioned the same for subsequent total resistance of 1 for total resistance measurements.
		Total Resistance, Ma	aximum Te	st			
1	Total Resistance		Voltage (V)				
•	Total Resistance	10≦R≦100 100 <r≦1k< td=""><td>1.0</td><td></td><td></td><td></td><td></td></r≦1k<>	1.0				
		1k <r≦10k< td=""><td>3.0 10.0</td><td></td><td></td><td></td><td></td></r≦10k<>	3.0 10.0				
		10k <r≦100k< td=""><td>30.0</td><td></td><td></td><td></td><td></td></r≦100k<>	30.0				
		100k <r< td=""><td>100.0</td><td></td><td></td><td></td><td></td></r<>	100.0				
		Table 1: Total resistance	test voltag	je			
2	Residual Resistance	between the contact arm an wise limit of mechanical trav	d the corre el and mea	sponding end term sure the resistand	ninal. The ce betwee	n, position the cor	al travel and measure the resistance on the contact arm at the extreme clock- ntact arm and the corresponding end ter- urrent of the resistance element is not
		adjustment rotor (screw) sho angle (number of turns) for a contact resistance variation where the contact arm move adjustment rotor (screw) sho	ould be rota a total of 6 is observed es from the ould be suc test currer	ated in both direction of the last cycles. Only the last at least twice in the termination, on or that that the adjustm	ons throu st 3 cycle he same off, the re ent rotor	gh 90% or should location, esistance (screw) or should be should b	t shown in Figure 1, or its equivalent. The of the actual effective-electrical rotational I count in determining whether or not a exclusive of the roll-on or roll-off points e element. The rate of rotation of the completes 1 cycle for 5 seconds minimum in Table 2 unless otherwise limited by
	Contact Resistance Variation	R (ohm)	Test	Current			#1 Rx #3 Oscilloscope
3		R≦100	20)mA		J ₂	#2
		100 <r<500< td=""><td></td><td>0mA</td><td></td><td>rrent Source t shown in Ta</td><td></td></r<500<>		0mA		rrent Source t shown in Ta	
		500≦R<1k		mA		Ŷ	Amplifier
		1k≦R<2k 2k≦R<50k		mA mA		Rx : Trir	mmer Potentiometer
		50k≦R<200k		0μΑ			scope bandwidth :100Hz to 50kHz
		200k≦R<1M		0μA		Fig	ure 1: CRV measuring circuit
		1M≦R<2M	50	<u>·</u> DμA			
		2M≦R	30	DμA			
		Table 2: Test curre	ent for CRV	,			
4	Temperature Coefficient of Resistance	The trimmer potentiometer sutes. Temperature coefficient $TCR = \frac{R_2 - R_1}{R_1 (T_2 - T_1)} \times 10^6$ $T_1 : Reference tem T_2 : Test temperature R_1 : Resistance at R_2 : Resistance at R_2 : Resistance at R_3 : Resistance at R_4 : Resistance at R_5 : R_5 : Resistance at R_5 : R$	nt of resista (ppm/°C) aperature in ure in degre reference t	nce should be app degrees celsius des celsius demperature ohm			nperatures (see Table 3) for 30-45 minng formula.
		Sequence 1*	2	3	4*	5	6
		Temperature (°C) +25	-15	Min. operating	+25	+65	Max. operating
		Note*: Reference temperatu	re	Temperature			Temperature
		There is the second temperate		3: Test temperatu	res		
		adequate DC test potential s	should be a	pplied between te	rminal #1	and tern	rical rotational angle (number of turns). An ninal #3. The voltage between terminal #1 uld be measured and applied to the
5	Voltage Setting Stability	Voltage setting stability= $\left(\frac{e}{E}\right)$	- <u>e</u>)×10	0 (%)			
		e : Before test (The voltage between ter e': After test	minal #1 a	nd terminal #2)		#1 0	→
		(The voltage between ter				-	e

Continued on the following page.

SMD Sealed Type/Lead Sealed Type Specifications and Test Methods

Continued from the preceding page.

No.	Item	Test Methods				
		The trimmer potentiometer should be subjected to Table 4 temperature for 5 cycles. The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 1~2 hours.				
6	Temperature Cycle	Sequence 1 2 3 4 Temp. PV2□ series -55±3 +125±3 +150±3 +25±2 +150±3 +25±2				
		(°C) PV22 series 425±2 +150±3 +25±2 +25±2 PVF2 series -25±3 +60±3 +60±3 Time (min.) 30 5 max. 30 5 max.				
		Table 4: One cycle of temperature cycle.				
7	Humidity	1) PVC6, PV12, PV32, PV34 PVM4A D101 series The trimmer potentiometer should be placed in a chamber at a temperature of 40±2°C and a humidity of 90-95% without loading for 250±8 hours (500±12 hours for PVM4A D101 series). The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 5±1/6 hours. 2) PVF2 series The trimmer potentiometer should be placed in a chamber at 60±2°C and 90-95% without loading for 1000±12 hours. The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 5±1/6 hours 2) PVF3, PV65, PV01, PV22, PV23, PV36, PV37 series The trimmer potentiometer should be subjected Figure-3 the programmed humidity environment for 10 cycle. The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 1.5±1/2 hours. MIL-STD-202 METHOD 106 MIL-STD-202 METHOD 106				
8	Vibration	1) PV series The trimmer potentiometer should be vibrated throughout the frequency range at the 20G level. A complete frequency range, 10Hz to 2000Hz and back, should be made within 15 minutes for a total of 4 sweeps in each of the three axis direction for a total of 12 sweeps. 2) PVF2 series The trimmer potentiometer should be subjected to vibration at 0.3 inch amplitude. The frequency should be varied uniformly between the approximate limits of 10Hz and 55Hz. This motion should be applied for period of 2 hours in				
9	Shock	each of 3 mutually perpendicular directions (total of 6 hours). 1) PV series The trimmer potentiometer should be shocked at the 100G (50G for PV22 and PV23 series) level and should be subjected to 4 shocks in each of the three axis directions for a total of 12 shocks. 2) PVM4A Dotal Dot series The trimmer potentiometer should be shocked at the 100G level and should be subjected to 3 shocks in each of the six axis directions for a total of 18 shocks.				
10	Temperature Road Life	Full rated continuous working voltage not exceeding the maximum rated voltage should be applied intermittently between terminal #1 and terminal #3 of the trimmer potentiometer, 1.5 hours on and 0.5 hours off, for a total of 1000±12 hours, at a temperature of 70±2°C (85±2°C for PV01 and PV37 series, 50±2°C for PVF2 series). The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 1 to 2 hours.				
11	High Temperature Exposure (Except for PVF2)	The trimmer potentiometer should be placed in a chamber at a temperature of 125±3°C (150±3°C for PV22 series) 250±8 hours without loading. The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 1 to 2 hours.				
12	Low Temperature Exposure (Except for PVF2 and PVM4A DD1)	The trimmer potentiometer should be placed in a chamber at a temperature of -55±3°C for 1 hours without loading. Full rated continuous working voltage not exceeding the maximum rated voltage should be applied for 45 minutes. The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for approximately 24 hours.				

SMD Sealed Type/Lead Sealed Type Specifications and Test Methods

Continued from the preceding page.

No.	Item	Test Methods				
13	Low Temperature Operation (Only for PVF2 and PVM4A D01)	The trimmer potentiometer should be placed in a chamber at a temperature of -25±3°C (-55±3°C for PVM4ADD 01 series) 48±4 hours without loading. The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 1-2 hours				
14	Rotational Life	1)PV series Full rated continuous working voltage not exceeding the maximum rated voltage should be applied with the circuit shown in the figure. The adjustment rotor (screw) should be continuously cycled through not less than 90% of effective-electrical rotational angle (number of turns), at the rate of 1 cycle for 5 seconds minimum to 2.5 minutes maximum for total of 200 cycles. End Terminal Resistor 1 End Terminal End Terminal Resistor 2 End Terminal Figure 4 2) PVG3, PVG5 series The adjustment rotor (screw) should be continuously cycled though not less than 90% of effective-electrical rotation all angle (number of turns), at the rate of 1 cycle for 5 seconds minimum to 2.5 minutes maximum for a total of 50 (100 for PVG5) cycles, without loading.				
		3) PVF2, PVM4A DD01 series The wiper should be rotated over 90% of the effective rotational angle without loading at a speed of 10 cycles per minute, for 100 cycles continuously.				

