阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

Features

- Supply Voltage 5 V
- Very Low Power Consumption 125 mW
- Very Good Image Rejection By Means of Phase Control Loop for Precise 90° Phase Shifting
- Duty-cycle Regeneration for Single-ended LO Input Signal
- Low LO Input Level - 10 dBm
- LO Frequency from 70 MHz to 1 GHz
- Power-down Mode
- 25 dB Gain Control
- Very Low I/Q Output DC Offset Voltage Typically < 5 mV

Benefits

- Low Current Consumption
- Easy to Implement
- Perfect Performance for Large Variety of Wireless Applications

Electrostatic sensitive device.
Observe precautions for handling.

Description

The silicon monolithic integrated circuit U2794B is a quadrature demodulator manufactured using Atmel's advanced UHF technology. This demodulator features a frequency range from 70 MHz to 1000 MHz , low current consumption, selectable gain, power-down mode and adjustment-free handling. The IC is suitable for direct conversion and image rejection applications in digital radio systems up to 1 GHz such as cellular radios, cordless telephones, cable TV and satellite TV systems.
$1000-\mathrm{MHz}$
Quadrature Demodulator

Figure 1. Block Diagram

Pin Configuration

Figure 2. Pinning SSO2O

Pin Description

Pin	Symbol	Function
1	IX	IX output
2	I	I output
3	II	II lowpass filter I
4	IIX	IIX lowpass filter I
5	V $_{\text {S }}$	Supply voltage
6	V $_{\text {S }}$	Supply voltage
7	RF $_{\text {in }}$	RF input
8	RFX $_{\text {in }}$	RFX input
9	QQ 2	QQ lowpass filter Q
10	QQX	QQX lowpass filter Q
11	GC	GC gain control
12	PCX	PCX phase control
13	PC	PC phase control
14	PU	PU power up
15	LOX	
16	LOX input	
17	GND	Ground
18	GND	LO input
19	Qround	
20	QX	Q output

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Supply voltage	V_{S}	6	V
Input voltage	V_{i}	0 to V_{S}	V
Junction temperature	T_{j}	+125	${ }^{\circ} \mathrm{C}$
Storage-temperature range	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient SSO20	$\mathrm{R}_{\mathrm{thJA}}$	140	K/W

Operating Range

Parameters	Symbol	Value	Unit
Supply-voltage range	V_{S}	4.75 to 5.25	V
Ambient-temperature range	$\mathrm{T}_{\mathrm{amb}}$	-40 to +85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Test conditions (unless otherwise specified); $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, referred to test circuit
System impedance $\mathrm{Z}_{\mathrm{O}}=50 \Omega$, fiLO $=950 \mathrm{MHz}$, PiLO $=-10 \mathrm{dBm}$

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
1.1	Supply-voltage range		5, 6	V_{S}	4.75		5.25	V	A
1.2	Supply current		5, 6	$\mathrm{I}_{\text {S }}$	22	30	35	mA	A
2	Power-down Mode								
2.1	"OFF" mode supply current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{PU}} \leq 0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{PU}}=1.0 \mathrm{~V} \\ & (1) \end{aligned}$	$\begin{gathered} 14,5 \\ 6 \end{gathered}$	$\mathrm{I}_{\text {SPU }}$		$\begin{aligned} & \leq 1 \\ & 20 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$
3	Switch Voltage								
3.1	"Power ON"		14	$\mathrm{V}_{\text {PON }}$	4			V	D

*) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter
Notes: 1. During power-down status a load circuitry with DC-isolation to GND is assumed, otherwise a current of $\mathrm{I} \approx(\mathrm{VS}-0.8 \mathrm{~V}) / \mathrm{RI}$ has to be added to the above power-down current for each output I, IX, Q, QX.
2. The required LO-Level is a function of the LO frequency (see Figure 8).
3. Measured with input matching. For 950 MHz , the optional transmission line T3 at the RF input may be used for this purpose. Noise figure measurements without using the differential output signal result in a worse noise figure.
4. Using Pins 7 and 8 as a symmetric RF input, the second-order IIP can be improved.
5. Due to test board parasitics, this bandwidth may be reduced and not be equal for I, IX, Q, QX. If symmetry and full bandwidth is required, the lowpass Pins 3,4 and 9,10 should be isolated from the board. the bandwidth of the I/Q outputs can be increased further by using a resistor between Pins 3, 4, 9 and 10. These resistors shunt the internal loads of $\mathrm{RI} \sim 5.4 \mathrm{k} \Omega$. The decrease in gain here has to be considered.
6. The internal current of the output emitter followers is 0.6 mA . This reduces the undistorted output voltage swing at a 50Ω load to approsimately 30 mV . For low signal distortion the load impedance should be $\mathrm{RI} \geq 5 \mathrm{k} \Omega$.
7. Referred to the level of the output vector $\sqrt{I^{2}+Q^{2}}$
8. The low-gain status is achieved with an open or high-ohmic Pin 11. A recommended application circuit for switching between high and low gain status is hown in Figure 3.

Electrical Characteristics (Continued)

Test conditions (unless otherwise specified); $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, referred to test circuit System impedance $Z_{O}=50 \Omega$, fiLO $=950 \mathrm{MHz}$, PiLO $=-10 \mathrm{dBm}$

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
3.2	"Power DOWN"		14	$\mathrm{V}_{\text {POFF }}$			1	V	D
4	LO Input, LO $_{\text {in }}$								
4.1	Frequency range		17	$\mathrm{f}_{\mathrm{iLO}}$	70		1000	MHz	D
4.2	Input level	(2)	17	$\mathrm{P}_{\mathrm{iLO}}$	-12	-10	-5	dBm	D
4.3	Input impedance	See Figure 12	17	$\mathrm{Z}_{\mathrm{iLO}}$		50		Ω	D
4.4	Voltage standing wave ratio	See Figure 5	17	$\mathrm{VSWR}_{\text {Lo }}$		1.2	2		D
4.5	Duty-cycle range		17	DCR ${ }_{\text {Lo }}$	0.4		0.6		D
5	RF Input, $\mathrm{RF}_{\text {in }}$								
5.1	Noise figure (DSB) symmetrical output	$\begin{aligned} & \text { at } 950 \mathrm{MHz}^{(3)} \\ & \text { at } 100 \mathrm{MHz} \end{aligned}$	7, 8	NF		$\begin{aligned} & 12 \\ & 10 \end{aligned}$		dB	D
5.2	Frequency range	$\mathrm{f}_{\mathrm{iRF}}=\mathrm{Fi}_{\mathrm{LO}} \pm \mathrm{BW}_{\mathrm{YQ}}$	7, 8	$\mathrm{f}_{\text {iRF }}$	40		1030	MHz	D
5.3	-1 dB input compression point	High gain Low gain	7, 8	$P_{1 d B H G}$ $P_{\text {1dBLG }}$		$\begin{gathered} -8 \\ +3.5 \end{gathered}$		dBm	D
5.4	Second order IIP	(4)	7, 8	IIP $\mathrm{P}_{2 \mathrm{HG}}$		35		dBm	D
5.5	Third order IIP	High gain Low gain	7, 8	$\begin{aligned} & \mathrm{IIP}_{3 \mathrm{HG}} \\ & \mathrm{IIP}_{3 \mathrm{LG}} \end{aligned}$		$\begin{gathered} +3 \\ +13 \end{gathered}$		dBm	D
5.6	LO leakage	Symmetric input Asymmetric input	7, 8	L_{OL}		$\begin{aligned} & \leq-60 \\ & \leq-55 \end{aligned}$		dBm	D
5.7	Input impedance	see Figure 12	7, 8	$\mathrm{Z}_{\text {iRF }}$		500110.8		SllpF	D
6	I/Q Outputs (I, IX, Q, QX) Emitter Follower I = 0.6 mA								
6.1	3-dB bandwidth w/o external C		$\begin{gathered} 1,2,19 \\ 20 \end{gathered}$	BWI/Q	≥ 30			MHz	D
6.2	I/Q amplitude error		$\begin{gathered} \hline 1,2,19 \\ 20 \end{gathered}$	Ae	-0.5	$\leq \pm 0.2$	+0.5	dB	B
6.3	I/Q phase error		$\begin{gathered} 1,2,19 \\ 20 \end{gathered}$	Pe	-3	$\leq \pm 1.5$	+3	Deg	B

*) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter
Notes: 1. During power-down status a load circuitry with DC -isolation to GND is assumed, otherwise a current of $\mathrm{I} \approx(\mathrm{VS}-0.8 \mathrm{~V}) / \mathrm{RI}$ has to be added to the above power-down current for each output I, IX, Q, QX.
2. The required LO-Level is a function of the LO frequency (see Figure 8).
3. Measured with input matching. For 950 MHz , the optional transmission line T3 at the RF input may be used for this purpose. Noise figure measurements without using the differential output signal result in a worse noise figure.
4. Using Pins 7 and 8 as a symmetric RF input, the second-order IIP can be improved.
5. Due to test board parasitics, this bandwidth may be reduced and not be equal for I, IX, Q, QX. If symmetry and full bandwidth is required, the lowpass Pins 3,4 and 9,10 should be isolated from the board. the bandwidth of the I/Q outputs can be increased further by using a resistor between Pins 3, 4, 9 and 10. These resistors shunt the internal loads of RI $\sim 5.4 \mathrm{k} \Omega$. The decrease in gain here has to be considered.
6. The internal current of the output emitter followers is 0.6 mA . This reduces the undistorted output voltage swing at a 50Ω load to approsimately 30 mV . For low signal distortion the load impedance should be $\mathrm{RI} \geq 5 \mathrm{k} \Omega$.
7. Referred to the level of the output vector $\sqrt{1^{2}+Q^{2}}$
8. The low-gain status is achieved with an open or high-ohmic Pin 11. A recommended application circuit for switching between high and low gain status is hown in Figure 3.

Electrical Characteristics (Continued)

Test conditions (unless otherwise specified); $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, referred to test circuit System impedance $Z_{O}=50 \Omega$, fiLO $=950 \mathrm{MHz}$, PiLO $=-10 \mathrm{dBm}$

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
6.4	I/Q maximum output swing	Symm. output $\mathrm{R}_{\mathrm{L}}>5 \mathrm{k} \Omega$	$\begin{gathered} 1,2,19 \\ 20 \end{gathered}$	$\mathrm{V}_{\text {PP }}$			2		D
6.5	DC output voltage		$\begin{gathered} 1,2,19 \\ 20 \end{gathered}$	$\mathrm{V}_{\text {OUT }}$	2.5	2.8	3.1	V	A
6.6	DC output offset voltage	(6)	$\begin{gathered} 1,2,19 \\ 20 \end{gathered}$	$\mathrm{V}_{\text {offset }}$		< 5		mV	Test Spec.
6.7	Output impedance	see Figure 12	$\begin{gathered} 1,2,19 \\ 20 \end{gathered}$	$\mathrm{Z}_{\text {out }}$		50		Ω	D
7	Gain Control, GC								
7.1	Control range power Gain high Gain low	(7)	11	$\begin{gathered} \hline \text { GCR } \\ G_{H} \\ G_{L} \end{gathered}$		$\begin{aligned} & 25 \\ & 23 \\ & -2 \end{aligned}$		$\begin{gathered} \mathrm{dB} \\ \mathrm{dBm} \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~B} \\ & \mathrm{D} \end{aligned}$
7.2	Switch Voltage								
7.3	"Gain high"		11				1	V	
7.4	"Gain low"	(8)	11 < open						
7.5	Settling Time, ST								
7.6	Power "OFF" - "ON"			$\mathrm{T}_{\text {SON }}$		< 4		$\mu \mathrm{s}$	D
7.7	Power "ON" - "OFF"			$\mathrm{T}_{\text {SOFF }}$		< 4		$\mu \mathrm{s}$	D

*) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter
Notes: 1. During power-down status a load circuitry with DC -isolation to GND is assumed, otherwise a current of $\mathrm{I} \approx(\mathrm{VS}-0.8 \mathrm{~V}) / \mathrm{RI}$ has to be added to the above power-down current for each output I, IX, Q, QX.
2. The required LO-Level is a function of the LO frequency (see Figure 8).
3. Measured with input matching. For 950 MHz , the optional transmission line T3 at the RF input may be used for this purpose. Noise figure measurements without using the differential output signal result in a worse noise figure.
4. Using Pins 7 and 8 as a symmetric RF input, the second-order IIP can be improved.
5. Due to test board parasitics, this bandwidth may be reduced and not be equal for I, IX, Q, QX. If symmetry and full bandwidth is required, the lowpass Pins 3,4 and 9,10 should be isolated from the board. the bandwidth of the I/Q outputs can be increased further by using a resistor between Pins 3, 4, 9 and 10. These resistors shunt the internal loads of $\mathrm{RI} \sim 5.4 \mathrm{k} \Omega$. The decrease in gain here has to be considered.
6. The internal current of the output emitter followers is 0.6 mA . This reduces the undistorted output voltage swing at a 50Ω load to approsimately 30 mV . For low signal distortion the load impedance should be $\mathrm{RI} \geq 5 \mathrm{k} \Omega$.
7. Referred to the level of the output vector $\sqrt{I^{2}+Q^{2}}$
8. The low-gain status is achieved with an open or high-ohmic Pin 11. A recommended application circuit for switching between high and low gain status is hown in Figure 3.

Figure 3. Test Circuit

* optional for single-ended tests (notice 3 dB bandwidth of AD620)
$\mathrm{T} 1, \mathrm{~T} 2=$ transmission line $\mathrm{Z}_{\mathrm{O}}=50 \Omega$.
If no GC function is required, connect Pin 11 to GND.
For high and low gain status $G C^{\prime}$ is to be switched to GND respectively to V_{S}.
Figure 4. I and Q phase for $f_{R F}>f_{L O}$. For $f_{R F}<f_{L O}$ the phase is inverted.

Figure 5. Typical VSWR Frequency Response of the LO Input

Figure 6. Noise Figure versus LO Frequency; o: Value at 950 MHz with RF Input Matching with T3

Figure 7. Typical Suitable LO Power Range versus Frequency

Figure 8. Gain versus LO Frequency; x: Value at 950 MHz with RF Input Matching with T3

Figure 9. Typical Output Signal versus LO Frequency for $\mathrm{P}_{\mathrm{RF}}=-15 \mathrm{dBm}$ and PLO $=-15 \mathrm{dBm}$

Figure 10. Typical Suitable LO Power Range versus Frequency

Figure 11. Typical Output Voltage (single ended) versus P_{RF} at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and PLO =-15 dBm

Figure 12. Typical S11 Frequency Response

a: LO input, LO frequency from 100 MHz to 1100 MHz , marker: 950 MHz b: RF input, RF frequency from 100 MHz to 1100 MHz , marker: 950 MHz
c: I/Q Outputs, Baseband Frequency from 5 MHz to 55 MHz , marker: 25 MHz

Figure 13. Evaluation Board Layout

Figure 14. Evaluation Board

External Components

CUCC	100 nF	
CRFX	1 nF	
CLO	100 pF	
CNLO	1 nF	
CRF	100 pF	
CII, CQQ		optional external lowpass filters transmission line for RF-input matching, to connect optionally optional for AC-coupling at baseband outputs
CI, CIX		not connected
CQ, CQX	100 pF	
CPDN	100 pF	not connected
CGC	100 pF	not connected CPC
gain switch		

Calibration Part

Conversion to Single

 Ended Output(see data sheet of AD620)
CO, CS, CL 100 pF
RL 50Ω

OP1, OP2
RG1, RG2
RD1, RD2 450Ω
CS1, CS2 100 nF
CS3, CS4 100 nF

AD620
prog. gain, see datasheet, for $5.6 \mathrm{k} \Omega$ a gain of 1 at 50Ω is achieved together with RD1 and RD2.

Description of the Evaluation Board

Board material: epoxy; $\varepsilon r=4.8$, thickness $=0.5 \mathrm{~mm}$, transmission lines: $Z_{O}=50 \Omega$
The board offers the following functions:

- Test circuit for the U2794B:
- The supply voltage and the control inputs GC, PC and PU are connected via a plug strip. The control input voltages can be generated via external potentiometers; then the inputs should be AC-grounded (time requirements in burst mode for power up have to be considered).
- The outputs I, IX, Q, QX are DC coupled via an plug strip or can be ACconnected via SMB plugs for high frequency tests e.g. noise figure or sparameter measurement. The Pins II, IIX, QQ, QQX allow user-definable filtering with 2 external capacitors CII, CQQ.
- The offsets of both channels can be adjusted with two potentimeters or resistors.
- The LO- and the RF-inputs are AC-coupled and connected via SMB plugs. If transmission line T3 is connected to the RF-input and AC-grounded at the other end, gain and noise performance can be improved (input matching to 50Ω).
- The complementary RF-input is AC-coupled to GND (CRFX $=1 \mathrm{nF}$), the same appears to the complementary LO input (CNLO $=1 \mathrm{nF}$).
- A calibration part which allows to calibrate an s-parameter analyzer directly to the inand output- signal ports of the U2794B.
- For single-ended measurements at the demodulator outputs, two OPs (e.g., AD620 or other) can be con-figured with programmable gain; together with an outputdivider network $\mathrm{RD}=450 \Omega$ to $\mathrm{RL}=50 \Omega$, direct measurements with 50Ω load impedances are possible at frequencies $\mathrm{t}<100 \mathrm{kHz}$.

Ordering Information

Extended Type Number	Package	Remarks
U2794B-MFS	SSO20	Tube, MOQ 830 pcs
U2794B-MFSG3	SSO20	Taped and reeled, MOQ 4000 pcs

Package Information

Atmel Headquarters
Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa BIdg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80
e-mail
literature @atmel.com
Web Site
http://www.atmel.com

© Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel ${ }^{\circledR}$ is the registered trademark of Atmel.
Other terms and product names may be the trademarks of others.

