阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

BGM681L11

GPS Front-End with high Out-of-Band Attenuation

Small Signal Discretes

Edition 2008-10-09

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2008. All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Oct. 2008

Revision History: GPS Front-End with high Out-of-Band Attenuation, Rev.2.2

Previous Version:	2008-10-02	Rev. 2.1
--------------------------	------------	----------

Page	Subjects (major changes since last revision)					
4	Updated Figure 1					
8	Updated Figure 2					
7	Updated Footnote 3)					
7	Updated Gain Switch Control Voltage Max. value					
5	Updated Product Description					

GPS Front-End with high Out-of-Band Attenuation

BGM681L11

1 GPS Front-End with high Out-of-Band Attenuation

Features

Operating frequency: 1575.42 +/- 10 MHz

· High Gain: 17.5 dB

Low Noise Figure: 1.9 dB

Power down function

Input compression point in GSM bands: 24 dBm

Input compression point in WLAN bands: 24 dBm

Supply voltage: 2.4 V to 3.6 V

· Tiny TSLP-11-1 leadless package

RF internally pre-matched

• RF output internally matched to 50 Ω

RF input to antenna has 1 kV HBM ESD protection

Minimum need of only 5 external SMD parts

Attenuation in GSM & UMTS bands > 50 dB

RoHS compliant package

1575.42 MHz GPS

TSLP-11 Topview TSLP11_v2.vsd

TSLP-11-1 Topview

(2.5 x 2.5 x 0.6 mm³)
Application

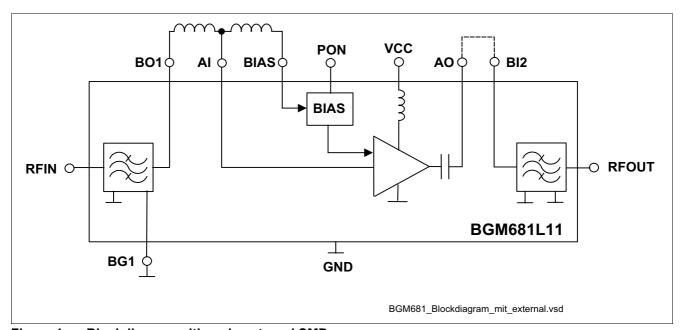


Figure 1 Blockdiagram with main external SMDs

Description

2 Description

The BGM681L11 is a combination of a low-insertion-loss input filter with Infineon's high performance low noise amplifier BGA615L7 and a high-attenuation output filter for Global Positioning System (GPS) applications. Through the low insertion loss of the filters, the BGM681L11 provides 17.5 dB gain, 1.9 dB noise figure and high linearity performance. In addition BGM681 provides very high out-of-band attenuation in conjunction with a high input compression point. Its current consumption is as low as 5.6 mA. It operates over the 2.4 V to 3.6 V supply voltage range.

Туре	Package	Marking
BGM681L11	TSLP-11-1	M681

Pin Definition and Function

Table 1 Pin Definition and Function

Pin No.	Symbol	Function	
1	BI2	Output-Filter Input	
2	PON	Power On	
3	VCC	Power Supply	
4	AO	LNA Output	
5	RFIN	RF Input	
6	BG1	Input-Filter GND	
7	BO1	Input-Filter Output	
8	Al	LNA Input	
9	BIAS	BIAS	
10	RFOUT	RF Output	
11	GND	Package Middle Island	

Maximum Ratings

Table 2 Maximum Ratings

Parameter ¹⁾	Symbol	Value	Unit
Voltage at pin BI2 to GND	V_{Bl2}	-1010	V
Voltage at pin PON to GND	V_{PON}	-0.33.6	V
Voltage at pin VCC to GND	$V_{\sf cc}$	-0.33.6	V
Voltage at pin AO to GND	V_{AO}	-0.3V _{CC} + 0.3	V
Voltage at pin RFIN to GND	V_{RFIN}	-1010	V
Voltage at pin BG1 to GND	V_{BG1}	-1010	V
Voltage at pin B01 to GND	V_{BO1}	-1010	V
Voltage at pin AI to GND	V_{AI}	-0.30.9	V
Voltage at pin BIAS to GND	V_{BIAS}	-0.30.9	V
Voltage at pin RFOUT to GND	V_{RFOUT}	-1010	V
Current into pin VCC	$I_{\sf VCC}$	25	mA
RF input power @ 1575 MHz	P_{IN}	10	dBm
Total power dissipation	P_{tot}	90	mW

Description

Table 2 Maximum Ratings (cont'd)

Parameter ¹⁾	Symbol	Value	Unit
Junction temperature	T_{J}	150	°C
Ambient temperature range	T_{A}	-30 85	°C
Storage temperature range	T_{STG}	-65 150	°C
ESD capability (HBM: JESD22A-114) of all pins except pins 6, 7 and 10	V_{ESD1}	1000	V
ESD capability (HBM: JESD22A-114) of pins 7 and 10, with pin 6 and GND Middle Island pin 11 tied together	V_{ESD2}	500	V

¹⁾ All voltages refer pin-to-pin.

Electrical Characteristics

3 Electrical Characteristics

For out of band P 1dB Compression Point and IP3, please refer to Infineon Application Note AN162

Table 3 Electrical Characteristics: T_A = 25 °C, V_{CC} = 2.8 V, $V_{PON,ON}$ = 2.8 V, $V_{PON,OFF}$ = 0 V¹⁾

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Supply Voltage	$V_{\sf CC}$	2.4	2.8	3.6	V	
Supply Current	I_{CC}	-	5.6	6.3	mA	ON-Mode
		-	0.2	3	μΑ	OFF-Mode
Gain Switch Control Voltage	V_{pon}	2.1	-	3.6	V	ON-Mode
		0	-	0.5	V	OFF-Mode
Gain Switch Control Current	I_{pon}	-	1.5	3.0	μΑ	ON-Mode
		-	0	1	μΑ	OFF-Mode
Power Gain settling time ²⁾	t_{S}	-	5	-	μs	OFF- to ON-Mode
		-	5	-	μs	ON- to OFF-mode
Passband Parameters @ f = 1575.42 MHz						
Insertion Power Gain	$ S_{21} ^2$	15	17.5	19	dB	High-Gain Mode
Noise Figure ³⁾	NF	-	1.9	-	dB	$Z_{\rm S}$ = 50 Ω
Input Return Loss	RL_{in}	-	10	-	dB	
Output Return Loss	RL_{out}	-	10	-	dB	
Reverse Isolation	$1/ S_{12} ^2$	-	25	-	dB	
Inband Input 3rd Order Intercept Point	IIP_3	-	-3	-	dBm	f_1 = 1575 MHz, f_2 = f_1 +/- 1 MHz
Inband Input 1 dB compression point	IP_{1dB}	-	-10	-	dBm	f = 1575 MHz
Stopband Parameters						
Attenuation ⁴⁾	$Attn_{900M}$	-	60	-	dB	f = 806 MHz - 928 MHz
Attenuation ⁴⁾	$Attn_{1800M}$	-	50	-	dB	f = 1710 MHz - 1980 MHz
Attenuation ⁴⁾	Attn _{2400M}	-	40	-	dB	f = 2400 MHz - 2500 MHz
Attenuation ⁴⁾	Attn _{>2500M}	-	30	-	dB	f = 2500 MHz - 6000 MHz
Stability	k	-	>1	-		f = 10 MHz - 10 GHz

¹⁾ Measured on BGM681L11 application board including PCB losses (unless noted otherwise)

²⁾ Within 1 dB of the final gain

³⁾ PCB losses subtracted, verified on AQL base

⁴⁾ Due to high in-band to out-of-band dynamic range, the out-of-band attenuation value depends strongly on the grounding of the PCB

Application Information

4 Application Information

4.1 Application Circuit

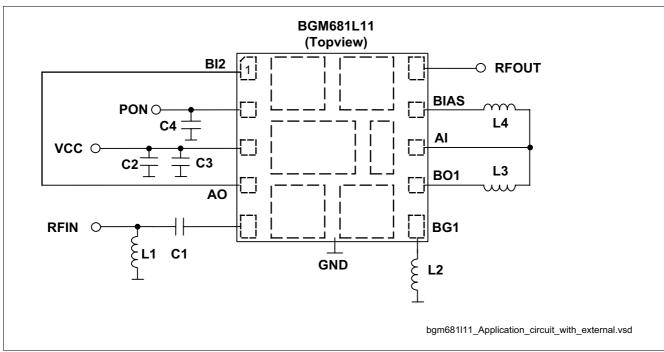


Figure 2 Application Circuit with external components

Table 4 Bill of Materials

Name	Value	Package	Manufacturer	Function
C1	2.2 pF	0402	Various	Input matching
C2	2.2 nF	0402	Various	Supply voltage filtering (optional)
C3	100 pF	0402	Various	Supply voltage filtering
C4	10 pF	0402	Various	Control voltage filtering
L1	4.7 nH	0402	muRata LQW15A	Input matching / ESD protection
L2	3.3 nH	0402	muRata LQW15A	Attenuation and Linearity improvement at 1710 - 1980 MHz (optional)
L3	2.9 nH	0402	muRata LQW15A	Input matching
L4	68 nH	0402	muRata LQW15A	Bias
N1	BGM681L11	TSLP-11-1	Infineon	GPS FE System

Application Information

4.2 Application Board

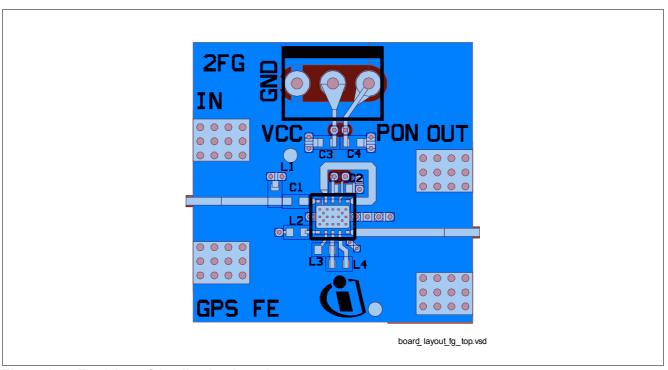


Figure 3 Top View of Application board

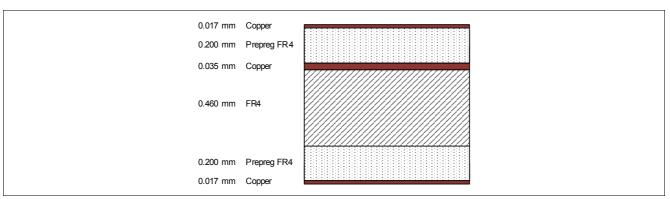


Figure 4 Cross section View of Application board

Package Information

5 Package Information

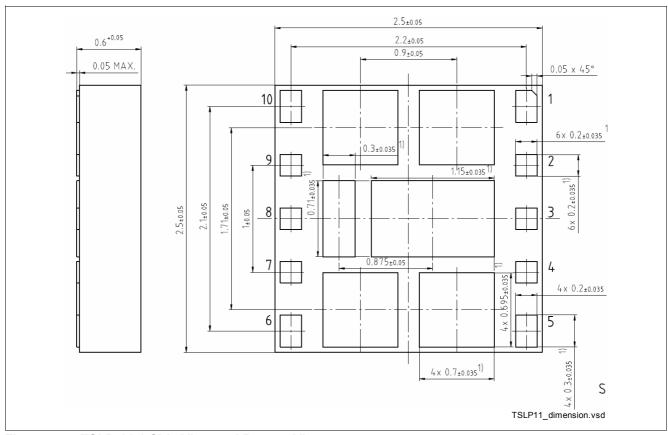


Figure 5 TSLP-11-1 Side View and Bottom View

Package Information

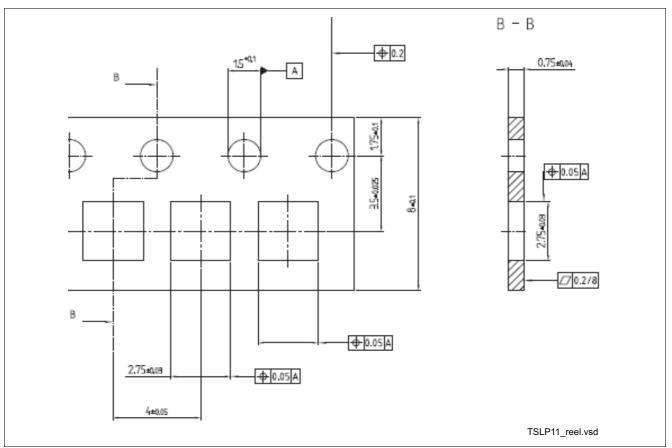


Figure 6 TSLP-11-1 tape

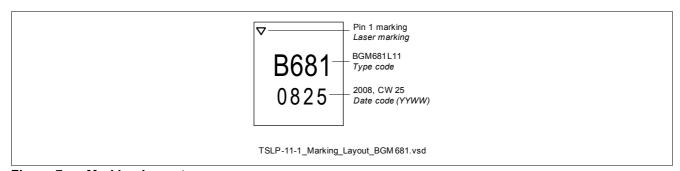


Figure 7 Marking Layout