阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

3GHz INPUT DIVIDE BY 256, 128, 64 PRESCALER IC FOR ANALOG DBS TUNERS

The μ PB1506GV and μ PB1507GV are 3.0 GHz input, high division silicon prescaler ICs for analog DBS tuner applications. These ICs divide-by-256, 128 and 64 contribute to produce analog DBS tuners with kit-use of 17 K series DTS controller or standard CMOS PLL synthesizer IC. The $\mu \mathrm{PB} 1506 \mathrm{GV} / \mu \mathrm{PB} 1507 \mathrm{GV}$ are shrink package versions of the $\mu \mathrm{PB} 586 \mathrm{G} / 588 \mathrm{G}$ or $\mu \mathrm{PB} 1505 \mathrm{GR}$ so that these smaller packages contribute to reduce the mounting space replacing from conventional ICs.

The μ PB1506GV and μ PB1507GV are manufactured using NEC's high fT NESAT ${ }^{\text {TM }}$ IV silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, these ICs have excellent performance, uniformity and reliability.

FEATURES

- High toggle frequency : fin $=0.5 \mathrm{GHz}$ to 3.0 GHz
- High-density surface mounting : 8-pin plastic SSOP (175 mil)
- Low current consumption : $5 \mathrm{~V}, 19 \mathrm{~mA}$
- Selectable high division : $\div 256, \div 128, \div 64$
- Pin connection variation : $\mu \mathrm{PB} 1506 \mathrm{GV}$ and $\mu \mathrm{PB} 1507 \mathrm{GV}$

APPLICATION

These ICs can use as a prescaler between local oscillator and PLL frequency synthesizer included modulus prescaler. For example, following application can be chosen;

- Analog DBS tuner's synthesizer
- Analog CATV converter synthesizer

ORDERING INFORMATION

PART NUMBER	PACKAGE	MARKING	SUPPLYING FORM
μ PB1506GV-E1	8-pin plastic SSOP (175 mil)	1506	Embossed tape 8 mm wide. Pin 1 is in tape pull-out direction. $1000 \mathrm{p} /$ reel.
$\mu \mathrm{PB} 1507 \mathrm{GV}-\mathrm{E} 1$		1507	

Remarks To order evaluation samples, please contact your local NEC sales office.
(Part number for sample order: μ PB1506GV, μ PB1507GV)

Caution: Electro-static sensitive devices

PIN CONNECTION (Top View)

Pin NO.	μ PB1506GV	μ PB1507GV
1	SW1	IN
2	IN	Vcc
3	$\overline{\mathrm{IN}}$	SW1
4	GND	OUT
5	NC	GND
6	SW2	SW2
7	OUT	NC
8	Vcc	$\overline{\mathrm{IN}}$

PRODUCT LINE-UP

Features (division, Freq.)	Part No.	Icc (mA)	fin (GHz)	Vcc (V)	Package	Pin connection
$\div 512, \div 256,2.5 \mathrm{GHz}$	$\mu \mathrm{PB} 586 \mathrm{G}$	28	0.5 to 2.5	4.5 to 5.5	8 pin SOP 225 mil	NEC original
$\div 128, \div 64,2.5 \mathrm{GHz}$	$\mu \mathrm{PB} 588 \mathrm{G}$	26	0.5 to 2.5	4.5 to 5.5		
$\div 256, \div 128, \div 64$	$\mu \mathrm{~PB} 1505 \mathrm{GR}$	14	0.5 to 3.0	4.5 to 5.5		Standard
3.0 GHz	$\mu \mathrm{PB} 1506 \mathrm{GV}$	19	0.5 to 3.0	4.5 to 5.5	8 pin SSOP 175 mil	NEC original
	$\mu \mathrm{PB} 1507 \mathrm{GV}$	19	0.5 to 3.0	4.5 to 5.5		Standard

Remarks . This table shows the TYP values of main parameters. Please refer to ELECTRICAL CHARACTERISTICS.

- $\mu \mathrm{PB} 586 \mathrm{G}$ and $\mu \mathrm{PB} 588 \mathrm{G}$ are discontinued.

INTERNAL BLOCK DIAGRAM

SYSTEM APPLICATION EXAMPLE

RF unit block of Analog DBS tuners

RF unit block of Analog CATV converter

PIN EXPLANATION

Pin name	Applied voltage V	Pin voltage V	Functions and explanation				Pin no.	
							$\mu \mathrm{PB} 1506 \mathrm{GV}$	μ PB1507GV
IN	-	2.9	Signal input pin. This pin should be coupled to signal source with capacitor (e.g. 1000 pF) for DC cut.				2	1
$\overline{\mathrm{IN}}$	-	2.9	Signal input bypass pin. This pin must be equipped with bypass capacitor (e.g. 1000 pF) to minimize ground impedance.				3	8
GND	0	-	Ground pin. Ground pattern on the board should be formed as wide as possible to minimize ground impedance.				4	5
SW1	H/L	-	Divide ratio input pin. The ratio can be determined by following applied level to these pins. These pins should be equipped with bypass capacitor (e.g. 1000 pF) to minimize ground impedance.				1	3
SW2							6	6
Voc	4.5 to 5.5	-	Power supply pin. This pin must be equipped with bypass capacitor (e.g. 10000 pF) to minimize ground impedance.				8	2
OUT	-	2.6 to 4.7	Divided frequency output pin. This pin is designed as emitter follower output. This pin can be connected to CMOS input due to 1.2 Vp-p MIN output.				7	4
NC	-	-	Non connection pin. This pin must be openned.				5	7

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	CONDITION	RATINGS	UNIT
Supply voltage	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5 to +6.0	V
Input voltage	$\mathrm{V}_{\text {in }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5 to $\mathrm{VCc}+0.5$	V
Total power dissipation	PD	Mounted on double sided copper clad $50 \times 50 \times 1.6 \mathrm{~mm}$ epoxy glass $\mathrm{PWB}\left(\mathrm{T}_{\mathrm{A}}=\right.$ $\left.+85{ }^{\circ} \mathrm{C}\right)$	250	mW
Operating ambient temperature	T_{A}		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTICE
Supply voltage	$\mathrm{V}_{\text {cc }}$	4.5	5.0	5.5	V	
Operating ambient temperature	TA_{A}	-40	+25	+85	${ }^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Zs}=50 \Omega$)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Circuit current	Icc	No signals	12.5	19	26.5	mA
Upper limit operating frequency	$\mathrm{fin}_{\text {(u) }}$	Pin $=-15$ to +6 dBm	3.0	-	-	GHz
Lower limit operating frequency 1	$\left.\mathrm{fin}^{(L)}\right)^{1}$	$\mathrm{Pin}_{\text {in }}=-10$ to +6 dBm	-	-	0.5	GHz
Lower limit operating frequency 2	$\left.\mathrm{fin}^{(L)}\right)^{2}$	$\operatorname{Pin}=-15$ to +6 dBm	-	-	1.0	GHz
Input power 1	Pin1	$\mathrm{fin}_{\text {in }}=1.0$ to 3.0 GHz	-15	-	+6	dBm
Input power 2	Pin2	$\mathrm{fin}^{\prime}=0.5$ to 1.0 GHz	-10	-	+6	dBm
Output Voltage	Vout	$\mathrm{CL}=8 \mathrm{pF}$	1.2	1.6	-	$V_{\text {P-P }}$
Divide ratio control input high	$\mathrm{V}_{\mathrm{H} 1}$	Connection in the test circuit	Vcc	Vcc	Vcc	
Divide ratio control input low	VIL1	Connection in the test circuit	OPEN or GND	OPEN or GND	OPEN or GND	
Divide ratio control input high	$\mathrm{V}_{\text {IH2 }}$	Connection in the test circuit	Vcc	Vcc	Vcc	
Divide ratio control input low	VIL2	Connection in the test circuit	OPEN or GND	OPEN or GND	OPEN or GND	

TYPICAL CHARACTERISTICS (Unless otherwise specified $\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}$)

Divide by 64 mode

Divide by 128 mode

Divide by 256 mode

μ PB1506GV
S_{11} vs. INPUT FREQUENCY
$\mathrm{Vcc}=5.0 \mathrm{~V}$

μ PB1506GV

S22 vs. OUTPUT FREQUENCY

Divide by 64 mode, $\mathrm{Vcc}=5.0 \mathrm{~V}$

FREQUENCY MHz	S22	
	MAG	ANG
45.000	.542	-1.4
50.000	.602	-.3
55.000	.616	0.0
60.000	.605	1.1
65.000	.609	.7
70.000	.616	.3
75.000	.620	.1
80.000	.622	0.0
85.000	.619	.6
90.000	.610	.9
95.000	.626	-.7
100.000	.623	-1.7

μ PB1506GV

S22 vs. OUTPUT FREQUENCY
Divide by 128 mode, $\mathrm{Vcc}=5.0 \mathrm{~V}$

μ PB1506GV

S22 vs. OUTPUT FREQUENCY
Divide by 256 mode, $\mathrm{Vcc}=5.0 \mathrm{~V}$

FREQUENCY MHz	S_{22}	
	MAG	ANG
45.000	.601	-.9
50.000	.609	-1.6
55.000	.611	-1.5
60.000	.620	-1.4
65.000	.607	-2.1
70.000	.615	-1.9
75.000	.613	-3.2
80.000	.611	-2.8
85.000	.607	-2.5
90.000	.605	-2.4
95.000	.610	-3.0
100.000	.608	-2.8

μ PB1507GV

St1 vs. INPUT FREQUENCY

FREQUENCY	S_{11}	
MHz	MAG	ANG
500.0000	.857	-27.5
600.0000	.849	-32.0
700.0000	.800	-38.9
800.0000	.764	-43.8
900.0000	.725	-49.0
1000.0000	.665	-50.9
1100.0000	.619	-55.3
1200.0000	.573	-59.3
1300.0000	.531	-61.3
1400.0000	.484	-62.8
1500.0000	.439	-63.0
1600.0000	.377	-59.1
1700.0000	.340	-54.1
1800.0000	.377	-54.7
1900.0000	.441	-59.5
2000.0000	.464	-67.2
2100.0000	.443	-67.4
2200.0000	.466	-74.5
2300.0000	.465	-81.3
2400.0000	.454	-89.4
2500.0000	.433	-99.2
2600.0000	.383	-109.6
2700.0000	.350	-114.0
2800.0000	.332	-124.2
2900.0000	.271	-141.2
3000.0000	.185	-163.6

μ PB1507GV

S22 vs. OUTPUT FREQUENCY

Divide by 64 mode, Vcc $=5.0 \mathrm{~V}$

FREQUENCY MHz	S_{22}	
	MAG	ANG
45.000	.580	3.4
50.000	.572	2.5
55.000	.574	3.0
60.000	.574	2.7
65.000	.584	3.0
70.000	.587	2.6
75.000	.592	2.4
80.000	.587	2.6
85.000	.589	2.9
90.000	.591	2.9
95.000	.573	1.7
100.000	.604	2.9

μ PB1507GV

S22 vs. OUTPUT FREQUENCY
Divide by 128 mode, $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$

FREQUENCY MHz	S_{22}	
	MAG	ANG
45.000	.578	3.2
50.000	.571	2.8
55.000	.572	3.3
60.000	.576	3.0
65.000	.584	3.1
70.000	.587	2.8
75.000	.589	2.4
80.000	.589	2.8
85.000	.588	3.0
90.000	.593	2.8
95.000	.598	3.0
100.000	.602	2.9

μ PB1507GV

S22 vs. OUTPUT FREQUENCY
Divide by 256 mode, $\mathrm{Vcc}=5.0 \mathrm{~V}$

FREQUENCY MHz	S_{22}	
	MAG	ANG
45.000	.580	3.0
50.000	.572	2.8
55.000	.571	2.9
60.000	.576	2.9
65.000	.585	3.2
70.000	.590	2.8
75.000	.589	2.5
80.000	.590	2.6
85.000	.588	2.9
90.000	.597	2.9
95.000	.600	3.1
100.000	.601	3.1

TEST CIRCUIT

μ PB1506GV

- SG (HP-8665A)
- Counter (HP5350B) : To measure input sensitivity
or
Oscilloscope \quad : To measure output voltage swing

COMPONENT LIST

	μ PB1506GV	μ PB1507GV
C1 to C5	1000 pF	1000 pF
C6	10000 pF	10000 pF
Stray cap.	Aprox 4 pF	Aprox 5 pF
C7	$3.5 \mathrm{pF}^{\star}$	$2.5 \mathrm{pF}^{\star}$

* Capacitance CL = 8 pF for DUT includes

C 7 value + stray capacitance on the board and measurement equipment.

Divide ratio setting

		SW2	
		H	L
SW1	H	$1 / 64$	$1 / 128$
	L	$1 / 128$	$1 / 256$

H: Connect to Vcc
L: Connect to GND or OPEN

TEST CIRCUIT

μ PB1507GV

- SG (HP-8665A)
- Counter (HP5350B) : To measure input sensitivity
or
Oscilloscope : To measure output voltage swing

Divide ratio setting

		SW2	
		H	L
SW1	H	$1 / 64$	$1 / 128$
	L	$1 / 128$	$1 / 256$

H: Connect to Vcc
L: Connect to GND or OPEN

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD μ PB1506GV

μ PB1507GV

EVALUATION BOARD CHARACTERS

(1) $35 \mu \mathrm{~m}$ thick double-sided copper clad $50 \times 50 \times 0.4 \mathrm{~mm}$ polyimide board
(2) Back side: GND pattern
(3) Solder plated patterns
(4) \circ : Through holes

PACKAGE DIMENSIONS

8 PIN PLASTIC SSOP (UNIT: mm) (175 mil)

NOTE CORRECT USE

(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired operation).
(3) Keep the wiring length of the ground pins as short as possible.
(4) Connect a bypass capacitor (e.g. 10000 pF) to the Vcc pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered in the following recommended conditions. Other soldering methods and conditions than the recommended conditions are to be consulted with our sales representatives.

```
\muPB1506GV, }\mu\textrm{PB}1507G
```

Soldering method	Soldering conditions	Recommended condition symbol
Infrared ray reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Hour: within $30 \mathrm{s}$. (more than $210^{\circ} \mathrm{C}$), Time: 3 times, Limited days: no. ${ }^{*}$	IR35-00-3
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Hour: within $40 \mathrm{s}$. (more than $200^{\circ} \mathrm{C}$), Time: 3 times, Limited days: no. ${ }^{*}$	VP15-00-3
Wave soldering	Soldering tub temperature: less than $260^{\circ} \mathrm{C}$, Hour: within 10 s., Time: 1 time, Limited days: no.	WS60-00-1
Pin part heating	Pin area temperature: less than $300^{\circ} \mathrm{C}$, Hour: within 3 s./pin, Limited days: no.	

* It is the storage days after opening a dry pack, the storage conditions are $25^{\circ} \mathrm{C}$, less than 65% RH.

Caution The combined use of soldering method is to be avoided (However, except the pin area heating method).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

