阅读申明

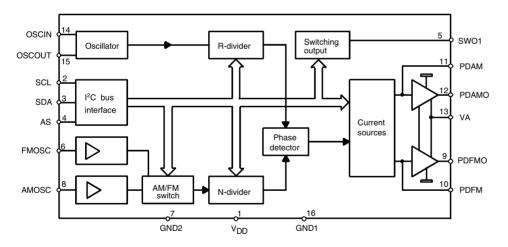
- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

Features

- Reference Oscillator up to 15 MHz
- Two Programmable 16-bit Dividers Adjustable from 2 to 65535
- Fine Tuning Steps
 - AM ≥ 1 kHz
 - $-FM \ge 2 kHz$
- Loop-push-pull Stage for AM/FM
- High Signal/Noise Ratio

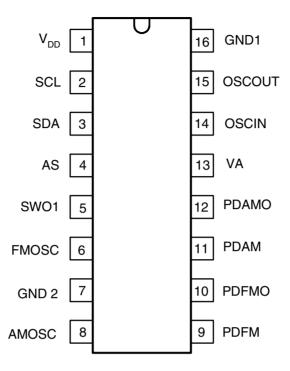

AM/FM PLL with 1 Switch

U4289BM

Description

The U4289BM is an integrated circuit in BICMOS technology for frequency synthesizers. It performs all the functions of a PLL radio tuning system and is controlled by a 2-wire bus. The device is designed for all frequency synthesizer applications in radio receivers, as well as for RDS (Radio Data System) applications.

Figure 1. Block Diagram



Pin Configuration

Figure 2. Pinning SO16

Pin Description

Pin	Symbol	Function
1	V_{DD}	Supply voltage
2	SCL	Bus clock
3	SDA	Bus data
4	AS	Address selection
5	SWO1	Switching output
6	FMOSC	FM oscillator input
7	GND2	Ground 2 (analog)
8	AMOSC	AM oscillator input
9	PDFM	FM current output
10	PDFMO	FM analog output
11	PDAM	AM current output
12	PDAMO	AM analog output
13	VA	Analog supply voltage
14	OSCIN	Oscillator input
15	OSCOUT	Oscillator output
16	GND1	Ground 1 (digital)

Functional Description

The U4289BM is controlled via the 2-wire bus. One module address byte, two subaddress bytes and five data bytes enable programming.

The module address contains a programmable address bit A 1, which (along with address select input AS, pin 4), enables the operation of two U4289BM devices in one system. If bit A 1 is identical with the status of the address select input AS, the chip is selected.

The subaddress determines which of the data bytes is transmitted first. If the subaddress of the R-divider is transmitted, the sequence of the next data bytes is DB 0 (Status), DB 1 and DB 2. If the subaddress of the N-divider is transmitted, the sequence of the next data bytes is DB 3 and DB 4. The bit organization of the module address, subaddress and 5 data bytes is shown in table "Bit Organization" on page 7.

Each transmission on the bus begins with the "START" condition and has to be ended by the "STOP" condition (see table "Transmission Protocol" on page 7).

The integrated circuit U4289BM has two separate inputs for the AM and FM oscillators. Pre-amplified AM and FM signals are fed to the 16-bit R-divider via the AM/FM switch. The AM/FM switch is software controlled. Tuning steps can be selected by the 16-bit R-divider.

Furthermore, the device provides a digital memory phase detector and two separate current sources for AM and FM amplifier (charge pump) as given in the Table "Electrical Characteristics" on page 4. It allows independent gain adjustment, providing high current for high-speed tuning and low current for stable tuning.

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Pins	Symbol	Value	Unit
Supply voltage	1	V_{DD}	-0.3 to +6	V
Input voltage	2, 3, 4, 6, 8, 14, 15	V _I	-0.3 to V _{DD} +0.3	V
Output current	3, 5	Io	-1 to +5	mA
Output drain voltage	5	V _{OD}	15	V
Analog supply voltage with 220 Ω serial resistance 2 minutes ⁽¹⁾	13	V _A V _A	6 to 15 24	V V
Output current	9, 12	I _{AO}	-1 to +20	mA
Ambient temperature range		T _{amb}	-30 to +85	°C
Storage temperature range		T _{stg}	-40 to +125	°C
Junction temperature		T _j	125	°C
Electrostatic handling (modified MIL STD 883 D method 3015.7: all supply pins connected together)		±V _{ESD}	1000	V

Note: 1. Corresponding to the application circuit (Figure 8 on page 8)

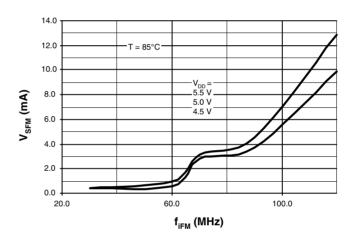
Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient	R _{thJA}	160	K/W

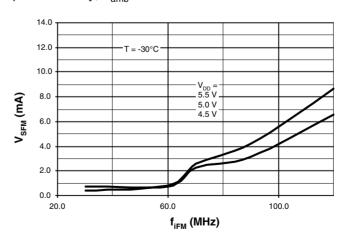
Electrical Characteristics

 V_{DD} = 5 V, V_A = 10 V, T_{amb} = 25° C, unless otherwise specified

Parameters	Test Conditions	Pins	Symbol	Min.	Тур.	Max.	Unit
Supply voltage		1	V_{DD}	4.5	5.0	5.5	V
Quiescent supply current	AM mode/FM mode	1	I _{DD}		4.0	7.0	mA
FM input sensitivity,	f _i = 70 to 120 MHz	6	V_{SFM}	40			mV_{rms}
$R_G = 50 \Omega$, FMOSC	f _i = 160 MHz	6	V_{SFM}	150			mV_{rms}
AM input sensitivity, $R_G = 50 \Omega$, AMOSC	f _i = 0.6 to 35 MHz	8	V_{SAM}	40			mV_{rms}
Oscillator input sensitivity, $R_G = 50 \Omega$, OSCIN	f _i = 0.1 to 15 MHz	14	V _{SOSC}	100			mV _{rms}
Phase Detector PDFM		*		!			*
Output current 1		10	±I _{PDFM}	1600	2000	2400	μA
Output current 2		10	±I _{PDFM}	400	500	600	μA
Leakage current		10	±I _{PDFML}			20	nA
Phase Detector PDAM	<u>'</u>			-			
Output current 1		11	±I _{PDAM}	160	200	240	μA
Output current 2		11	±I _{PDAM}	40	50	60	μA
Leakage current		11	±I _{PDAML}			20	μA
Analog Output PDFMO, PDAMO							
Saturation voltage LOW	I = 15 mA	9, 12	V_{satL}		200	400	mW
Saturation voltage HIGH	I = 15 mA	9, 12	V _{satH}	9.5	9.95		V
Bus SCL, SDA, AS	<u>'</u>			-			
Input voltage HIGH		2, 3, 4	V _{iBUS}	3.0		V_{DD}	V
Input voltage LOW		2, 3, 4	V _{iBUS}	0		1.5	V
Output voltage acknowledge LOW	$I_{SDA} = 3 \text{ mA}$	3	V _O			0.4	V
Clock frequency		2	f _{SCL}			100	kHz
Rise time SDA, SCL		2, 3	t _r			1	μs
Fall time SDA, SCL		2, 3	t _f			300	ns
Period of SCL HIGH		2	t _H	4.0			μs
Period of SCL LOW		2	t _L	4.7			μs


Electrical Characteristics (Continued)

 V_{DD} = 5 V, V_{A} = 10 V, T_{amb} = 25° C, unless otherwise specified


Parameters	Test Conditions	Pins	Symbol	Min.	Тур.	Max.	Unit
Set-up Time	·						
Start condition			t _{sSTA}	4.7			μs
Data			t _{sDAT}	250			μs
Stop condition			t _{sSTOP}	4.7			μs
Time space ⁽¹⁾			t _{wSTA}	4.7			μs
Hold Time	·						
Start condition			t _{hSTA}	4.0			μs
DATA			t _{hDAT}	0			μs

Note: 1. This is a period of time where the bus must be free from data transmission before a new transmission can be started.

Figure 3. FM Input Sensitivity, $T_{amb} = +85^{\circ} C$

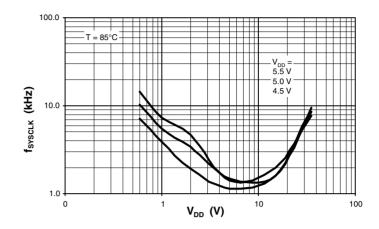

Figure 4. FM Input Sensitivity, $T_{amb} = -30^{\circ} \text{ C}$

Figure 5. AM Input Sensitivity, $T_{amb} = +85^{\circ} C$

Figure 6. AM Input Sensitivity, $T_{amb} = -30^{\circ} \, C$

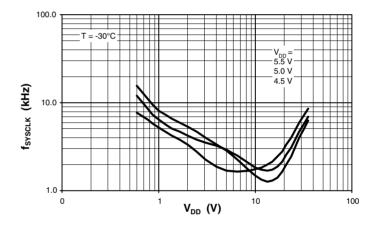
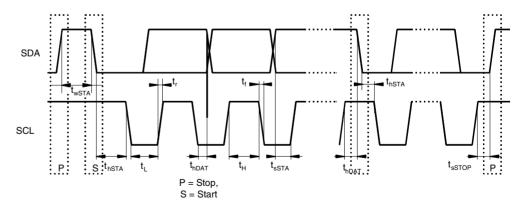



Figure 7. Bus Timing

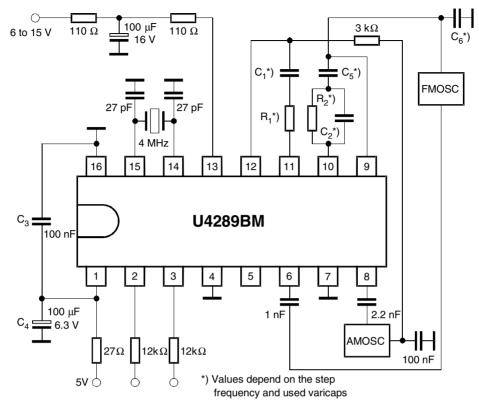
Bit Organization

	MSB							LSB	
Module address	1	1	0	0	1	0	0/1	0	
Module address	A7	A6	A5	A4	A3	A2	A1	A0	
Subaddress (R-divider)	X	Х	Х	0	0	1	Х	Х	
Subaddress (N-divider)	X	Х	Х	Х	1	1	Х	Х	
Data buta 0 (Ctatus)	SWO1				AM/FM	PD - ANA	PD - POL	PD - CUR	
Data byte 0 (Status)	D7	D6	D5	D4	D3	D2	D1	D0	
Data byte 1	2 ¹⁵			R-d	ivider			2 ⁸	
Data byte 2	2 ⁷		R-divider						
Data byte 3	2 ¹⁵	N-divider						2 ⁸	
Data byte 4	27			N-d	ivider			20	

Table 1. Function Mode

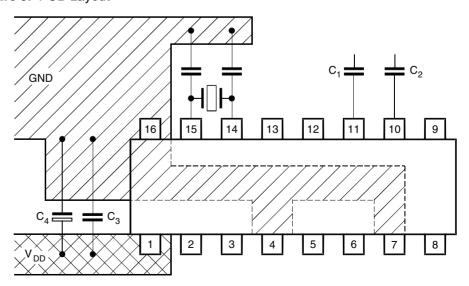
Bit Description	Mode	LOW	HIGH
D3	AM/FM	FM operation	AM operation
D2	PD - ANA	PD analog	TEST
D1	PD - POL	Negative polarity	Positive polarity
D0	PD - CUR	Output current 2	Output current 1

Transmission Protocol


	MSB	LSB										
S	Addı	ress	Α	Subaddress	Α	Data 0	Α	Data 1	Α	Data 2	Α	Р
	A0	A7		R-divider								

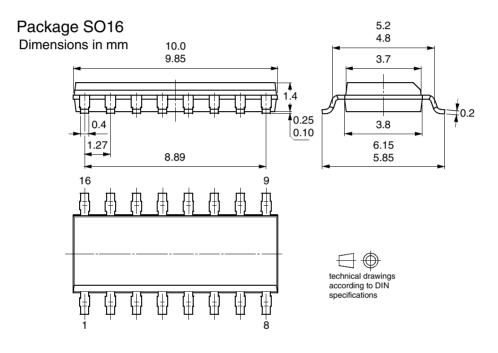
	MSB	LSB								
S	Add	ress	Α	Subaddress	Α	Data 3	Α	Data 4	Α	Р
	A0	A7		N-divider						

Note: S = Start, P = Stop, A = Acknowledge


Figure 8. Application Circuit

Recommendations for Applications

- $C_3 = 100 \text{ nF}$ should be very close to pin 1 (V_{DD}) and pin 16 (GND 1)
- GND2 (pin 7, analog ground) and GND1 (pin 16, digital around) must be connected according to Figure 8
- 4 MHz crystal must be very close to pin 14 and pin 15
- Components of the charge pump (C_1/R_1 for AM and C_2/R_2 for FM) should be very close to pin 11 with respect to pin 10.


Figure 9. PCB Layout

Ordering Information

Extended Type Number	Package	Remarks
U4289BM-MFP	SO16 plastic	_
U4289BM-MFPG3	SO16 plastic	Taping according to IEC-286-3

Package Information

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Atmel Operations

Memoru

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602

44306 Nantes Cedex 3, France

Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building

East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-0

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

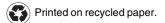
Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80


Literature Requests
www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved.

Atmel® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.

Other terms and product names may be the trademarks of others.

