

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

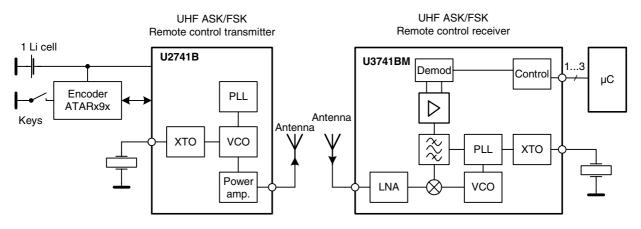
4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

Features

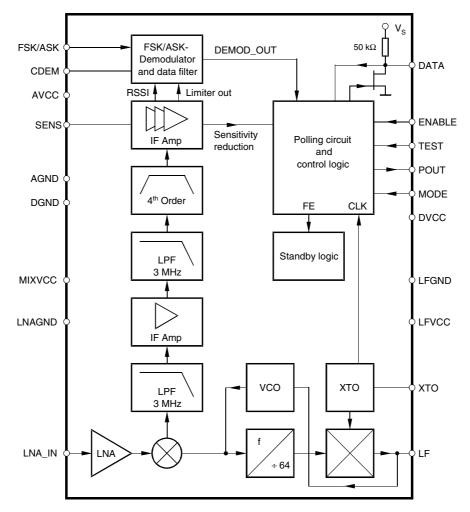
- Minimal External Circuitry Requirements, No RF Components on the PC Board Except Matching to the Receiver Antenna
- High Sensitivity, Especially at Low Data Rates
- Sensitivity Reduction Possible Even While Receiving
- Fully Integrated VCO
- Low Power Consumption Due to Configurable Self Polling with a Programmable Time Frame Check
- Supply Voltage 4.5 V to 5.5 V
- Operating Temperature Range -40°C to 105°C
- Single-ended RF Input for Easy Adaptation to $\lambda/4$ Antenna or Printed Antenna on PCB
- Low-cost Solution Due to High Integration Level
- ESD Protection According to MIL-STD 883 (4KV HBM) Except Pin POUT (2KV HBM)
- High Image Frequency Suppression due to 1 MHz IF in Conjunction with a SAW
 Front-end Filter
 - Up to 40 dB is Thereby Achievable with Newer SAWs.
- Programmable Output Port for Sensitivity Selection or for Controlling External Periphery
- Communication to the Microcontroller Possible via a Single, Bi-directional Data Line
- Power Management (Polling) is also Possible by Means of a Separate Pin via the Microcontroller
- 2 Different IF Bandwidth Versions are Available (300 kHz and 600 kHz)

Description

The U3741BM is a multi-chip PLL receiver device supplied in an SO20 package. It has been specially developed for the demands of RF low-cost data transmission systems with low data rates from 1 kBaud to 10 kBaud (1 kBaud to 3.2 kBaud for FSK) in Manchester or Bi-phase code. The receiver is well suited to operate with Atmel's PLL RF transmitter U2741B. Its main applications are in the areas of telemetering, security technology and keyless-entry systems. It can be used in the frequency receiving range of $f_0 = 300$ MHz to 450 MHz for ASK or FSK data transmission. All the statements made below refer to 433.92-MHz and 315-MHz applications.


UHF ASK Receiver IC

U3741BM



System Block Diagram

Block Diagram

2

Pin Configuration

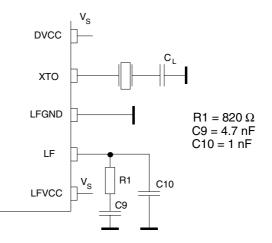
Figure 1. Pinning SO20

Pin Description

	-			
Pin	Symbol	Function		
1	SENS	Sensitivity-control resistor		
2	FSK/ASK	Selecting FSK/ASK. Low: FSK, High: ASK		
3	CDEM	Lower cut-off frequency data filter		
4	AVCC	Analog power supply		
5	AGND	Analog ground		
6	DGND	Digital ground		
7	MIXVCC	Power supply mixer		
8	LNAGND	High-frequency ground LNA and mixer		
9	LNA_IN	RF input		
10	NC	Not connected		
11	LFVCC	Power supply VCO		
12	LF	Loop filter		
13	LFGND	Ground VCO		
14	XTO	Crystal oscillator		
15	DVCC	Digital power supply		
16	MODE	Selecting 433.92 MHz/315 MHz. Low: 4.90625 MHz (USA). High: 6.76438 (Europe)		
17	POUT	Programmable output port		
18	TEST	Test pin, during operation at GND		
19	ENABLE	Enables the polling mode Low: polling mode off (sleep mode) H: polling mode on (active mode)		
20	DATA	Data output/configuration input		

AMEL

RF Front End


The RF front end of the receiver is a heterodyne configuration that converts the input signal into a 1-MHz IF signal. According to the block diagram, the front end consists of an LNA (low noise amplifier), LO (local oscillator), a mixer and RF amplifier.

The LO generates the carrier frequency for the mixer via a PLL synthesizer. The XTO (crystal oscillator) generates the reference frequency f_{XTO} . The VCO (voltage-controlled oscillator) generates the drive voltage frequency f_{LO} for the mixer. f_{LO} is dependent on the voltage at pin LF. f_{LO} is divided by a factor of 64. The divided frequency is compared to f_{XTO} by the phase frequency detector. The current output of the phase frequency detector is connected to a passive loop filter and thereby generates the control voltage V_{LF} for the VCO. By means of that configuration, V_{LF} is controlled in a way that $f_{LO}/64$ is equal to f_{XTO} . If f_{LO} is determined, f_{XTO} can be calculated using the following formula:

$$f_{XTO} = \frac{f_{LO}}{64}$$

The XTO is a one-pin oscillator that operates at the series resonance of the quartz crystal. According to Figure 2, the crystal should be connected to GND via a capacitor CL. The value of that capacitor is recommended by the crystal supplier. The value of CL should be optimized for the individual board layout to achieve the exact value of f_{XTO} and hereby of f_{LO} . When designing the system in terms of receiving bandwidth, the accuracy of the crystal and XTO must be considered.

Figure 2. PLL Peripherals

The passive loop filter connected to pin LF is designed for a loop bandwidth of $B_{Loop} = 100$ kHz. This value for B_{Loop} exhibits the best possible noise performance of the LO. Figure 2 shows the appropriate loop filter components to achieve the desired loop bandwidth. If the filter components are changed for any reason, please note that the maximum capacitive load at pin LF is limited. If the capacitive load is exceeded, a bit check may no longer be possible since f_{LO} cannot settle in time before the bit check starts to evaluate the incoming data stream. Therefore, self polling also does not work in that case.

 f_{LO} is determined by the RF input frequency f_{RF} and the IF frequency f_{IF} using the following formula:

$$f_{LO} = f_{RF} - f_{IF}$$

4

To determine f_{LO} , the construction of the IF filter must be considered at this point. The nominal IF frequency is $f_{IF} = 1$ MHz. To achieve a good accuracy of the filter's corner frequencies, the filter is tuned by the crystal frequency f_{XTO} . This means that there is a fixed relation between f_{IF} and f_{LO} that depends on the logic level at pin mode. This is described by the following formulas:

MODE = 0 (USA) $f_{IF} = \frac{f_{LO}}{314}$ MODE = 0 (Europe) $f_{IF} = \frac{f_{LO}}{432.92}$

The relation is designed to achieve the nominal IF frequency of $f_{IF} = 1$ MHz for most applications. For applications where $f_{RF} = 315$ MHz, the MODE must be set to '0'. In the case of $f_{RF} = 433.92$ MHz, the MODE must be set to '1'. For other RF frequencies, f_{IF} is not equal to 1 MHz. f_{IF} is then dependent on the logical level at pin MODE and on f_{RF} . Table 1 summarizes the different conditions.

The RF input either from an antenna or from a generator must be transformed to the RF input pin LNA_IN. The input impedance of that pin is provided in the electrical parameters. The parasitic board inductances and capacitances also influence the input matching. The RF receiver U3741BM exhibits its highest sensitivity at the best signal-to-noise ratio in the LNA. Hence, noise matching is the best choice for designing the transformation network.

A good practice when designing the network is to start with power matching. From that starting point, the values of the components can be varied to some extent to achieve the best sensitivity.

If a SAW is implemented into the input network, a mirror frequency suppression of $\Delta P_{Ref} = 40 \text{ dB}$ can be achieved. There are SAWs available that exhibit a notch at $\Delta f = 2 \text{ MHz}$. These SAWs work best for an intermediate frequency of IF = 1 MHz. The selectivity of the receiver is also improved by using a SAW. In typical automotive applications, a SAW is used.

Figure 3 on page 6 shows a typical input matching network for f_{RF} = 315 MHz and f_{RF} = 433.92 MHz using a SAW. Figure 4 on page 6 illustrates an input matching to 50 Ω without a SAW. The input matching networks shown in Figure 4 are the reference networks for the parameters given in the "Electrical Characteristics".

Conditions	Local Oscillator Frequency	Intermediate Frequency
$f_{RF} = 315 \text{ MHz}, \text{ MODE} = 0$	f _{LO} = 314 MHz	f _{IF} = 1 MHz
f _{RF} = 433.92 MHz, MODE = 1	f _{LO} = 432.92 MHz	f _{IF} = 1 MHz
300 MHz < f _{RF} < 365 MHz, MODE = 0	$f_{LO} = \frac{f_{RF}}{1 + \frac{1}{314}}$	$f_{\rm IF} = \frac{f_{\rm LO}}{314}$
365 MHz < f _{RF} < 450 MHz, MODE = 1	$f_{LO} = \frac{f_{RF}}{1 + \frac{1}{432.92}}$	$f_{IF} = \frac{f_{LO}}{432.92}$

Table 1. Calculation of LO and IF Frequency

Figure 3. Input Matching Network with SAW Filter

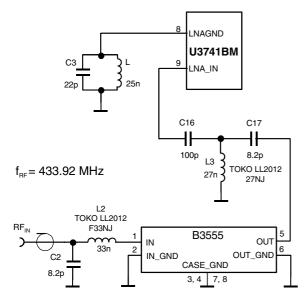
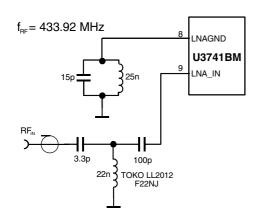
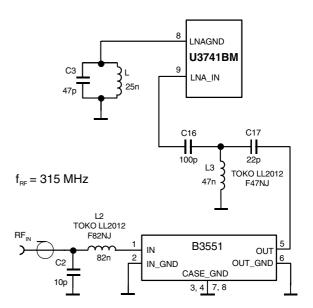
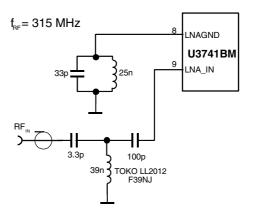





Figure 4. Input Matching Network without SAW Filter

Please note that for all coupling conditions (see Figure 3 and Figure 4), the bond wire inductivity of the LNA ground is compensated. C3 forms a series resonance circuit together with the bond wire. L = 25 nH is a feed inductor to establish a DC path. Its value is not critical but must be large enough not to detune the series resonance circuit. For cost reduction, this inductor can be easily printed on the PCB. This configuration improves the sensitivity of the receiver by about 1 dB to 2 dB.

6

Analog Signal Processing

IF Amplifier

filter. The IF center frequency is $f_{IF} = 1$ MHz for applications where $f_{RF} = 315$ MHz or $f_{RF} = 433.92$ MHz is used. For other RF input frequencies, refer to Table 1 to determine the center frequency.
The U3741BM is available with 2 different IF bandwidths. U3741BM-M2, the version with $B_{IF} = 300$ kHz, is well suited for ASK systems where Atmel's PLL transmitter U2741B is used. The receiver U3741BM-M3 employs an IF bandwidth of $B_{IF} = 600$ kHz. This version can be used together with the U2741B in FSK and ASK mode. If used in ASK applications, it allows higher tolerances for the receiver and PLL transmitter crystals. SAW transmitters exhibit much higher transmit frequency tolerances compared to PLL transmitters. Generally, it is necessary to use $B_{IF} = 600$ kHz together with such transmitters.

RSSI Amplifier The subsequent RSSI amplifier enhances the output signal of the IF amplifier before it is fed into the demodulator. The dynamic range of this amplifier is $DR_{BSSI} = 60 \text{ dB}$. If the RSSI amplifier is operated within its linear range, the best S/N ratio is maintained in ASK mode. If the dynamic range is exceeded by the transmitter signal, the S/N ratio is defined by the ratio of the maximum RSSI output voltage and the RSSI output voltage due to a disturber. The dynamic range of the RSSI amplifier is exceeded if the RF input signal is about 60 dB higher compared to the RF input signal at full sensitivity.

In FSK mode, the S/N ratio is not affected by the dynamic range of the RSSI amplifier.

The signals coming from the RF front end are filtered by the fully integrated 4th-order IF

The output voltage of the RSSI amplifier is internally compared to a threshold voltage VTh red. VTh_red is determined by the value of the external resistor R_{Sense} . R_{Sense} is connected between pin Sense and GND or VS. The output of the comparator is fed into the digital control logic. By this means it is possible to operate the receiver at lower sensitivity.

If R_{Sense} is connected to VS, the receiver operates at a lower sensitivity. The reduced sensitivity is defined by the value of R_{Sense}, the maximum sensitivity by the signal-to-noise ratio of the LNA input. The reduced sensitivity is dependent on the signal strength at the output of the RSSI amplifier.

Since different RF input networks may exhibit slightly different values for the LNA gain, the sensitivity values given in the electrical characteristics refer to a specific input matching. This matching is illustrated in Figure 4 on page 6 and exhibits the best possible sensitivity.

 $\mathrm{R}_{\mathrm{Sense}}$ can be connected to VS or GND via a microcontroller or by the digital output port POUT of the U3741BM receiver IC. The receiver can be switched from full sensitivity to reduced sensitivity or vice versa at any time. In polling mode, the receiver will not wake up if the RF input signal does not exceed the selected sensitivity. If the receiver is already active, the data stream at pin DATA will disappear when the input signal is lower than defined by the reduced sensitivity. Instead of the data stream, the pattern according to Figure 5 is issued at pin DATA to indicate that the receiver is still active.

Figure 5. Steady L State Limited DATA Output Pattern

FSK/ASK Demodulator and Data Filter

The signal coming from the RSSI amplifier is converted into the raw data signal by the ASK/FSK demodulator. The operating mode of the demodulator is set via pin ASK/FSK. Logic 'L' sets the demodulator to FSK, Logic 'H' sets it into ASK mode.

In ASK mode an automatic threshold control circuit (ATC) is employed to set the detection reference voltage to a value where a good signal-to-noise ratio is achieved. This circuit also implies the effective suppression of any kind of in-band noise signals or competing transmitters. If the S/N ratio exceeds 10 dB, the data signal can be detected properly.

The FSK demodulator is intended to be used for an FSK deviation of $\Delta f \ge 20$ kHz. Lower values may be used but the sensitivity of the receiver is reduced in that condition. The minimum usable deviation is dependent on the selected baud rate. In FSK mode, only BR_Range0 and BR_Range1 are available. In FSK mode, the data signal can be detected if the S/N Ratio exceeds 2 dB.

The output signal of the demodulator is filtered by the data filter before it is fed into the digital signal processing circuit. The data filter improves the S/N ratio as its bandpass can be adopted to the characteristics of the data signal. The data filter consists of a 1st-order high-pass and a 1st-order low-pass filter.

The high-pass filter cut-off frequency is defined by an external capacitor connected to pin CDEM. The cut-off frequency of the high-pass filter is defined by the following formula:

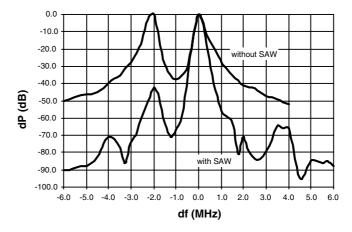
 $f_{cu_DF} = \frac{1}{2 \times \pi \times 30 \text{ k}\Omega \times \text{CDEM}}$

In self-polling mode, the data filter must settle very rapidly to achieve a low current consumption. Therefore, CDEM cannot be increased to very high values if self polling is used. On the other hand, CDEM must be large enough to meet the data filter requirements according to the data signal. Recommended values for CDEM are given in the "Electrical Characteristics" on page 23. The values are slightly different for ASK and FSK mode.

The cut-off frequency of the low-pass filter is defined by the selected baud rate range (BR_Range). BR_Range is defined in the OPMODE register (refer to section "Configuration of the Receiver" on page 17). BR_Range must be set in accordance to the used baud rate.

The U3741BM is designed to operate with data coding where the DC level of the data signal is 50%. This is valid for Manchester and Bi-phase coding. If other modulation schemes are used, the DC level should always remain within the range of VDC_min = 33% and VDC_max = 66%. The sensitivity may be reduced by up to 1.5 dB in that condition.

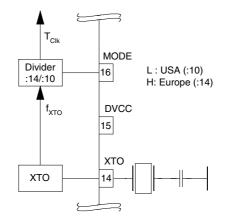
Each BR_Range is also defined by a minimum and a maximum edge-to-edge time (tee_sig). These limits are defined in the "Electrical Characteristics" on page 23. They should not be exceeded to maintain full sensitivity of the receiver.


8

Receiving Characteristics

The RF receiver U3741BM can be operated with and without a SAW front-end filter. In a typical automotive application, a SAW filter is used to achieve better selectivity. The selectivity with and without a SAW front end-filter is illustrated in Figure 6. This example relates to ASK mode and the 300-kHz bandwidth version of the U3741BM. FSK mode and the 600-kHz version of the receiver exhibit similar behavior. Note that the mirror frequency is reduced by 40 dB. The plots are printed relative to the maximum sensitivity. If a SAW filter is used, an insertion loss of about 4 dB must be considered.

When designing the system in terms of receiving bandwidth, the LO deviation must be considered as it also determines the IF center frequency. The total LO deviation is calculated to be the sum of the deviation of the crystal and the XTO deviation of the U3741BM. Low-cost crystals are specified to be within ± 100 ppm. The XTO deviation of the U3741BM is an additional deviation due to the XTO circuit. This deviation is specified to be ± 30 ppm. If a crystal of ± 100 ppm is used, the total deviation is ± 130 ppm in that case. Note that the receiving bandwidth and the IF-filter bandwidth are equivalent in ASK mode but not in FSK mode.



Polling Circuit and Control Logic

The receiver is designed to consume less than 1 mA while being sensitive to signals from a corresponding transmitter. This is achieved via the polling circuit. This circuit enables the signal path periodically for a short time. During this time the bit check logic verifies the presence of a valid transmitter signal. Only if a valid signal is detected the receiver remains active and transfers the data to the connected microcontroller. If there is no valid signal present, the receiver is in sleep mode most of the time resulting in low current consumption. This condition is called polling mode. A connected microcontroller is disabled during that time. All relevant parameters of the polling logic can be configured by the connected microcontroller. This flexibility enables the user to meet the specifications in terms of current consumption, system response time, data rate etc. Regarding the number of connection wires to the microcontroller, the receiver is very flexible. It can be either operated by a single bi-directional line to save ports to the connected microcontroller, it can be operated by up to three uni-directional ports. **Basic Clock Cycle of the** The complete timing of the digital circuitry and the analog filtering is derived from one clock. According to Figure 7, this clock cycle T_{Clk} is derived from the crystal oscillator **Digital Circuitry** (XTO) in combination with a divider. The division factor is controlled by the logical state at pin MODE. According to section "RF Front End" on page 4, the frequency of the crystal oscillator (f_{XTO}) is defined by the RF input signal (f_{RFin}) which also defines the operating frequency of the local oscillator (f_{LO}).

Figure 7. Generation of the Basic Clock Cycle

Pin MODE can now be set in accordance with the desired clock cycle T_{Clk} . T_{Clk} controls the following application-relevant parameters:

- Timing of the polling circuit including bit check
- Timing of analog and digital signal processing
- Timing of register programming
- Frequency of the reset marker
- F filter center frequency (f_{IF0})

Most applications are dominated by two transmission frequencies: $f_{Send} = 315$ MHz is mainly used in the USA, $f_{Send} = 433.92$ MHz in Europe. In order to ease the usage of all T_{Clk} -dependent parameters, the electrical characteristics display three conditions for each parameter.

- + USA Applications (f_{XTO} = 4.90625 MHz, MODE = L, T_{Clk} = 2.0383 μs)
- Europe Applications ($f_{XTO} = 6.76438$ MHz, MODE = H, $T_{Clk} = 2.0697 \ \mu s$)
 - Other applications $(T_{Clk} \text{ is dependent on } f_{XTO} \text{ and on the logical state of pin MODE. The electrical characteristic is given as a function of <math>T_{Clk}$).

The clock cycle of some function blocks depends on the selected baud rate range (BR_Range) which is defined in the OPMODE register. This clock cycle T_{XClk} is defined by the following formulas for further reference:

Polling Mode

According to Figure 3 on page 6, the receiver stays in polling mode in a continuous cycle of three different modes. In sleep mode, the signal processing circuitry is disabled for the time period T_{Sleep} while consuming a low current of $I_S = I_{Soff}$. During the start-up period, $T_{Startup}$, all signal processing circuits are enabled and settled. In the following bit check mode, the incoming data stream is analyzed bit by bit against a valid transmitter signal. If no valid signal is present, the receiver is set back to sleep mode after the period $T_{Bitcheck}$. This period varies check by check as it is a statistical process. An average value for $T_{Bitcheck}$ is given in "Electrical Characteristics" on page 23. During $T_{Startup}$ and $T_{Bitcheck}$ the current consumption is $I_S = I_{Son}$. The average current consumption in polling mode is dependent on the duty cycle of the active mode and can be calculated as:

$$I_{Spoll} = \frac{I_{Soff} \times T_{Sleep} + I_{Son} \times (T_{Startup} + T_{Bitcheck})}{T_{Sleep} + T_{Startup} + T_{Bitcheck}}$$

During T_{Sleep} and $T_{Startup}$, the receiver is not sensitive to a transmitter signal. To guarantee the reception of a transmitted command, the transmitter must start the telegram with an adequate preburst. The required length of the preburst is dependent on the polling parameters T_{Sleep} , $T_{Startup}$, $T_{Bitcheck}$ and the startup time of a connected microcontroller ($T_{Start,\mu C}$). $T_{Bitcheck}$ thus depends on the actual bit rate and the number of bits ($N_{Bitcheck}$) to be tested.

The following formula indicates how to calculate the preburst length.

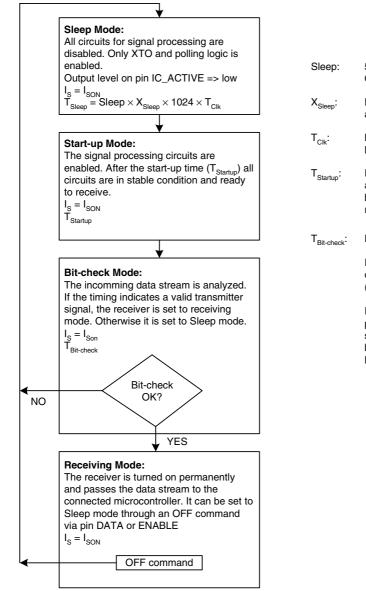
 $T_{Preburst} \ge T_{Sleep} + T_{Startup} + T_{Bitcheck} + T_{Start_{\mu}C}$

The length of period T_{Sleep} is defined by the 5-bit word Sleep of the OPMODE register, the extension factor X_{Sleep} , according to Figure 10 on page 13, and the basic clock cycle T_{Clk} . It is calculated to be:

 $\text{T}_{\text{Sleep}} = \text{Sleep} \times \text{X}_{\text{Sleep}} \times \text{1024} \times \text{T}_{\text{Clk}}$

In US and European applications, the maximum value of T_{Sleep} is about 60 ms if X_{Sleep} is set to 1. The time resolution is about 2 ms in that case. The sleep time can be extended to almost half a second by setting X_{Sleep} to 8. X_{Sleep} can be set to 8 by bit $X_{SleepStd}$ or by bit $X_{SleepTemp}$ resulting in a different mode of action as described below:

Sleep Mode

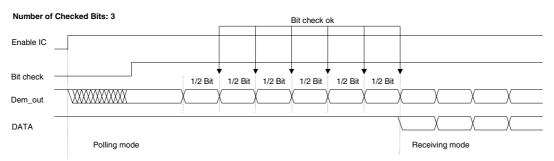


 $X_{\text{SleepStd}} = 1$ implies the standard extension factor. The sleep time is always extended.

 $X_{SleepTemp} = 1$ implies the temporary extension factor. The extended sleep time is used as long as every bit check is OK. If the bit check fails once, this bit is set back to 0 automatically resulting in a regular sleep time. This functionality can be used to save current in presence of a modulated disturber similar to an expected transmitter signal. The connected microcontroller is rarely activated in that condition. If the disturber disappears, the receiver switches back to regular polling and is again sensitive to appropriate transmitter signals.

According to Table 7 on page 19, the highest register value of Sleep sets the receiver to a permanent sleep condition. The receiver remains in that condition until another value for Sleep is programmed into the OPMODE register. This function is desirable where several devices share a single data line.

Figure 8. Polling Mode Flow Chart

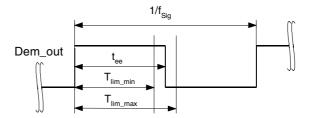


- Sleep: 5-bit word defined by Sleep0 to Sleep4 in OPMODE register
- X_{Sleep}: Extension factor defined by X_{SleepTemp} according to Table 8
- T_{Clk} : Basic clock cycle defined by f_{XTO} and pin MODE
- Startup: Is defined by the selected baud rate range and T_{CIk}. The baud-rate range is defined by Baud0 and Baud1 in the OPMODE register.
- Bit-check: Depends on the result of the bit check.

If the bit check is ok, $T_{\text{Bit-check}}$ depends on the number of bits to be checked $(N_{\text{Bit-checked}})$ and on the utilized data rate.

If the bit check fails, the average time period for that check depends on the selected baud-rate range on T_{Clk} . The baud-rate range is defined by Baud0 and Baud1 in the OPMODE register.

Figure 9. Timing Diagram for a Completely Successful Bit Check


Bit Check Mode

In bit check mode, the incoming data stream is examined to distinguish between a valid signal from a corresponding transmitter and signals due to noise. This is done by subsequent time frame checks where the distances between 2 signal edges are continuously compared to a programmable time window. The maximum count of this edge-to-edge test, before the receiver switches to receiving, mode is also programmable.

Configuring the Bit Check Assuming a modulation scheme that contains 2 edges per bit, two time frame checks are verifying one bit. This is valid for Manchester, Bi-phase and most other modulation schemes. The maximum count of bits to be checked can be set to 0, 3, 6 or 9 bits via the variable $N_{Bitcheck}$ in the OPMODE register. This implies 0, 6, 12 and 18 edge-to-edge checks respectively. If $N_{Bitcheck}$ is set to a higher value, the receiver is less likely to switch to the receiving mode due to noise. In the presence of a valid transmitter signal, the bit check takes less time if $N_{Bitcheck}$ is set to a lower value. In polling mode, the bit check time is not dependent on $N_{Bitcheck}$. Figure 9 shows an example where 3 bits are tested successfully and the data signal is transferred to pin DATA.

According to Figure 10, the time window for the bit check is defined by two separate time limits. If the edge-to-edge time t_{ee} is in between the lower bit check limit T_{Lim_min} and the upper bit check limit T_{Lim_max} , the check will be continued. If t_{ee} is smaller than T_{Lim_min} or t_{ee} exceeds T_{Lim_max} , the bit check will be terminated and the receiver switches to sleep mode.

Figure 10. Valid Time Window for Bit Check

For best noise immunity it is recommended to use a low span between T_{Lim_min} and T_{Lim_max} . This is achieved using a fixed frequency at a 50% duty cycle for the transmitter preburst. A '11111...' or a '10101...' sequence in Manchester or Bi-phase is a good choice in this regard. A good compromise between receiver sensitivity and susceptibility to noise is a time window of ±25% regarding the expected edge-to-edge time t_{ee} . Using preburst patterns that contain various edge-to-edge time periods, the bit check limits must be programmed according to the required span.

The bit check limits are determined by means of the formula below:

 $\begin{array}{l} T_{Lim_min} = Lim_min \times T_{XClk} \\ T_{Lim_max} = (Lim_max - 1) \times T_{XClk} \end{array}$

Lim_min and Lim_max are defined by a 5-bit word each within the LIMIT register.

Using the above formulas, Lim_min and Lim_max can be determined according to the required T_{Lim_min} , T_{Lim_max} and T_{XClk} . The time resolution when defining T_{Lim_min} and T_{Lim_max} is T_{XClk} . The minimum edge-to-edge time t_{ee} ($t_{DATA_L_min}$, $t_{DATA_H_min}$) is defined according to the section "Receiving Mode" on page 15. Due to this, the lower limit should be set to Lim_min ≥ 10 . The maximum value of the upper limit is Lim_max = 63.

Figure 11, Figure 12 and Figure 13 on page 15 illustrate the bit check for the default bit check limits Lim_min = 14 and Lim_max = 24. When the IC is enabled, the signal processing circuits are enabled during $T_{Startup}$. The output of the ASK/FSK demodulator (Dem_out) is undefined during that period. When the bit check becomes active, the bit check counter is clocked with the cycle T_{XClk} .

Figure 11 shows how the bit check proceeds if the bit-check counter value CV_Lim is within the limits defined by Lim_min and Lim_max at the occurrence of a signal edge. In Figure 12, the bit check fails as the value CV_lim is lower than the limit Lim_min. The bit check also fails if CV_Lim reaches Lim_max. This is illustrated in Figure 13 on page 15.

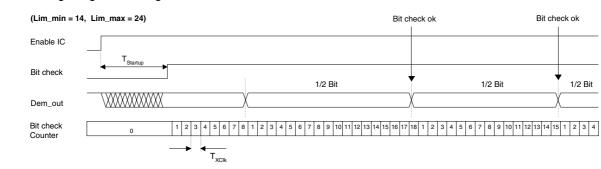
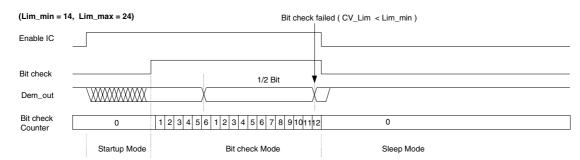
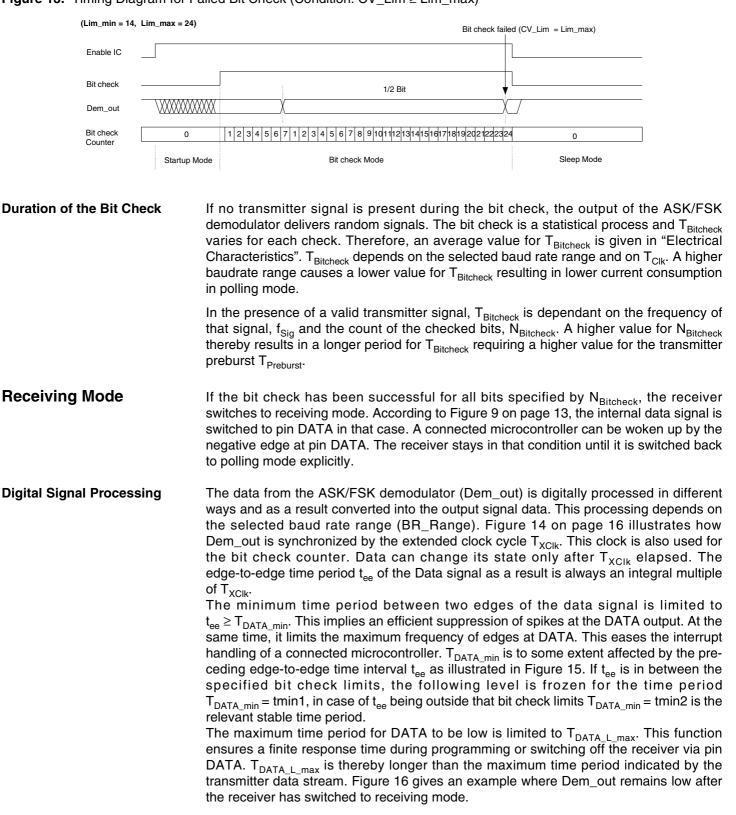




Figure 11. Timing Diagram During Bit Check

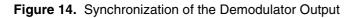


Figure 13. Timing Diagram for Failed Bit Check (Condition: CV_Lim ≥ Lim_max)

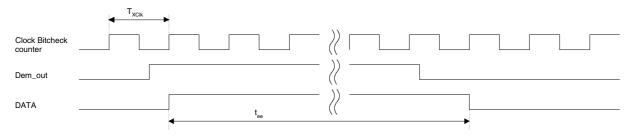


Figure 15. Debouncing of the Demodulator Output

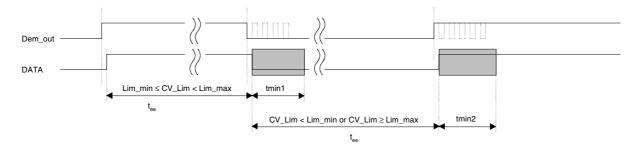
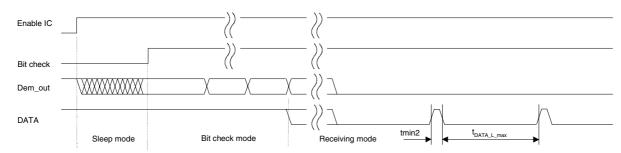
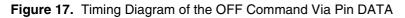



Figure 16. Steady L State Limited DATA Output Pattern after Transmission


After the end of a data transmission, the receiver remains active and random noise pulses appear at pin DATA. The edge-to-edge time period t_{ee} of the majority of these noise pulses is equal to or slightly higher than $T_{DATA \ min}$.

Switching the Receiver Back The receiver can be set back to polling mode via pin DATA or via pin ENABLE.

When using pin DATA, this pin must be pulled to low for the period t1 by the connected microcontroller. Figure 17 illustrates the timing of the OFF command (see also Figure 21 on page 21). The minimum value of t1 depends on the BR_Range. The maximum value for t1 is not limited but it is recommended not to exceed the specified value to prevent erasing the reset marker. This item is explained in more detail in the section "Configuration of the Receiver" on page 17. Setting the receiver to sleep mode via DATA is achieved by programming bit 1 of the OPMODE register to 1. Only one sync pulse (t3) is issued.

The duration of the OFF command is determined by the sum of t1, t2 and t10. After the OFF command, the sleep time T_{Sleep} elapses. Note that the capacitive load at pin DATA is limited. The resulting time constant τ together with an optional external pull-up resistor may not be exceeded to ensure proper operation.

If the receiver is set to polling mode via pin ENABLE, an 'L' pulse (T_{Doze}) must be issued at that pin. Figure 18 illustrates the timing of that command. After the positive edge of this pulse, the sleep time T_{Sleep} elapses. The receiver remains in sleep mode as long as ENABLE is held to 'L'. If the receiver is polled exclusively by a microcontroller, T_{Sleep} can be programmed to 0 to enable a instantaneous response time. This command is the faster option than via pin DATA at the cost of an additional connection to the microcontroller.

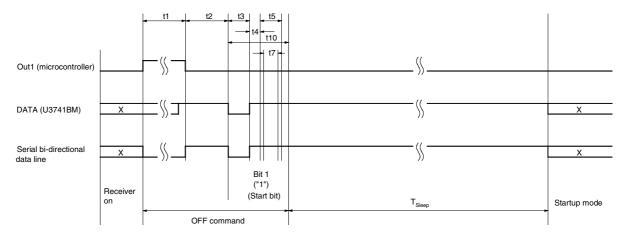
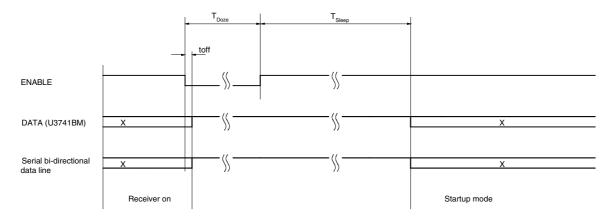



Figure 18. Timing Diagram of the OFF Command Via Pin ENABLE

Configuration of the Receiver

The U3741BM receiver is configured via two 12-bit RAM registers called OPMODE and LIMIT. The registers can be programmed by means of the bi-directional DATA port. If the register contents have changed due to a voltage drop, this condition is indicated by a certain output pattern called reset marker (RM). The receiver must be reprogrammed in that case. After a power-on reset (POR), the registers are set to default mode. If the receiver is operated in default mode, there is no need to program the registers.

Table 3 on page 18 shows the structure of the registers. According to Table 2 on page 18, bit 1 defines if the receiver is set back to polling mode via the OFF command, (see section "Receiving Mode" on page 15) or if it is programmed. Bit 2 represents the register address. It selects the appropriate register to be programmed.

Bit 1	Bit 2	Action
1	x	The receiver is set back to polling mode (OFF command)
0	1	The OPMODE register is programmed
0	0	The LIMIT register is programmed

Table 2.	Effect of Bit 1	and Bit 2 in	Programming	the Registers

Table 4 and the following illustrate the effect of the individual configuration words. The default configuration is highlighted for each word.

BR_Range sets the appropriate baud rate range. At the same time it defines XLim. XLim is used to define the bit check limits T_{Lim_min} and T_{Lim_max} as shown in Table 4.

POUT can be used to control the sensitivity of the receiver. In that application, POUT is set to 1 to reduce the sensitivity. This implies that the receiver operates with full sensitivity after a POR.

Table 3. Effect of the Configuration Words within the Registers

						0						
Bit2	Bit2	Bit4	Bit5	Bit6	Bit7	Bit8	Bit9	Bit10	Bit11	Bit12	Bit13	Bit14
OFF Command												
DDE R	egister											
1	BR_F	BR_Range N _{Bitchee}		check	V _{POUT}	Sleep				X	X _{Sleep}	
1	Baud1	Baud0	BitChk1	BitChk0	POUT	Sleep4	Sleep3	Sleep2	Sleep1	Sleep0	X _{Sleep Std}	X _{Sleep Temp}
fault)	0	0	1	0	0	0	1	0	1	1	0	0
Regis	ter											
0	Lim_min								Lim	_max		
0	Lim_min5	Lim_min4	Lim_min3	Lim_min2	Lim_min1	Lim_min0	Lim_max5	Lim_max4	Lim_max3	Lim_max2	Lim_max1	Lim_max0
fault)	0	0	1	1	1	0	0	1	1	0	0	0
f	Common DDE R 1 1 ault) Regis 0 0	Command DDE Register 1 BR_F 1 Baud1 ault) 0 Register 0 Lim_min5	Command DDE Register 1 BR_Range 1 BR_Range 1 Baud1 Baud1 Baud0 ault) 0 0 Command 0 Lim_min5	Bommand DDE Register 1 BR_Range 1 BR_Range 1 Baud1 Baud1 Baud0 BitChk1 ault) 0 0 Lim_min5 Lim_min4	Baud1 Baud0 BitChk1 00 0 1 0 1 0 0 1 1	Baud1 Baud0 BitChk0 POUT 1 BR_Range N _{Bitcheck} V _{POUT} 1 Baud1 Baud0 BitChk1 BitChk0 POUT ault) 0 0 1 0 0 Lim_min 0 Lim_min5 Lim_min4 Lim_min3 Lim_min2 Lim_min1	BR_Range N _{Bitcheck} V _{POUT} 1 BR_Range N _{Bitcheck} V _{POUT} 1 Baud1 Baud0 BitChk1 BitChk0 POUT 1 Baud1 0 0 0 0 ault) 0 0 1 0 0 Register Ummin Ummin Ummin Ummin 0 Lim_min4 Lim_min3 Lim_min2 Lim_min1 Lim_min0	BR_Range N _{Bitcheck} V _{POUT} 1 BR_Range N _{Bitcheck} V _{POUT} 1 Baud1 Baud0 BitChk1 BitChk0 POUT Sleep4 Sleep3 ault) 0 0 1 0 0 1 Lim_min 0 Lim_min4 Lim_min2 Lim_min1 Lim_min0 Lim_max5	BR_Range N _{Bitcheck} V _{POUT} Sleep3 Sleep2 1 BR_Range N _{Bitcheck} V _{POUT} Sleep3 Sleep2 1 Baud1 Baud0 BitChk1 BitChk0 POUT Sleep4 Sleep3 Sleep2 ault) 0 0 1 0 0 1 0 Lim_min 0 Lim_min4 Lim_min2 Lim_min1 Lim_min0 Lim_max5 Lim_max4	BR_Range N _{Bitcheck} V _{POUT} Sleep3 Sleep2 Sleep1 1 BR_Range N _{Bitcheck} V _{POUT} Sleep3 Sleep2 Sleep1 1 Baud1 Baud0 BitChk1 BitChk0 POUT Sleep4 Sleep3 Sleep2 Sleep1 ault) 0 0 1 0 0 1 0 1 Lim_min Lim_min2 Lim_min0 Lim_max5 Lim_max4 Lim_max3	BR_Range N _{Bitcheck} V _{POUT} Sleep3 Sleep2 Sleep1 Sleep0 1 BR_Range N _{Bitcheck} V _{POUT} Sleep3 Sleep2 Sleep1 Sleep0 1 Baud1 Baud0 BitChk1 BitChk0 POUT Sleep3 Sleep2 Sleep1 Sleep0 ault) 0 0 1 0 1 1 Register 0 Lim_min4 Lim_min2 Lim_min1 Lim_min0 Lim_max5 Lim_max4 Lim_max3 Lim_max2	BR_Range N _{Bitcheck} V _{POUT} Sleep3 Sleep2 Sleep1 Sleep0 X _{Sleep Std} 1 BR_Range N _{Bitcheck} V _{POUT} Sleep3 Sleep2 Sleep1 Sleep0 X _{Sleep Std} 1 Baud1 Baud0 BitChk1 BitChk0 POUT Sleep3 Sleep2 Sleep1 Sleep0 X _{Sleep Std} ault) 0 0 1 0 0 1 0 Lim_min 0 Lim_min4 Lim_min2 Lim_min1 Lim_min0 Lim_max5 Lim_max4 Lim_max3 Lim_max2 Lim_max1

Table 4. Effect of the Configuration Word BR_Range

BR_	Range	
Baud1	Baud0	Baud Rate Range/Extension Factor for Bit Check Limits (XLim)
0	0	BR_Range0 (application USA/Europe: BR_Range0 = 1.0 kBaud to 1.8 kBaud) (Default) XLim = 8 (Default)
0	1	BR_Range1 (application USA/Europe: BR_Range1 = 1.8 kBaud to 3.2 kBaud) XLim = 4
1	0	BR_Range2 (application USA/Europe: BR_Range2 = 3.2 kBaud to 5.6 kBaud) XLim = 2
1	1	BR_Range3 (Application USA/Europe: BR_Range3 = 5.6 kBaud to 10 kBaud) XLim = 1

Table 5. Effect of the Configuration Word N_{Bitcheck}

N _{Bit}	check	
BitChk1	BitChk0	Number of Bits to be Checked
0	0	0
0	1	3
1	0	6 (Default)
1	1	9

Table 6. Effect of the Configuration Bit VPOUT

VPOUT	Level of the Multi-purpose Output Port POUT
POUT	
0	0 (Default)
1	1

Table 7. Effect of the Configuration Word Sleep

		Sleep			
Sleep4	Sleep3	Sleep2	Sleep1	Sleep0	Start Value for Sleep Counter (T_{Sleep} = Sleep \times X_{Sleep} \times 1024 \times T_{Clk})
0	0	0	0	0	0 (Receiver is continuously polling until a valid signal occurs)
0	0	0	0	1	1 (T _{Sleep} \approx 2ms for X _{Sleep} = 1 in US-/European applications)
0	0	0	1	0	2
0	0	0	1	1	3
	•				
0	1	0	1	1	11 (USA: T _{Sleep} = 22.96 ms, Europe: T _{Sleep} = 23.31 ms) (Default)
	•	•	•	•	
1	1	1	0	1	29
1	1	1	1	0	30
1	1	1	1	1	31 (Permanent sleep mode)

Table 8. Effect of the Configuration Word $\rm X_{Sleep}$

X	Sleep	
X _{SleepStd}	X _{SleepTemp}	Extension Factor for Sleep Time (T_{Sleep} = Sleep \times X_{Sleep} \times 1024 \times T_{Clk})
0	0	1 (Default)
0	1	8 (X _{Sleep} is reset to 1 if bit check fails once)
1	0	8 (X _{Sleep} is set permanently)
1	1	8 (X _{Sleep} is set permanently)

ble 9.	Effect of t	the Config	guration W	Vord Lim_	min	
		Lim	_min			Lower Limit Value for Bit Check
	Lim_	min < 10 i	s not appl	icable		$(T_{Lim_{min}} = Lim_{min} \times XLim \times T_{Clk})$
0	0	1	0	1	0	10
0	0	1	0	1	1	11
0	0	1	1	0	0	12
0	0	1	1	0	1	13
0	0	1	1	1	0	14 (Default) (USA: T _{Lim_min} = 228 μs, Europe: T _{Lim_min} = 232 μs)
•		•	•	. 0	•	61
I	I	1	I	0	I	
1	1	1	1	1	0	62
1	1	1	1	1	1	63

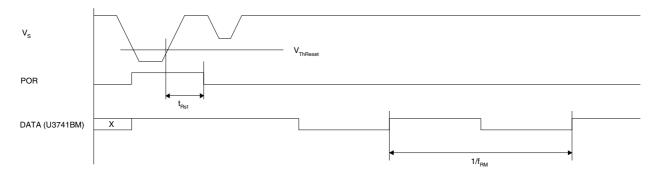
Tab

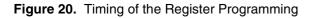
 Table 10.
 Effect of the Configuration Word Lim_max

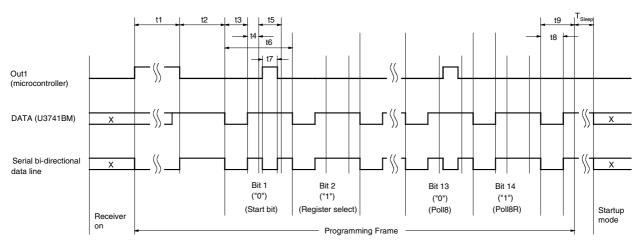
		Lim_	_max			Upper Limit Value for Bit Check
	Lim_ı	nax < 12 i	s not appl	icable		(T _{Lim_max} = (Lim_max - 1) × XLim × T _{Clk})
0	0	1	1	0	0	12
0	0	1	1	0	1	13
0	0	1	1	1	0	14
•						
-						
•		•		•		
0	1	1	0	0	0	24 (Default) (USA: T _{Lim_max} = 375 μs, Europe: T _{Lim_max} = 381 μs)
1	1	1	1	0	1	61
1	1	1	1	1	0	62
1	1	1	1	1	1	63

Conservation of the Register Information

The U3741BM has an integrated power-on reset and brown-out detection circuitry to provide a mechanism to preserve the RAM register information.

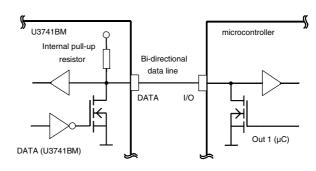

According to Figure 19 on page 21, a power-on reset (POR) is generated if the supply voltage $V_{\rm S}$ drops below the threshold voltage $V_{\rm ThReset}$. The default parameters are programmed into the configuration registers in that condition. Once $V_{\rm S}$ exceeds $V_{\rm ThReset}$, the POR is canceled after the minimum reset period t_{Rst}. A POR is also generated when the supply voltage of the receiver is turned on.


To indicate that condition, the receiver displays a reset marker (RM) at pin DATA after a reset. The RM is represented by the fixed frequency f_{RM} at a 50% duty cycle. RM can be canceled via an 'L' pulse t1 at pin DATA. The RM implies the following characteristics:


- f_{RM} is lower than the lowest feasible frequency of a data signal. By this means, RM cannot be misinterpreted by the connected microcontroller.
- If the receiver is set back to polling mode via pin DATA, RM cannot be canceled by accident if t1 is applied according to the proposal in the section "Programming the Configuration Register" on page 21.

By means of that mechanism, the receiver cannot lose its register information without communicating that condition via the reset marker RM.

Figure 19. Generation of the Power-on Reset



Programming the Configuration Register

The configuration registers are programmed serially via the bi-directional data line according to Figure 20 and Figure 21.

Figure 21. One-wire Connection to a Microcontroller

To start programming, the serial data line DATA is pulled to 'L' for the time period t1 by the microcontroller. When DATA has been released, the receiver becomes the master device. When the programming delay period t2 has elapsed, it emits 14 subsequent synchronization pulses with the pulse length t3. After each of these pulses, a programming window occurs. The delay until the program window starts is determined by t4, the duration is defined by t5. Within the programming window, the individual bits are set. If the microcontroller pulls down pin DATA for the time period t7 during t5, the according bit is set to '0'. If no programming pulse t7 is issued, this bit is set to '1'. All 14 bits are subsequently programmed in this way. The time frame to program a bit is defined by t6.

Bit 14 is followed by the equivalent time window t9. During this window, the equivalent acknowledge pulse t8 (E_Ack) occurs if the mode word just programmed is equivalent to the mode word that was already stored in that register. E_Ack should be used to verify that the mode word was correctly transferred to the register. The register must be programmed twice in that case.

Programming of a register is possible both during sleep and active mode of the receiver.

During programming, the LNA, LO, low-pass filter, IF-amplifier and the demodulator are disabled.

The programming start pulse t1 initiates the programming of the configuration registers. If bit 1 is set to '1', it represents the OFF command to set the receiver back to polling mode at the same time. For the length of the programming start pulse t1, the following convention should be considered:

t1(min) < t1 < 1535 \times T_{Clk}: [t1(min) is the minimum specified value for the relevant BR_Range]

Programming (respectively OFF command) is initiated if the receiver is not in reset mode. If the receiver is in reset mode, programming (respectively Off command) is not initiated, and the reset marker RM is still present at pin DATA.

This period is generally used to switch the receiver to polling mode. In a reset condition, RM is not canceled by accident.

• $t1 > 5632 \times T_{Clk}$

Programming (respectively OFF command) is initiated in any case. RM is cancelled if present. This period is used if the connected microcontroller detected RM. If a configuration register is programmed, this time period for t1 can generally be used.

Note that the capacitive load at pin DATA is limited. The resulting time constant t together with an optional external pull-up resistor may not be exceeded to ensure proper operation.

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Min.	Max.	Unit
Supply voltage	Vs		6	V
Power dissipation	P _{tot}		450	mW
Junction temperature	Т _ј		150	°C
Storage temperature	T _{stg}	-55	+125	°C
Ambient temperature	T _{amb}	-40	+105	°C
Maximum input level, input matched to 50 W	P _{in_max}		10	dBm

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient	R _{thJA}	100	K/W

Electrical Characteristics

				438-Mhz C (Mode 1))sc.	4.9)625-Mhz (Mode 0)		v	ariable Oscillato	or	
Parameter	Test Condition	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Basic Clock (Cycle of the Digital Ci	rcuitry			· · ·							
Basic clock cycle	MODE = 0 (USA) MODE = 1 (Europe)	T _{Clk}		2.0697			2.0383			1/(f _{XTO} /10) 1/(f _{XTO} /14)		μs μs
Extended basic clock cycle	BR_Range0 BR_Range1 BR_Range2 BR_Range3	T _{XClk}		16.6 8.3 4.1 2.1			16.3 8.2 4.1 2.0			$\begin{array}{c} 8\times T_{Clk} \\ 4\times T_{Clk} \\ 2\times T_{Clk} \\ 1\times T_{Clk} \end{array}$		μs μs μs μs
Polling Mode				1	1 1		1	11		l		
Sleep time	Sleep and X _{Sleep} are defined in the OPMODE register	T _{Sleep}		$\begin{array}{c} Sleep \times \\ X_{Sleep} \times \\ 1024 \times \\ 2.0697 \end{array}$			$\begin{array}{c} \text{Sleep} \times \\ \text{X}_{\text{Sleep}} \times \\ 1024 \times \\ 2.0383 \end{array}$			$\begin{array}{c} \text{Sleep} \times \\ \text{X}_{\text{Sleep}} \times \\ \text{1024} \times \text{T}_{\text{Clk}} \end{array}$		ms
Start-up time	BR_Range0 BR_Range1 BR_Range2 BR_Range3	T _{Startup}		1855 1061 1061 663			1827 1045 1045 653			896.5 512.5 512.5 320.5 × T _{Clk}		μs μs μs μs
Time for Bit	Average bit check time while polling BR_Range0 BR_Range1 BR_Range2 BR_Range3	T _{Bitcheck}		0.45 0.24 0.14 0.14			0.47 0.26 0.16 0.15					ms ms ms ms
Check	$\begin{array}{l} \text{Bit check time for a} \\ \text{valid input signal } f_{\text{Sig}} \\ N_{\text{Bitcheck}} = 0 \\ N_{\text{Bitcheck}} = 3 \\ N_{\text{Bitcheck}} = 6 \\ N_{\text{Bitcheck}} = 9 \end{array}$	T _{Bitcheck}	3/f _{Sig} 6/f _{Sig} 9/f _{Sig}		3.5/f _{Sig} 6.5/f _{Sig} 9.5/f _{Sig}	6/f _{Sia}		3.5/f _{Sig} 6.5/f _{Sig} 9.5/f _{Sig}			T _{XClk} 3.5/f _{Sig} 6.5/f _{Sig} 9.5/f _{Sig}	ms ms ms ms

				438-Mhz ((Mode 1))sc.	4.90)625-Mhz (Mode 0)		v	ariable Oscillat	or	
Parameter	Test Condition	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Receiving Mo	de											
Intermediate frequency	MODE=0 (USA) MODE=1 (Europe)	f _{IF}		1.0			1.0			$\begin{array}{c} f_{XTO} \times \ 64/314 \\ f_{XTO} \times \ 64/432.9 \end{array}$	2	MHz MHz
Baud rate range	BR_Range0 BR_Range1 BR_Range2 BR_Range3	BR_Range	1.0 1.8 3.2 5.6		1.8 3.2 5.6 10.0	1.0 1.8 3.2 5.6		1.8 3.2 5.6 10.0	BR BR	$\begin{array}{c} BR_Range0 \times 2\ \mus/T_{Clk}\\ BR_Range1 \times 2\ \mus/T_{Clk}\\ BR_Range2 \times 2\ \mus/T_{Clk}\\ BR_Range3 \times 2\ \mus/T_{Clk}\\ \end{array}$		
Minimum time period between edges at pin DATA (Figure 15)	BR_Range0 BR_Range1 BR_Range2 BR_Range3	T _{DATA_min} tmin1 tmin2 tmin1 tmin2 tmin1 tmin2 tmin1 tmin2		149 182 75 91 37.3 45.5 18.6 22.8			147 179 73 90 36.7 44.8 18.3 22.4			$\begin{array}{l}9\times T_{XClk}\\11\times T_{XCl}\\9\times T_{XClk}\\11\times T_{XClk}\\9\times T_{XClk}\\11\times T_{XClk}\\9\times T_{XClk}\\11\times T_{XClk}\\9\times T_{XClk}\\11\times T_{XClk}\end{array}$		hs hs hs hs hs hs
Maximum low period at DATA (Figure 16)	BR_Range0 BR_Range1 BR_Range2 BR_Range3	T _{DATA_L_max}		2169 1085 542 271			2136 1068 534 267			$\begin{array}{c} 131 \times T_{XClk} \\ 131 \times T_{XClk} \\ 131 \times T_{XClk} \\ 131 \times T_{XClk} \\ 131 \times T_{XClk} \end{array}$		μs μs μs μs
OFF command at pin ENABLE (Figure 18)		t _{Doze}	3.1			3.05			1.5 ¥ T _{Clk}			μs
Configuration	of the Receiver											
Frequency of the reset marker (Figure 19)		f _{RM}		117.9			119.8			1 4096 × T _{CLF}	-	Hz
Programming start pulse (Figure 17, Figure 20)	BR_Range0 BR_Range1 BR_Range2 BR_Range3 after POR	t1	2188 1104 561 290 11656		3176 3176 3176 3176	2155 1087 553 286 11479		3128 3128 3128 3128 3128	$\begin{array}{c} 1057\times\\ T_{Clk}\\ 533\times\\ T_{Clk}\\ 271\times\\ T_{Clk}\\ 140\times\\ T_{Clk}\\ 5632\times\\ T_{Clk}\\ \end{array}$		$\begin{array}{c} 1535\times\\ T_{Clk}\\ 1535\times\\ T_{Clk}\\ 1535\times\\ T_{Clk}\\ 1535\times\\ T_{Clk}\\ \end{array}$	μs
Programming delay period (Figure 17, Figure 20)		t2	795		798	783		786	384.5× T _{Clk}		$\begin{array}{c} 385.5 \\ \times \ T_{Clk} \end{array}$	μs
Synchroni- zation pulse (Figure 17, Figure 20)		t3		265			261			$128 imes T_{Clk}$		μs

All parameters refer to GND, $T_{amb} = -40^{\circ}$ C to $+105^{\circ}$ C, $V_{S} = 4.5$ V to 5.5 V, $f_{0} = 433.92$ MHz and $f_{0} = 315$ MHz, unless otherwise specified. ($V_{S} = 5$ V, $T_{amb} = 25^{\circ}$ C)

				438-Mhz ((Mode 1))sc.	4.9	0625-Mhz (Mode 0)		v	ariable Oscillato	or	
Parameter	Test Condition	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Delay until the program window starts (Figure 17, Figure 20)		t4		131			129			$63.5 imes T_{Clk}$		μs
Programming window (Figure 17, Figure 20)		t5		530			522			$256 imes T_{Clk}$		μs
Time frame of a bit (Figure 20)		t6		1060			1044			$512 imes T_{Clk}$		μs
Programming pulse (Figure 17, Figure 20)		t7	133		529	131		521	$64 imes T_{Clk}$		$256 imes T_{Clk}$	μs
Equivalent acknowledge pulse: E_Ack (Figure 20)		t8		265			261			$128 imes T_{Clk}$		μs
Equivalent time window (Figure 20)		t9		534			526			$258 imes T_{Clk}$		μs
OFF-bit programming window (Figure 17)		t10		930			916			449.5 $ imes$ T _{Clk}		μs

Electrical Characteristics

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
	Sleep mode (XTO and polling logic active)	IS _{off}		190	350	μA
Current consumption	IC active (startup-, bit check-, receiving mode) pin DATA = H	IS _{on}		7.0	8.6	mA
LNA Mixer						
l i nira-order intercent point	LNA/mixer/IF amplifier input matched according to Figure 4	IIP3		-28		dBm
LO spurious emission at RF _{In}	Input matched according to Figure 4, required according to I-ETS 300220	IS _{LORF}		-73	-57	dBm
Noise figure LNA and mixer (DSB)	Input matching according to Figure 4	NF		7		dB
LNA_IN input impedance	at 433.92 MHz at 315 MHz	Zi _{lna_in}		1.0 1.56 1.3 1.0		kΩ∥pF kΩ∥pF
1 dB compression point (LNA, mixer, IF amplifier)	Input matched according to Figure 4, referred to RF _{in}	IP _{1db}		-40		dBm

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Maximum input level	Input matched according to Figure 4, BER ≤10 ⁻³ , ASK mode	P _{in_max}			-28 -20	dBm dBm
Local Oscillator						
Operating frequency range VCO		f _{vco}	299		449	MHz
Phase noise VCO/LO	f _{osc} = 432.92 MHz at 1 MHz at 10 MHz	L (fm)		-93 -113	-90 -110	dBC/Hz dBC/Hz
Spurious of the VCO	at ±f _{XTO}			-55	-47	dBC
VCO gain		K _{vco}		190		MHz/V
Loop bandwidth of the PLL	For best LO noise (design parameter) R1 = 820 Ω C9 = 4.7 nF C10 = 1 nF	B _{Loop}		100		kHz
Capacitive load at pin LF	The capacitive load at pin LF is limited if bit check is used. The limitation therefore also applies to self polling.	C _{LF_tot}			10	nF
XTO operating frequency	XTO crystal frequency, appropriate load capacitance must be connected to XTAL 6.764375 MHz 4.90625 MHz	f _{хто}	6.764375 -30 ppm 4.90625 -30 ppm	6.764375 4.90625	6.764375 +30 ppm 4.90625 +30 ppm	MHz MHz
Series resonance resistor of the crystal	f _{XTO} = 6.764 MHz 4.906 MHz	R _s			150 220	Ω Ω
Static capacitance of the crystal		C _{xto}			6.5	pF
Analog Signal Processing						
Input sensitivity ASK 300-kHz IF filter	Input matched according to Figure 4 ASK (level of carrier) BER $\leq 10^{-3}$, B = 300 kHz f _{in} = 433.92 MHz/315 MHz T = 25°C, V _S = 5 V f _{IF} = 1 MHz	P _{Ref_ASK}				
Input sensitivity ASK 300-kHz IF filter	BR_Range0		-109	-111	-113	dBm
Input sensitivity ASK 300-kHz IF filter	BR_Range1		-107	-109	-111	dBm
Input sensitivity ASK 300-kHz IF filter	BR_Range2		-106	-108	-110	dBm
Input sensitivity ASK 300-kHz IF filter	BR_Range3		-104	-106	-108	dBm
Input sensitivity ASK 600 kHz IF filter	Input matched according to Figure 4 ASK (level of carrier) BER $\leq 10^{-3}$, B = 600 kHz f _{in} = 433.92 MHz/315 MHz T = 25°C, V _S = 5 V f _{IF} = 1 MHz	P _{Ref_ASK}				

U3741BM

Electrical Characteristics (Continued)

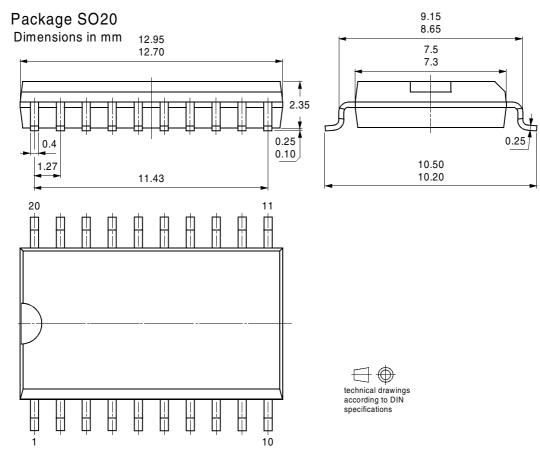
Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Input sensitivity ASK 600 kHz IF filter	BR_Range0		-108	-110	-112	dBm
Input sensitivity ASK 600 kHz IF filter	BR_Range1		-106.5	-108.5	-110.5	dBm
Input sensitivity ASK 600 kHz IF filter	BR_Range2		-106	-108	-110	dBm
Input sensitivity ASK 600 kHz IF filter	BR_Range3		-104	-106	-108	dBm
Sensitivity variation ASK for the full operating range compared to $T_{amb} = 25^{\circ}C$, $V_{S} = 5 V$	300-kHz and 600-kHz version $f_{in} = 433.92 \text{ MHz}/315 \text{ MHz}$ $f_{IF} = 1 \text{ MHz}$ $P_{ASK} = P_{Ref_ASK} + \Delta P_{Ref}$	ΔP_{Ref}	+2.5		-1.5	dB
Sensitivity variation ASK for full operating range including IF filter compared to $T_{amb} = 25^{\circ}C$, $V_{S} = 5 V$	$\begin{array}{l} 300\text{-kHz version} \\ f_{in} = 433.92 \text{ MHz}/315 \text{ MHz} \\ f_{IF} = 0.88 \text{ MHz to } 1.12 \text{ MHz} \\ f_{IF} = 0.85 \text{ MHz to } 1.15 \text{ MHz} \\ P_{ASK} = P_{Ref_ASK} + \Delta P_{Ref} \end{array}$	ΔP_{Ref}	+5.5 +7.5		-1.5 -1.5	dB dB
Sensitivity variation ASK for full operating range including IF filter compared to $T_{amb} = 25^{\circ}C$, $V_{S} = 5 V$	$\begin{array}{l} \text{600-kHz version} \\ \text{f}_{\text{in}} = 433.92 \text{ MHz}/315 \text{ MHz} \\ \text{f}_{\text{IF}} = 0.79 \text{ MHz to } 1.21 \text{ MHz} \\ \text{f}_{\text{IF}} = 0.73 \text{ MHz to } 1.27 \text{ MHz} \\ \text{P}_{\text{ASK}} = \text{P}_{\text{Ref}_\text{ASK}} + \Delta \text{P}_{\text{Ref}} \end{array}$	ΔP_{Ref}	+5.5 +7.5		-1.5 -1.5	dB dB
Input sensitivity FSK 600 kHz IF filter	Input matched according to Figure 4, BER $\leq 10^{-3}$, B = 600 kHz $f_{in} = 433.92$ MHz/315 MHz T = 25°C, V _S = 5 V $f_{IF} = 1$ MHz	P _{Ref_FSK}				
Input sensitivity FSK 600 kHz IF filter	BR_Range0 df ≥ ±20 kHz df ≥ ±30 kHz		-95.5 -96.5	-97.5 -98.5	-99.5 -100.5	dBm dBm
Input sensitivity FSK 600 kHz IF filter	BR_Range1 df ≥ ±20 kHz df ≥ ±30 kHz		-94.5 -95.5	-96.5 -97.5	-98.5 -99.5	dBm dBm
Sensitivity variation FSK for the full operating range compared to $T_{amb} = 25^{\circ}C, V_{S} = 5 V$	600-kHz version $f_{in} = 433.92 \text{ MHz}/315 \text{ MHz}$ $f_{IF} = 1 \text{ MHz}$ $P_{FSK} = P_{Ref_FSK} + ΔP_{Ref}$	ΔP_{Ref}	+2.5		-1.5	dB
Sensitivity variation FSK for full operating range including IF filter compared to $T_{amb} = 25^{\circ}C$, $V_{S} = 5 V$	$\begin{array}{l} \mbox{600-kHz version} \\ \mbox{f}_{in} = 433.92 \mbox{ MHz}/315 \mbox{ MHz} \\ \mbox{f}_{IF} = 0.86 \mbox{ MHz to } 1.14 \mbox{ MHz} \\ \mbox{f}_{IF} = 0.82 \mbox{ MHz to } 1.18 \mbox{ MHz} \\ \mbox{P}_{FSK} = \mbox{P}_{Ref_{FSK}} + \mbox{\Delta} \mbox{P}_{Ref} \end{array}$	ΔP_{Ref}	+5.5 +7.5		-1.5 -1.5	dB dB
FSK frequency deviation	The sensitivity of the receiver is higher for higher values of ∆f _{FSK} BR_Range0 BR_Range1 BR_Range2 and BR_Range3 are not suitable for FSK operation	$\Delta f_{\sf FSK}$	20 20	30 30	50 50	kHz kHz
S/N ratio to suppress inband noise signals	ASK mode FSK mode	SNR _{ASK} SNR _{FSK}	10 2		12 3	dB dB
Dynamic range RSSI ampl.		ΔR_{RSSI}		60		dB

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Lower cut-off frequency of the data filter	$f_{cu_DF} = \frac{1}{2 \times \pi \times 30 k\Omega \times CDEM}$	f _{cu_DF}	0.11	0.16	0.20	kHz
Recommended CDEM for best performance	ASK mode BR_Range0 (Default) BR_Range1 BR_Range2 BR_Range3	CDEM		39 22 12 8.2		nF nF nF nF
Recommended CDEM for best performance	FSK mode BR_Range0 (Default) BR_Range1 BR_Range2 and BR_Range3 are not suitable for FSK operation	CDEM		27 15		nF nF
Maximum edge-to-edge time period of the input data signal for full sensitivity	BR_Range0 (Default) BR_Range1 BR_Range2 BR_Range3	t _{ee_sig}			1000 560 320 180	μs μs μs μs
Upper cut-off frequency data filter	Upper cut-off frequency programmable in 4 ranges via a serial mode word BR_Range0 (Default) BR_Range1 BR_Range2 BR_Range3	f _u	2.5 4.3 7.6 13.6	3.1 5.4 9.5 17.0	3.7 6.5 11.4 20.4	kHz kHz kHz kHz
Minimum edge-to-edge time period of the input data signal for full sensitivity	BR_Range0 (Default) BR_Range1 BR_Range2 BR_Range3	t_{ee_sig}			270 156 89 50	μs μs μs μs
Reduced sensitivity	R_{Sense} connected from pin Sens to V _S , input matched according to Figure 4	P_{Ref_Red}				dBm (peak level)
Reduced sensitivity	$R_{Sense} = 56 k\Omega, f_{in} = 433.92 MHz,$ (V _S = 5 V, T _{amb} = 25°C) at B = 300 kHz at B = 600 kHz		-71 -67	-76 -72	-81 -77	dBm dBm
Reduced sensitivity	R _{Sense} = 100 kΩ, f _{in} = 433.92 MHz at B = 300 kHz at B = 600 kHz		-80 -76	-85 -81	-90 -86	dBm dBm
Reduced sensitivity	R _{Sense} = 56 kΩ, f _{in} = 315 MHz at B = 300 kHz at B = 600 kHz		-72 -68	-77 -73	-82 -78	dBm dBm
Reduced sensitivity	R _{Sense} = 100 kΩ, f _{in} = 315 MHz at B = 300 kHz at B = 600 kHz		-81 -77	-86 -82	-91 -87	dBm dBm
Reduced sensitivity variation over full operating range		ΔP_{Red}	5 6	0 0	0 0	dB dB

U3741BM

Electrical Characteristics (Continued)

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Reduced sensitivity variation for different values of R _{Sense}	Values relative to $R_{Sense} = 56 \text{ k}\Omega$ $R_{Sense} = 56 \text{ k}\Omega$ $R_{Sense} = 68 \text{ k}\Omega$ $R_{Sense} = 82 \text{ k}\Omega$ $R_{Sense} = 100 \text{ k}\Omega$ $R_{Sense} = 120 \text{ k}\Omega$ $R_{Sense} = 150 \text{ k}\Omega$ $P_{Red} = P_{Ref_Red} + \Delta P_{Red}$	ΔP_{Red}		0 -3.5 -6.0 -9.0 -11.0 -13.5		dB dB dB dB dB dB
Threshold voltage for reset		V_{ThRESET}	1.95	2.8	3.75	V
Digital Ports						
Data output - Saturation voltage LOW - Internal pull-up resistor - Maximum time constant - Maximum capacitive load	$I_{ol} = 1 \text{ mA}$ t = C _L (R _{pup} //R _{Ext}) without ext. pull-up resistor R _{ext} = 5 kΩ	V _{OI} R _{Pup} τ C _L C _L	39	0.08 50	0.3 61 2.5 41 540	∨ Ω µs pF
POUT output - Saturation voltage LOW - Saturation voltage HIGH	I _{POUT} = 1 mA I _{POUT} = -1 mA	V _{OI} V _{Oh}	V _S - 0.3 V	0.08 V _S - 0.14V	0.3	V V
FSK/ASK input - Low-level input voltage - High-level input voltage	FSK selected ASK selected	V _{II} V _{Ih}	$0.8 \times V_{S}$		$0.2 imes V_S$	V V
ENABLE input - Low-level input voltage - High-level input voltage	Idle mode Active mode	V _{II} V _{Ih}	$0.8 \times V_{S}$		$0.2 \times V_S$	V V
MODE input - Low-level input voltage - High-level input voltage	Division factor = 10 Division factor = 14	V _{II} V _{Ih}	$0.8 \times V_S$		$0.2 \times V_S$	V V
TEST input - Low-level input voltage	Test input must always be set to LOW	V _{II}			$0.2 imes V_S$	V



Ordering Information

Extended Type Number	Package	Remarks
U3741BM-P2FL	SO20	2: IF bandwidth of 300 kHz, tube
U3741BM-P2FLG3	SO20	2: IF bandwidth of 300 kHz, taped and reeled
U3741BM-P3FL	SO20	3: IF bandwidth of 600 kHz, tube
U3741BM-P3FLG3	SO20	3: IF bandwidth of 600 kHz, taped and reeled

Package Information

Revision History

Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this document.

Changes from Rev. 4662A - 06/03 to Rev. 4662B - 10/04

- 1. Put datasheet in a new template.
- 2. Heading rows at Table "Absolute Maximum Ratings" added.
- 3. Table "Ordering Information" on page 30 changed.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

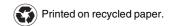
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2004. All rights reserved. Atmel[®], logo and combinations thereof are registered trademarks, and Everywhere You AreSM are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

