阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

Solutions for a Real Time World

WirelessUSB™ - UGWB/L

Data Sheet

Unigen Corp. Wireless Module Products

PART NUMBER FAMILY: JUNO-B/L WIRELESSUSB™ RADIO MODULES

UGWB AND UGWL SERIES SHORT AND MEDIUM RANGE MODULES

Issue Date: 18 October 2004

Revision: 1.02

Revision History

Rev. No.	History	Issue Date	Remarks
0.9	Final Draft	24 June 2004	Update Reference Documents, Functional Description
1.0	Final Release	26 July 2004	Final Release, adds Medium Range Modules
1.01	Minor Iteration	24 August 2004	Update to Electrical Characteristics
1.02	Minor Iteration	18 Oct. 2004	Update to P/N guide on Pin-out (page 10)

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Unigen Corporation disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this document. No license, expressed or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

*Third-party brands, names, and trademarks are the property of their respective owners.

Copyright © Unigen Corporation, 2004

Solutions for a Real Time World Data Shee

TABLE OF CONTENTS:

REFERENCE DOCUMENTATION:	3
INTRODUCTION:	4
FEATURES:	5
DESCRIPTION:	5
FUNCTIONAL BLOCK DIAGRAMS:	5
ABSOLUTE MAXIMUM RATINGS:	ϵ
RECOMMENDED OPERATING CONDITIONS:	ϵ
DC ELECTRICAL CHARACTERISTICS:	7
Table 1 – Electrical Characteristics	7
ANTENNA:	7
<u>Table 2 – Antenna Characteristics</u>	7
RADIO PARAMETERS:	8
<u>Table 3 – Radio Characteristics</u>	8
PIN ASSIGNMENTS:	ç
<u>Table 4 – Pin Assignments</u>	g
PIN FUNCTIONS:	9
AGENCY CERTIFICATIONS (PRE-SCAN):	11
<u>Table 5 – Regulatory Agency Certifications</u>	11
Regulatory Compliance Statement:	11
MECHANICAL CHARACTERISTICS:	12
<u>Table 6 – Mechanical Description</u>	12
MECHANICAL DRAWINGS:	13
<u>Figure 1 – Juno-B Mirrored Land Pattern</u>	13
Figure 2 – Juno-B Land Pattern	14
Figure 3 – Juno-L Land Pattern	15
Figure 4 – Juno-L Mirrored Land Pattern	16
PHYSICAL DIMENSIONS:	17
<u>Figure 5 – Juno-B Dimensions</u> <u>Figure 6 – Juno-B Mirrored Dimensions</u>	17 18
Figure 7 – Juno-L Dimensions	19
Figure 8 – Juno-L Mirrored Dimensions	20
ORDERING INFORMATION:*	21
Typical Applications	21
Antennae	21
CONTACT INFORMATION:	22
CONTACT INFORMATION.	

Solutions for a Real Time World

Data Sheet

REFERENCE DOCUMENTATION:

The Unigen JUNO-B (UGWB1US) and JUNO-L (UGWL1US) WirelessUSB[™] module adaptation of the Cypress Semiconductor CYWUSB6934 LS 2.4GHz DSSS Radio SOC and the Unigen JUNO-B (UGWB2US) and JUNO-L (UGWL2US) WirelessUSB[™] module adaptation of the Cypress Semiconductor CYWUSB6935 LR 2.4GHz DSSS Radio SOC is represented in this document. The detail provided is information for using JUNO-B/L in a digital electronic device and is only a "companion" document to Cypress Semiconductors' documentation for the above noted part.

The CYWUSB6934 LS 2.4GHz DSSS Radio SOC 10-meter information and technical details (ex. register settings, timing, application interfaces, clocking and power management, etc.) may be obtained from the Cypress Semiconductor web site or contacting Cypress's authorized sales representatives.

The following is a list of required documents and locations known at the time of publication that accompany this datasheet.

 The CYWUSB6934 LS 2.4GHz DSSS Radio SOC Datasheet – CUWUSB6934.pdf http://www.cypress.com/cfuploads/img/products/cywusb6934.pdf

The CYWUSB6935 LR 2.4GHz DSSS Radio SOC 50-meter information and technical details (ex. register settings, timing, application interfaces, clocking and power management, etc.) may be obtained from the Cypress Semiconductor web site or contacting Cypress's authorized sales representatives.

The following is a list of required documents and locations known at the time of publication that accompany this datasheet.

 The CYWUSB6935 LR 2.4GHz DSSS Radio SOC Datasheet – CUWUSB6935.pdf http://www.cypress.com/cfuploads/img/products/cywusb6935.pdf

Additional documentation for the Cypress Semiconductor CYWUSB6934 LS 2.4GHz DSSS Radio SOC device and the Unigen JUNO-B/L WirelessUSB™ modules may be obtained by contacting agents or representatives of the respective companies.

Solutions for a Real Time World

Data Shee

INTRODUCTION:

Unigen JUNO-B/L WirelessUSB[™] 10 and 50-meter range modules represent the convergence of emerging wireless connectivity solutions and the USB "Plug-N-Play" ease of operation. WirelessUSB, as created by Cypress Semiconductor, is a low-cost, 2.4GHz communication protocol designed for use in commercial, industrial, consumer, and computer product applications needing highly reliable data connectivity.

JUNO-B/L modules combine Cypress Semiconductor's wireless and USB expertise with Unigen's module design, manufacturing, and testing proficiency to create production ready, pre-certified modules that are easily integrated into existing, and new product designs.

JUNO-B/L modules offer immediate, drop-in design solutions and use the native Operating System HID drivers to seamlessly enumerate and operate mouse, keyboard, and gaming devices, or other devices using the HID specification for communication with the host systems.

Both JUNO 10-meter and 50-meter modules use the same PCB given their form factors and may be interchanged with no other changes required in the end-device.

Solutions for a Real Time World

Data Sheet

FEATURES:

- CYWUSB6934 LS 2.4GHz DSSS Radio SOC
- CYWUSB6935 LR 2.4GHz DSSS Radio SOC
- Operates in the 2.4 to 2.483GHz, unlicensed frequency range (ISM – Industrial, Scientific and Medical)
- -95dBm receive sensitivity
- Range options of 10 and 50 meters
- Data Rate of 62.5kbits/sec
- SPI interface (up to 2MHz data rate)
- Operating Voltage Requirement 2.7 – 3.6Vdc
- Multiple connection interfaces available
- Small PCBA Design:
 UGWB#US
 0.95" (24.13mm) by 1.00" (25.40mm)
 UGWL#US
 0.90" (22.86mm) by 1.10" (27.94mm)
- Complete Radio Module
 Antenna Option Integrated Chip or Coaxial connector (PN. UGADL1B1M1 or UGADA0B1M1) for external mount.
- Agency Pre-Certification (Pending)
 FCC/EU/ETSI/Industry Canada
 Module certified to FCC/EU compliance
 specifications limiting your agency compliance
 time and cost.
- Agency Pre-Certification
 Tested to comply with Analog and Digital immunity standards from around the world

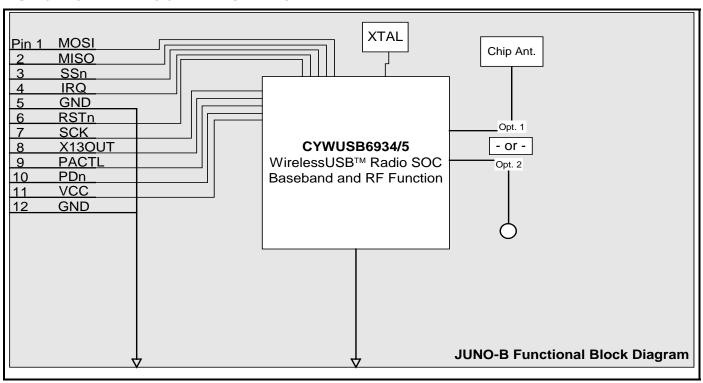
DESCRIPTION:

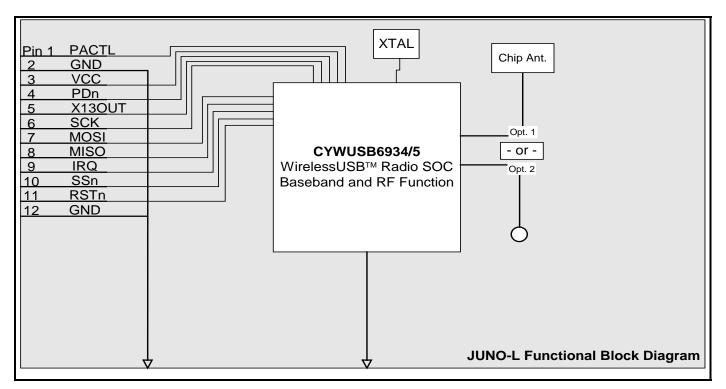
JUNO-B/L WirelessUSB™ Modules are tightly integrated, low-cost, high-reliability 2.4GHz TX/RX communications modules for use with Human Interface Device (HID) class compliant products.

The JUNO-B/L 10-meter modules use the Cypress Semiconductor CYWUSB6934 LS 2.4GHz DSSS Radio SOC device. The JUNO-B/L 50-meter modules use the Cypress Semiconductor CYWUSB6935 LR 2.4GHz DSSS Radio SOC device.

JUNO-B/L modules are a complete radio solution requiring only integration into an existing, or new device.

JUNO-B/L modules are 100% tested for functional operation and are pre-screened for FCC Part 15 compliance. The modules are supplied with an integrated chipantenna. For applications where the chipantenna is unsuitable, models are available that support using an external coaxial antenna. Unigen offers 2dBi gain antennae for customers requiring an external antenna.


JUNO-B/L modules are intended for use in computer and consumer product/device applications and use the OS native HID class drivers to enable compliant devices. In most applications, no additional host drivers are required. The modules are suitable for use in embedded and/or industrial applications as well.


The JUNO-B/L are less than 1"sq and are available for horizontal or vertical mounting directly to the device PCB. The modules are available bare-board for application off board within the device.

Solutions for a Real Time World

Data Sheet

FUNCTIONAL BLOCK DIAGRAMS:

Solutions for a Real Time World

Data Sheet

ABSOLUTE MAXIMUM RATINGS:

Symbol	Definition	Min.	Max.	Unit
Vcc	Supply Voltage – Radio SOC	-0.3	3.9	VDC
Toc	Commercial Operating Temperature Range	-20	70	°C
Ts	Storage Temperature Range	-40	125	°C
VLI	VDC to Logic Inputs	-0.3	Vcc + 0.3	VDC
V O/Hi-Z	VDC to Outputs in Hi-Z state	-0.3	Vcc + 0.3	VDC
SDVD	Static Discharge Voltage Digital		>4000	VDC
SDVR	Static Discharge Voltage RF		>4000	VDC

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of this module. Avoid using the module outside the recommended operating conditions defined below. This module is ESD sensitive and should be handled and/or used in accordance with proper ESD mitigation.

RECOMMENDED OPERATING CONDITIONS:

Cymbol	Description	Value					
Symbol	Description	Min.	Typ.*	Max.	Unit		
Vcc	Supply Voltage	2.7	3.0	3.6	VDC		
Toc	Commercial Operating Temperature Range	-20	25	70	°C		
GND	Ground Voltage		0		VDC		

Solutions for a Real Time World

Data Sheet

DC ELECTRICAL CHARACTERISTICS:

Cymahal	Description	Condition(a)	Value				
Symbol	Description	Condition(s)	Min.	Typ.*	Max.	Unit	
Vcc	Supply Voltages		2.7	3.0	3.6	VDC	
VoH1	Voltage Output High 1	At Ioh = $-100.0 \mu A$	Vcc-0.1	Vcc		VDC	
VoH2	Voltage Output High 2	At Ioh = -2.0 mA	2.4	3.0		VDC	
Vol	Voltage Output Low	At $IOL = 2.0 \text{ mA}$		0.0	0.4	VDC	
VIH	Voltage Input High		2.0		Vcc	VDC	
VIL	Voltage Input Low		-0.3		8.0	VDC	
IIL	Input Leakage Current	0 < VIN < VCC	-1	0.30	+1	μΑ	
ISLEEP	Power-down current consumption	PD = Low		0.26	10	μΑ	
TX AVG Icc1	Mean transmitter current consumption ¹	no handshake		6.0		mA	
TX AVG Icc2	Mean transmitter current consumption ²	w/handshake		10.0		mA	
RX Icc (Peak)	Current consumption during receive			60.0		mA	
TX Icc (Peak)	Current consumption during transmit			71.4		mA	
MTBF		Calculated			>87,600	Hours	

Table 1 - Electrical Characteristics

ANTENNA:

JUNO-B/L modules with the optional coaxial antenna connector require the addition of an antenna for radio operation. Unigen tested the noted antennae with the JUNO-B/L modules and offers these to our customers. Customers may use antennae other than these listed, however these antennae have been pre-screened with the modules for digital and RF emissions.

Customers may obtain antennae (part numbers UGADL1B1M1 or UGADA0B1M1) with the following properties:

Item	Property
Coaxial Cable Type	4.13mm high freq.
Cable Length	11.81" (300mm) – other lengths available
Connector	Mini Coaxial
Frequency Range	2.4000~2.4835GHz
Impedance	50Ω (Typ.)
VSWR	2.0 max. over full range of operation
Return Loss	-10dB max.
Gain	2.0dBi - calculated
Maximum Power	1W
Electrical Wave	1/2 λ Dipole

Table 2 - Antenna Characteristics

^{*=} Measured with 3.0Vcc at 25°C

¹= Mean Icc when transmitting a 5-byte packet (3 data bytes + 2 bytes of protocol) every 10ms using the Wireless USB LS 1-way protocol.

²= Mean Icc when transmitting a 5-byte packet (3 data bytes + 2 bytes of protocol) every 10ms using the Wireless USB LS 2-way protocol.

Solutions for a Real Time World

Data Sheet

RADIO PARAMETERS:

Parameter Description	Condition	Min.	Тур.	Max	Unit
RF Frequency Range		2.400		2.483	GHz
Radio Receiver (T = 25°C, Vcc = 3.3V, fosc = 13.000MHz, X130	\overline{OUT} off, 64 chips/bit, Threshold Low = 8,	Thresho	ld High =	56, BER	≤10 ⁻³
Sensitivity			-90		dBm
Maximum Received Signal		-20	-10		dBm
RSSI Value for PWR _{in} >-40dBm			28-31		
RSSI Value for PWR _{in} <-95dBm			0-10		
Interference Performance					
Co-channel Interference rejection Carrier-to-Interference (C/I)	C = -60 dBm		11		dB
Adjacent (1 MHz) channel selectivity C/I 1 MHz	C = -60 dBm		3		dB
Adjacent (2 MHz) channel selectivity C/I 2 MHz	C = -60 dBm		-30		dB
Adjacent (> 3 MHz) channel selectivity C/I > 3 MHz	C = -67 dBm		-40		dB
Image[22] Frequency Interference, C/I Image	C = -67 dBm		-20		dB
Adjacent (1 MHz) interference to in-band image frequency, C/I	C = -67 dBm		-25		dB
image ±1 MHz					
Out-of-band Blocking Interference Signal Frequency					
30MHz – 2399MHz except (FO/N & FO/N± 1MHz)	C = -67 dBm		-30		dBm
2498MHz – 12.75GHz, except (FO*N & FO*N±1MHz)	C = -67 dBm		-20		dBm
Intermodulation	$C = -67 \text{ dBm}, \Delta f = 5, 10 \text{MHz}$		-39		dBm
Spurious Emission					
30MHz – 1GHz				-57	dBm
1GHz – 12.75GHz (except 4.8GHz – 5.0GHz)				-47	dBm
4.8GHz – 5.0GHz				-37	dBm
Radio Transmitter (T = 25°C, Vcc = 3.3V, fosc = 13.000MHz)					
Maximum RF Transmit Power	PA = 7		0		dBm
RF Power Control Range			30		dB
RF Power Range Control Step Size	Seven steps, monotonic		4.3		dB
Frequency Deviation	PN Code Pattern 10101010		270		kHz
Frequency Deviation	PN Code Pattern 11110000		320		kHz
Zero Crossing Error			±125		ns
Occupied Bandwidth	100-kHz resolution bandwidth, -6dBc	500			kHz
Initial Frequency Offset			±75		kHz
In-Band Spurious					
Second Channel Power (±=2MHz)				-30	dBm
≥ Third Channel Power (≥3 MHz)				-40	dBm
Non-Harmonically Related Spurs					
30MHz – 12.75GHz				-57	dBm
Harmonic Spurs					
Second Harmonic				-20	dBm
Third Harmonic				-30	dBm
Fourth and Greater Harmonics				-47	dBm
Table 2 Padia Characteristics					

Table 3 - Radio Characteristics

Solutions for a Real Time World

Data Sheet

PIN ASSIGNMENTS:

Function	UGWB1US		1/0	Description
	UGWB2US	UGWL2US		
MOSI	1	7	I	SPI Data Input from MCU
MISO	2	8	O/Hi-Z	SPI Data Output to MCU
SSn	3	10	I	SPI Slave Select Enable
IRQ	4	9	0	Interrupt Request
GND	5	2	-	Module Ground
RSTn	6	11	I	Module Reset
SCK	7	6	I	SPI Input Clock
X13OUT	8	5	O/Hi-Z	Output Clock
PACTL	9	1	I	PA Control
PDn	10	4	I	Power Down
Vcc	11	3	-	Module Input Power
GND	12	12	-	Module Ground

Table 4 - Pin Assignments

PIN FUNCTIONS:

MOSI: SPI Input from MCU

Receives commands/data from the device microcontroller.

MISO: SPI Output to MCU

Transmits requests/data to the device microcontroller.

SSn: SPI Slave Select Enable Input

SPI enable

IRQ: Interrupt Request

The Interrupt Request Pin Select bits are used to determine the drive

method of the IRQ pin

GND: Module Ground

Ground to equal 0Vdc

RSTn: Module Reset

Active LOW reset switch

SCK: SPI Input Clock
X13OUT: System Clock

On-board XTL clock output of 13MHz

PACTL: Power Amplifier Control

Enables/disables external power amplification circuitry, where available

Solutions for a Real Time World Data Shee

PDn: Power Down

Driving signal LOW will put the module in SUSPEND MODE (X13OUT =

0 when PDn is LOW)

Vcc: Module Input Power

Vcc range 2.7 to 3.6Vdc

Solutions for a Real Time World

Data Sheet

AGENCY CERTIFICATIONS (PRE-SCAN):

Agency	Test Performed	Туре	Limit	Result	Margin
EU	Radiated Spurious	30-12.75MHz Transmit Mode	EN 300 328	PASS	-4.6dB @ 4804MHz
EU	Emissions	30-12.75MHz Transmit Mode	EN 300 328	PASS	-4.9 @ 177.01MHz
FCC 15.247		30 25,000 Spurious Emissions	FCC Part	PASS	Results on File
			15.209/15.247 (c)		
		6dB Bandwidth	15.247(a)	PASS	960kHz
		99% Bandwidth	IC RSS-210	PASS	1.175MHz
	Radiated Emissions	Output Power	15.247(b)	PASS	7.2dBm
		Power Spectral Density (PSD)	15.247(d)	PASS	3.06dBm
		Bandedge	FCC Part 15.209	PASS	Results on File
			/15.247(c)		
		Out of band	15.247(c)	PASS	Results on File
	Radio Performance Test	Output Power, Power spectral density	EN 300 328-1	PASS	Results on File
		at normal conditions			
		Frequency Range at normal	EN 300 328-1	PASS	Results on File
		conditions			
		Output Power over extreme	EN 300 328-1	TBT	
		conditions			
		Frequency Range over extreme	EN 300 328-1	TBT	
EU		conditions			
		Conducted spurious emissions, 30MHz	EN 300 328-1	PASS	Results on File
		- 12750MHz, transmit mode			
		Conducted spurious emissions, 30MHz	EN 300 328-1	PASS	Results on File
		- 12750MHz, receive/stand-by mode	EN 200 220 14 2 4	D100	5 1: 5"
	Dedieted Comiene	30 - 12,750 MHz -Spurious Emissions	EN 300 328 V1.2.1	PASS	Results on File
	Radiated Spurious	Transmit Mode	EN 200 220 \ (4 2 4	DAGG	B 11 E1
	Emissions	30 - 12,750 MHz -Spurious Emissions	EN 300 328 V1.2.1	PASS	Results on File
		Receive Mode			

Table 5 - Regulatory Agency Certifications

Regulatory Compliance Statement:

The module has been pre-scanned against the relevant requirements of standards: EN 300 328, EN 301 489-17, FCC part 15 and Industry Canada RSS-210. The module is certified by the regulatory authorities in the USA and Canada and complies with the applicable essential requirements of the Radio & Telecommunication Terminal Equipment (R&TTE) directive in the EU. The module can thus be incorporated into products sold worldwide with little or no additional testing of the module itself. The end product must meet the appropriate technical requirements that apply to that product type but re-certification of the radio module is not required in the USA and Canada.

In the EU, the integrator is responsible for evaluating their product type per the essential performance requirements of the R&TTE directive (except those associated with the module), declaring compliance and then notifying the member states prior to marketing the product (because the module uses a frequency band that is not harmonized in the EU). It is the responsibility of the module integrator to obtain the necessary approvals to sell products incorporating this module in other countries outside of North America and the EU. The report of measurements performed on the module in compliance with the FCC rules and EN standards can be used in these submittals (as the requirements in many other markets around the world are based in part or in whole on the standards prevalent in North America and the EU).

Solutions for a Real Time World

Data Sheet

MECHANICAL CHARACTERISTICS:

Item	Description	Specification
1	PCB Material	FR-4
2	PCB Layers	2
3	Connector Type	Straight thru-hole or header, right angle thru-hole or header, bare ("L" model only) Please see Table 4 for pin assignments
4	PCB Number	1
5	Flammability Rating	UL94 V-0
6	UGWB#US Dimensions	1.00" x 0.95" x 0.222" (25.40mm x 24.13mm x 5.64mm)
7	UGWL#US Dimensions	1.10" x 0.90" x 0.222" (27.94mm x 22.86mm x 5.64mm)
8	Antenna Cable Connector	GSC Ultra-Miniature Coaxial
9	User Serviceable Parts	None

Table 6 – Mechanical Description

MECHANICAL DRAWINGS:

Solutions for a Real Time World

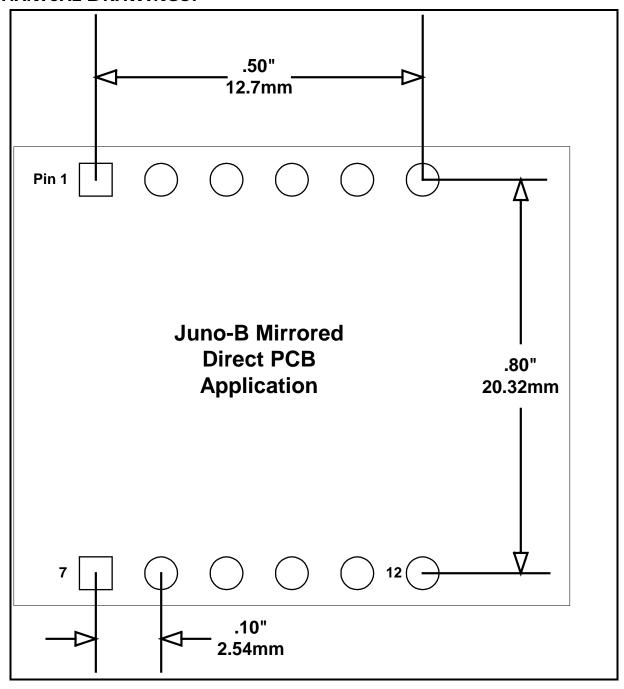


Figure 1 – Juno-B Mirrored Land Pattern

Data Sheet Solutions for a Real Time World .10" 2.54mm Pin 1 Juno-B .80" **Mated Connector** 20.32mm **PCB** Application 12 7 .50"

Figure 2 - Juno-B Land Pattern

Data Sheet

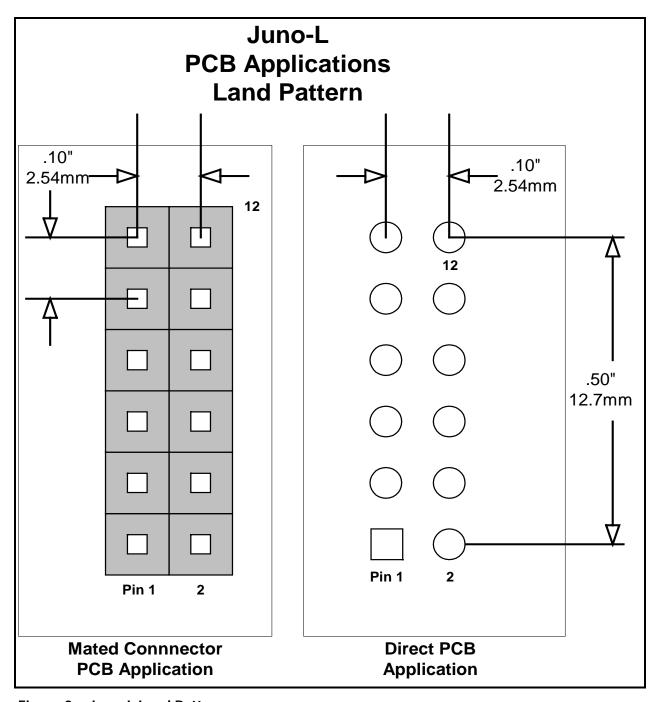


Figure 3 - Juno-L Land Pattern

Solutions for a Real Time World

Data Sheet

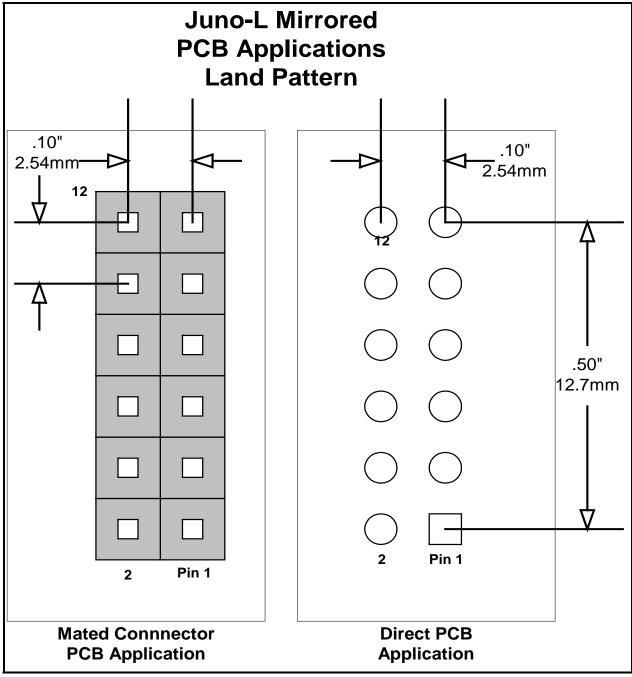


Figure 4 - Juno-L Mirrored Land Pattern

Solutions for a Real Time World

Data Sheet

PHYSICAL DIMENSIONS:

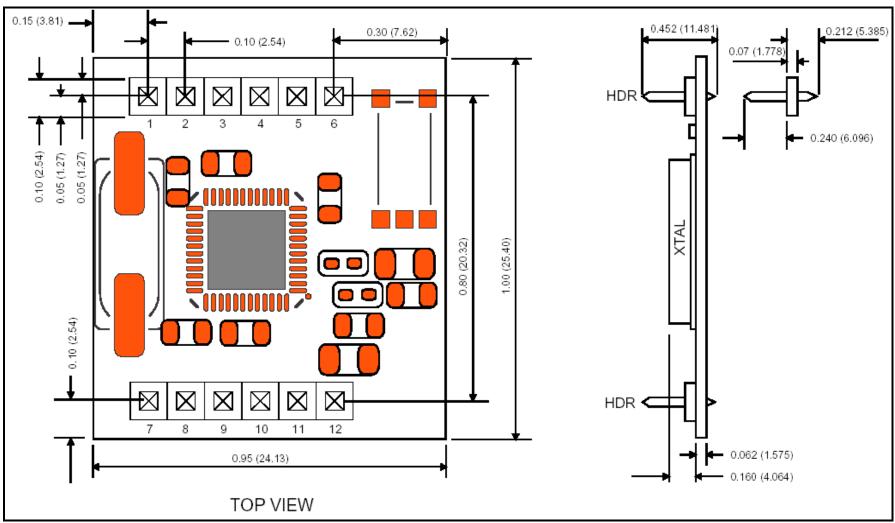


Figure 5 - Juno-B Dimensions

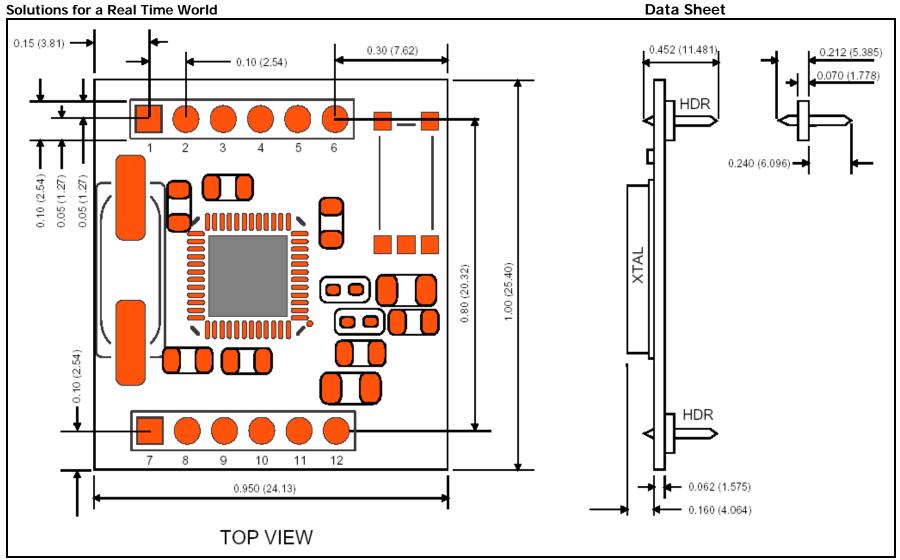


Figure 6 - Juno-B Mirrored Dimensions

18

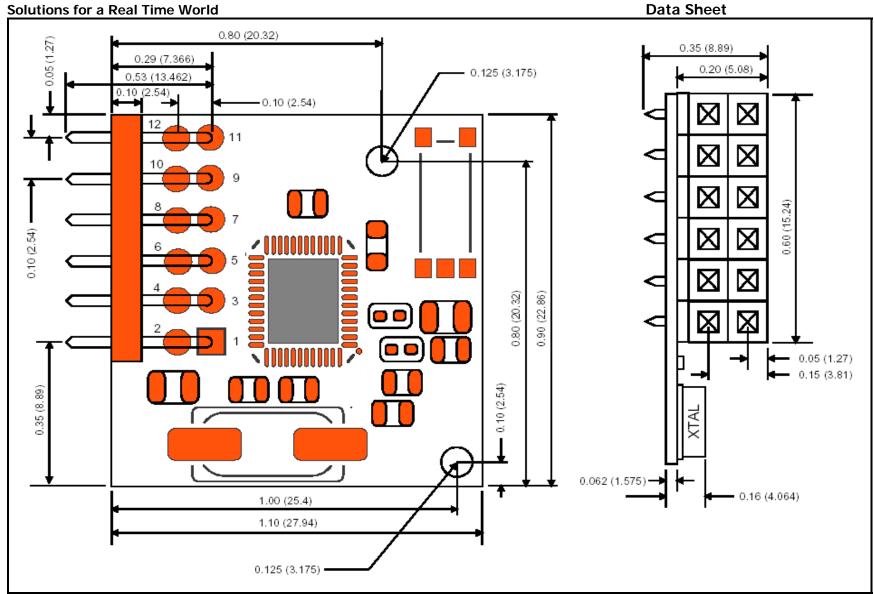


Figure 7 – Juno-L Dimensions

Solutions for a Real Time World Data Sheet

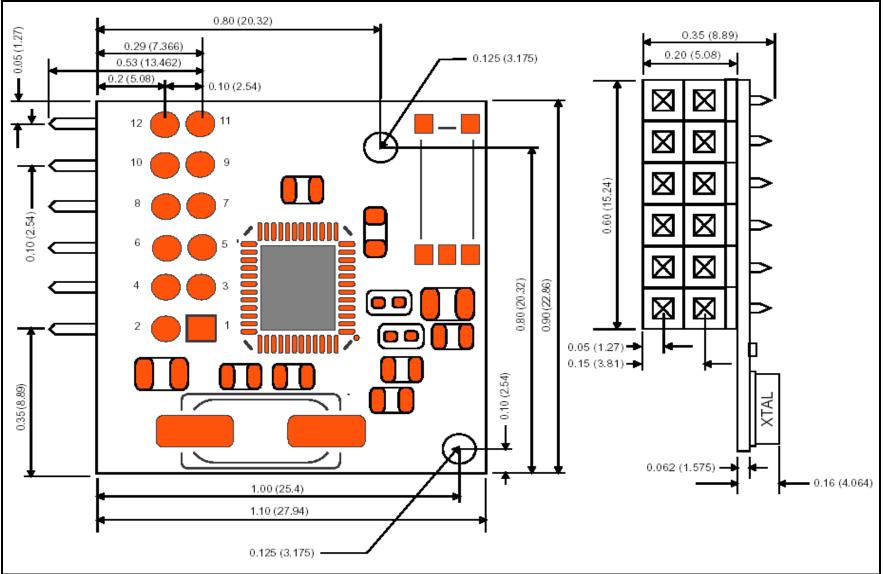


Figure 8 - Juno-L Mirrored Dimensions

Solutions for a Real Time World

Data Sheet

ORDERING INFORMATION:*

Typical Applications

Unigen Product Group – Wireless -	Form Factor	WirelessUSB Tech	Connection	Connector Type	Voltage	Antenna
	В	1115 (10)	HA HM	1x6 Header x 2 Mirrored 1x6 Header x 2		Blank-Mini Convint
UGW	L	1US (10m) 2US (50m)	HB HN BB	2x6 Header Mirrored 2x6 Header Bare – No Connector	33 =3.3Vdc	Blank=Mini Coaxial A=Integ. Chip

^{*}Module based on the Cypress Semiconductor CYWUSB6934-48 WirelessUSB™ LS 2.4GHz DSSS Radio SoC device.

Antennae

Unigen Product Group – Antennae –	Technology	Form Factor (Appearance)	Frequency / Gain	Coaxial Cable Type	Cable Length	Connector Type	Special Requirements
UGA	D= Dipole Antenna Module	L1= 3.5" desktop A0= 4" Swivel Whip	B1 = 2.4GHz, 2.0dBi	M1= 1.13mm HF	050= 50mm 100= 100mm	M= Mini Coax	None = Default F = EMI core and PVC
		C1= 7.75" Swivel Whip	B2 = 2.4GHz, 5.0dBi		150= 150mm 200= 200mm 250= 250mm 300= 300mm		

Contact your Unigen Sales Representative for additional information or visit the Nexus[™] Wireless Products section of our web site (www.unigen.com).

21

Solutions for a Real Time World

Data Sheet

CONTACT INFORMATION:

CORPORATE HEADQUARTERS

Unigen Corporation 45388 Warm Springs Boulevard Fremont, CA 94539

Telephone: 1.510.688.2088

Fax: 1.510.661.2788

Email: Support@unigen.com

Web: www.unigen.com

Customer Comment: 1.800.826.0808

22