阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

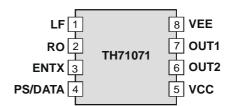
- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

Features

- ☐ Fully integrated, PLL-stabilized VCO
- ☐ Flexible frequency range from 310 MHz to 450 MHz
- □ ASK achieved by on/off keying of internal power amplifier
- ☐ FM possible with external varactor
- ☐ Wide power supply range from 2.2 V to 5.5 V
- ☐ High over-all frequency accuracy
- □ Very low standby current

- □ Adjustable output power range from -12 dBm to +2 dBm
- □ Adjustable current consumption from 4.8 mA to 11.5 mA
- ☐ Differential output well-suited for loop antenna
- ☐ Conforms to EN 300 220 and similar standard

Ordering Information


Part No. Temperature Range Package

TH71071 -40 C° to 85 °C SOIC8

Application Examples

- Keyless car and central locking
- Low-power telemetry
- □ Alarm and security systems
- ☐ General digital data transmission
- ☐ General analog audio signal transmission
- Local oscillator signal generation

Pin Description

General Description

The TH71071 ASK transmitter IC is designed for applications in the European 433MHz industrial-scientific-medical (ISM) band, according to the EN 300 220 telecommunications standard. It can also be used for any other system with carrier frequencies ranging from 310 MHz to 450 MHz (e.g. for applications in the US 315MHz ISM band).

The transmitter's carrier frequency f_c is determined by the frequency of the reference crystal f_{ref} that is used. The integrated PLL synthesizer ensures that each RF value, ranging from 310 MHz to 450 MHz, can be achieved by using a crystal with reference frequency according to: $f_{ref} = f_c/N$, where N = 32 is the PLL feedback divider ratio.

Theory of Operation

General

As depicted in Fig.1, the TH71071 transmitter consists of a fully integrated voltage-controlled oscillator (VCO), a divide-by-32 divider (div32), a phase-frequency detector (PFD) and a charge pump. An external loop filter at pin LF determines the dynamic behaviour of the PLL and suppresses reference spurious signals.

The VCO's output signal feeds the power amplifier (PA). RF signal power P_o can be adjusted in six steps from $P_o = -12$ dBm to +2 dBm either by changing the value of resistor R_1 or by varying the voltage V_{PS} at pin PS/DATA. The open-collector differential output (OUT1, OUT2) can be used to either directly drive a loop antenna or to be converted to a single-ended impedance by means of a balanced-to-unbalanced (balun) transformer. For maximum available output power, the differential output should be matched to a load of approx. 1 k Ω .

Bandgap biasing ensures stable operation of the IC at a power supply range of 2.2 V to 5.5 V.

ASK Modulation

The TH71071 can be ASK-modulated by applying data directly at pin PS. This turns the PA on and off and therefore leads to an ASK signal at the output.

LO Source

Many applications require a stable RF source. For this purpose, the TH71071 can be used without modulation as an easy-to-use, PLL-stabilized, continuous wave (CW) generator.

Frequency Modulation (FM)

For FM operation an external varactor is required. It simply acts as a pulling capacitor connected in series to the crystal. Then the analog modulation signal, applied through a series resistor, directly modulates the XOSC.

Mode Control Logic

The mode control logic allows two different modes of operation as listed in the following table. The mode control pin ENTX is pulled-down internally. This guarantees that the whole circuit is shut down if this pin is left floating.

ENTX	NTX Mode Description			
0	TX disabled	whole circuit in standby		
1	TX enable	TX active		

Table 1: Modes of operation

3901071071 Page 2 of 10 Data Sheet Rev. 004 Dec. 2001

Block Diagram

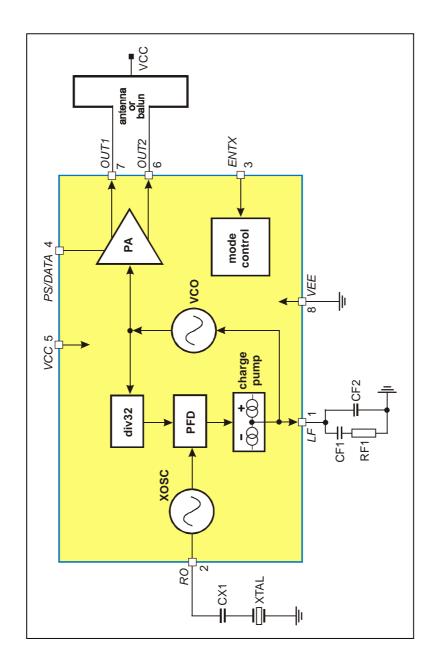


Fig. 1: TH71071 block diagram with external components

Pin Definition and Description

Pin No.	Name	I/O Type	Functional Schematic	Description
1	LF	analog I/O	VEE 200Ω VEE 5p	connection to loop filter, charge pump output, VCO tuning input
2	RO	analog I/O	2 28p 28p VEE	XOSC connection to XTAL, Colpitts type crystal oscillator
3	ENTX	input	ENTX 1.1k VCC VCC VCC VCC VCC VCC VCC VCC VCC VC	mode control input, CMOS- compatible with internal pull-down
4	PS/DATA	analog I/O	PS/DATA 200Ω 20μA	power-select and ASK input, high-impedance comparator logic
5	VCC	supply		positive power supply
6	OUT2	output	OUT2 OUT1	differential power amplifier output, open collector
7	OUT1	output	6 VEE VEE	differential power amplifier output, open collector
8	VEE	ground		negative power supply

Technical Data

Absolute Maximum Ratings

Parameter	Symbol	Condition	Min	Max	Unit
Supply voltage	V_{cc}		-0.3	7.0	V
Input voltage	V _{in}	ENTX pin	-0.3	VCC+0.3	V
Input current	l _{in}	ENTX pin	-1.0	1.0	mA
Storage temperature	T _{STG}		-40	150	°C
Electrostatic discharge	V _{ESD}	human body model, MIL STD 833D method 3015.7	-1.0	+1.0	kV

Normal Operating Conditions

Parameter	Symbol	Condition	Min	Max	Unit
Supply voltage	V _{cc}		2.2	5.5	V
Operating temperature	Ta		-40	85	°C
XOSC frequency	f _{ref}	set by the crystal	9.69	14	MHz
VCO frequency	f _c	$f_c = 32 \bullet f_{ref}$	310	450	MHz

DC Characteristics

all parameters under normal operating conditions, unless otherwise stated; typical values at $T_a = 23$ °C and $V_{cc} = 3$ V

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Standby current	I _{SBY}	ENTX=0		0.05	0.1	μΑ
Operating current	I _{cc}	ENTX=1, V _{PS} =1.1V	7	9	10	mA
Input HIGH voltage	V_{HIGH}	ENTX pin	0.7*V _{cc}		V _{cc} +0.3	V
Input LOW voltage	V_{LOW}	ENTX pin	-0.3		0.3*V _{cc}	V
Input current	l _{in}	ENTX=0	-1		1	μΑ
Pull down current	I_{pd}	ENTX=1	2	8	15	μΑ

Data Sheet 3901071071 Page 5 of 10 Dec. 2001 Rev. 004

AC Characteristics

all parameters under normal operating conditions, unless otherwise stated; typical values at T_a = 23 °C and V_{cc} = 3 V;

ENTX = 1, V_{PS} = 1.1V, f_c = 433.6 MHz, test circuit shown in Fig. 2

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output power	P _o			-1		dBm
FM deviation	Δf_{FM}	adjustable with varactor and V _{FM}		±6		kHz
Modulation frequency FM	f _{mod}			5		kHz
Data rate ASK	R _{ASK}	NRZ		40		kbit/s
Reference spurs	P_{ref}	$@ f_c \pm f_{ref}$		-44		dBm
Harmonic content	P _{harm}	@ 2f _c , 3f _c , 4f _c		-40		dBm
Spurious output signal	P_{off}	V _{PS} ≤ 0.1V		-60		dBm
Phase noise	PN	@ f _c ±500kHz		-87		dBc/Hz
VCO gain	K _{VCO}			200		MHz/V
Charge pump current	I _{CP}			±260		μA
Start-up time	t _{on}	from "all OFF" to any other mode			0.9	ms

Output Power Selection

typical values at $T_a = 23$ °C and $V_{cc} = 3$ V:

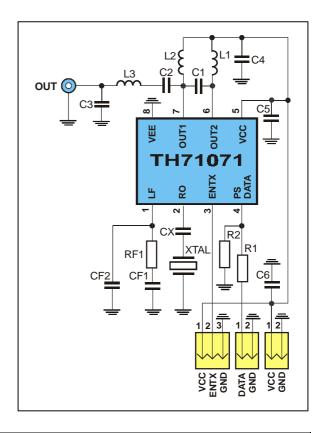
ENTX = 1, $f_c = 433.6$ MHz, test circuit shown in Fig. 2

R1 / kΩ	0	7.5	11	15	24	43
R2 / kΩ	∞	4.7	4.7	4.7	4.7	4.7
V _{PS} / V	≥2	1.1	0.9	0.7	0.5	0.3
I _{cc} / mA	11.5	8.6	7.3	6.2	5.3	4.8
P _o / dBm	2	-1	-4	-7	-10	-12
P _{harm} / dBm	≤-40	≤-40	≤-40	≤-45	≤-45	≤-50

If the transmitter is operated at any supply voltage V_{cc} , the values for R_1 and R_2 can be calculated as allows:

$$R_1 = R_2 \bullet \left(\frac{V_{cc}}{V_{PS}} - 1 \right)$$

Crystal Parameter

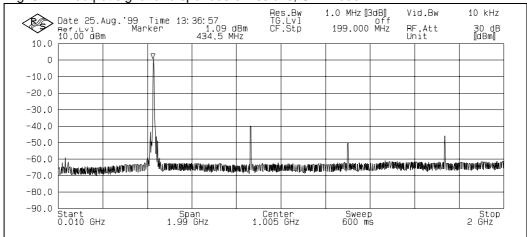

Parameter	Symbol	Condition	Min	Max	Unit
Crystal frequency	f _{crystal}	fundamental mode, AT	9.69	14	MHz
Load capacitance	C _{load}		10	15	pF
Static capacitance	C ₀			7	pF
Resonance resistance	R _m			60	Ω
Spurious response	a _{spur}			-10	dB

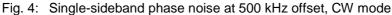
3901071071 Page 6 of 10 Data Sheet Rev. 004 Dec. 2001

Test Circuit

Fig. 2: Test circuit for ASK with 50Ω matching network

Test circuit component list to Fig. 2


Part	Size	Value	Tolerance	Description
CF1	0603	10 nF	±10%	loop filter capacitor
CF2	0603	56 pF	±10%	loop filter capacitor
CX	0603	68 pF	±10%	XOSC capacitor
C1	0603	2.7 pF	±5%	impedance matching capacitor
C2	0805	100 pF	±5%	impedance matching capacitor
C3	0805	3.9 pF	±5%	impedance matching capacitor
C4	0603	330 pF	±10%	blocking capacitor
C5	0603	330 pF	±10%	blocking capacitor
C6	0805	33 nF	±10%	blocking capacitor
L1	0603	22 nH	±5%	impedance matching inductor
L2	0603	27 nH	±5%	impedance matching inductor
L3	0603	33 nH	±5%	impedance matching inductor
RF1	0603	1.5 kΩ	±10%	loop filter resistor
R1	0603	See output power selection table	±10%	ASK power-select resistor, not requirement at CW mode
R2	0603	See output power selection table	±10%	ASK or CW mode power-select resistor
XTAL	HC49/S	13.55 MHz fundamental wave	±30ppm calibration	crystal, C_{load} = 12 pF to 15 pF, $C_{0, max}$ = 7 pF, $R_{m, max}$ = 60 Ω
		Turidamental wave	±30ppm temp.	- m, max



Spectrum Plots

All plots depict TH71071's typical performance at V_{cc} = 3.0 V and T_a = 23 °C, derived with the test circuit shown in Fig. 2.

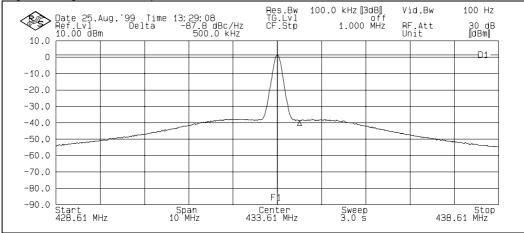
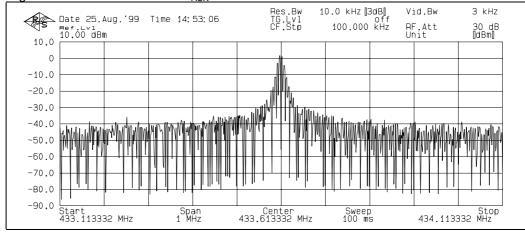



Fig. 5: ASK modulation with R_{ASK} = 4 kbit/s NRZ

Package Information

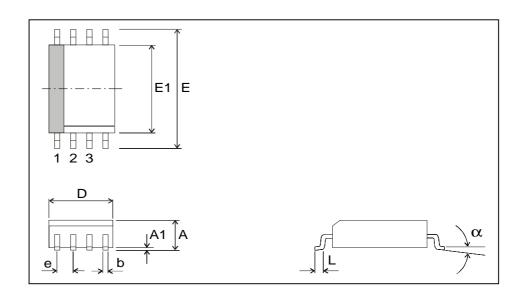


Fig. 6: SOIC8 (Small Outline Package)

all Dimension in mm, coplanarity < 0.1mm										
	D	E1	E	Α	A1	е	b	L	α	
min	4.80	3.81	5.80	1.32	0.10	1.27	0.36	0.41	0°	
max	4.98	3.99	6.20	1.72	0.25		0.46	1.27	8°	
all Dime	all Dimension in inch, coplanarity < 0.004"									
min	0.189	0.150	0.2284	0.060	0.0040	0.05	0.014	0.016	0°	
max	0.196	0.157	0.2440	0.068	0.0098		0.018	0.050	8°	

3901071071 Page 9 of 10 Data Sheet Rev. 004 Dec. 2001

Your Notes

Important Notice

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or lifesustaining equipment are specifically not recommended without additional processing by Melexis for each application.

The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services.

© 2000 Melexis NV. All rights reserved.

For the latest version of this document. Go to our website at www.melexis.com

Or for additional information contact Melexis Direct:

Europe and Japan:
Phone: +32 1361 1631
E-mail: sales_europe@melexis.com

All other locations:
Phone: +1 603 223 2362
E-mail: sales_usa@melexis.com

QS9000, VDA6.1 and ISO14001 Certified