## 阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

## Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

## AEDS-9240 Series

## Data Sheet



## Description

The AEDS-9240 optical encoder is a six channel optical incremental encoder module. When used with a codewheel, this encoder detects rotary position. Each module consists of a lensed LED source and a detector IC enclosed in a small plastic package. Due to a highly collimated light source and a unique photo detector array, these modules are extremely tolerant to mounting misalignment.

The AEDS-9240 encoder is designed with integrated commutation output channels ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ), two-channel quadrature outputs ( $\mathrm{A}, \mathrm{B}$ ), plus a third channel ungated index output (I). This ungated index output is a positive index pulse that is generated once for each full rotation of the codewheel.

The AEDS-9240 encoder is designed for use with a codewheel that has an optical radius of 19.00 mm ( 0.748 inch) to obtain an optimum 360/720 CPR (count per revolution) resolution.

The quadrature, index, commutation signals and power supplied to encoder are accessed through eight 0.46 mm square male connector pins located on 1.27 mm pitch.

The AEDS-9240 optical encoder also provides advanced motion control detection. Its integrated commutation outputs ( $\mathrm{U}, \mathrm{V}$, and W ) is equivalent to those produced by Hall Switches. Thus, this makes the encoder ideal for servo motor applications. Application of the AEDS-9240 encoder also enables motor systems to be more compact. In addition, the provision of alignment jigs enables a significantly reduced production time and ease of assembly into housed encoders. The encoder also provides superior switching accuracy due to a much lower hysteresis when compared to Hall Switches. Its commutation signals can easily be interchanged for Brushless DC motor of different rotor pole-pairs by simply switching to matching polepair codewheels.

## Features

- Two-channel quadrature output with ungated index pulse (A,B,I)
- Three-channel integrated commutation Output (UVW)
- 360/720 Cycle Per Revolution (CPR)
- Easy assembly with alignment jig
- Design to fit into circular shaped housing
- Up to 150 kHz frequency response
- $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ operating temperature
- TTL Compatible
- Single 5V Supply
- Integrated feedback device for Brushless DC Motor
- RoHS Compliant


## Applications

Typical applications include industrial printers, plotters, tape drives, industrial and factory automation equipment.

## Note:

Avago Technologies encoders are not recommended for use in safety critical application, e.g., ABS braking systems, power steering, life support systems and critical care medical equipment. Please contact sales representative if more clarification is needed.

## Theory of Operation

The AEDS-9240 optical encoder is an emitter/detector module. Coupled with a codewheel, these modules translate the rotary motion of a shaft into a six-channel digital output.

The modules contain a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single polycarbonate lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photo detectors and the signal processing circuitry necessary to produce the digital waveforms.
The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel.

The photodiodes that detect these interruptions are arranged in a pattern that corresponds to the radius and design of the code-wheel. These detectors are also deliberately spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors.

The photodiode outputs are then fed through the signal processing circuitry resulting in $\mathrm{A}, / \mathrm{A}, \mathrm{B}, / \mathrm{B}, \mathrm{I}$, and $/ \mathrm{I}$. Comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel $A$ is in quadrature with that of channel B ( 90 mechanical degrees out of phase). The commutation feedback ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) signals are generated based on the codewheel design.

## Definition

Count ( N ): The number of electrical cycles per revolution (CPR). CPR refers to the raw signal from encoder that is the cycles before $4 x$ decode.

One Cycle: 360 electrical degrees ( ${ }^{\circ}$ e).
One Shaft Rotation: 360 mechanical degrees.
Cycle Error ( $\Delta C$ ): An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of $1 / \mathrm{N}$ of a revolution.

Pulse Width (P): The number of electrical degrees that an output is high during 1 cycle. This value is nominally $180^{\circ} e$ or $1 / 2$ cycle.

Pulse Width Error ( $\Delta \mathrm{P}$ ): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} e$.

State Width ( S ): The numbers of electrical degrees between transitions in the output of channel $A$ and the neighboring transition in the output of channel $B$. There are 4 states per cycle, each nominally $90^{\circ} \mathrm{e}$.

State Width Error ( $\Delta S$ ): The deviation, in electrical degrees, of each state width from its ideal value of $90^{\circ} e$.

Commutation Accuracy (Al): The deviation, in mechanical degrees, after shaft rotates passes the reference point (Index channel) to the first U channel pulse. The measurement from middle of channell to channel U .

Phase ( $\Phi$ ): The numbers of electrical degrees between the center of the high state of channel $A$ and the center of the high state of channel B.

This value is nominally $90^{\circ} \mathrm{e}$ for quadrature output.
Phase Error ( $\Delta \Phi$ ): The deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Rotation: When the codewheel rotates in the clockwise direction viewing from top of the module, channel $A$ will lead channel $B$. If the codewheel rotates in the opposite direction, channel $B$ will lead channel $A$.

Optical Radius (Rop): The distance from the codewheel's center of rotation to the optical center (O.C) of the encoder module.

Index Pulse Width (Po): The number of electrical degrees that an index is high with reference to channel $A$ or channel $B$ during one full shaft rotation

## AEDS-9240 Technical Specifications

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Storage Temperature | $\mathrm{T}_{\mathrm{S}}$ | -40 | 100 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 | 100 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage | $\mathrm{V}_{\mathrm{CC}}$ | -0.5 | 7 | Volts |  |

## Recommended Operating Conditions

| Parameter | Min. | Typ. | Max. | Units | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Temperature | -40 | 25 | 100 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage (Detector) | 4.5 | 5.0 | 5.5 | Volts | Ripple $<100 \mathrm{mVpp}$ |
| Operating Frequency |  |  |  |  |  |
| 360 CPR |  | 75 | kHz | Velocity (rpm) x N/60 |  |
| 720 CPR |  | 150 | kHz |  |  |
| Shaft Radial Play Plus Eccentricity |  | 0.05 | mm TIR |  |  |
| Shaft Axial Play |  | $\pm 0.100$ | mm |  |  |

## Electrical Characteristics

Electrical characteristics over recommend operating range, typical at $25^{\circ} \mathrm{C}$

| Parameter | Symbol | Min. | Typ. | Max. | Units | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Supply Current | $\mathrm{I}_{\mathrm{CC}}$ | 30 | 45 | 60 | mA |  |
| High Level Output Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V |  |
| Low Level Output Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.4 | V |  |
| Rise Time | $\mathrm{t}_{\mathrm{r}}$ |  | 470 |  | ns | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |
| Fall Time | $\mathrm{t}_{\mathrm{f}}$ |  | 30 |  | ns |  |
| Loading Capacitance | $\mathrm{C}_{\text {LOAD }}$ |  |  | 50 | pF |  |

## Encoding Characteristics (Channel A and B)

## AEDS-9240-G00 (360 CPR)

Encoding characteristics over the recommended operating conditions and mounting tolerances. These characteristics include codewheel contribution. The typical values are average over the full rotation of the codewheel.

| Parameter | Symbol | Minimum | Typical | Maximum | Units |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Pulse Width Error | $\Delta \mathrm{P}$ |  | 7 | 35 | ${ }^{\circ} \mathrm{e}$ |
| Logic State Width Error | $\Delta \mathrm{S}$ | 5 | 35 | ${ }^{\circ} \mathrm{e}$ |  |
| Phase Error | $\Delta \Phi$ | 2 | 15 | ${ }^{\circ} \mathrm{e}$ |  |
| Cycle Error | $\Delta C$ |  | 3 | 15 | ${ }^{\circ} \mathrm{e}$ |
| Position Error | $\Delta \theta$ | 5 | 20 | min. of arc |  |
| Index Pulse Width | $\mathrm{P}_{0}$ | 120 | 180 | 240 | ${ }^{\circ} \mathrm{e}$ |

## AEDS-9240-Y00 (720 CPR)

Encoding characteristics over the recommended operating conditions and mounting tolerances. These characteristics include codewheel contribution. The typical values are average over the full rotation of the codewheel.

| Parameter | Symbol | Minimum | Typical | Maximum | Units |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Pulse Width Error | $\Delta \mathrm{P}$ |  | 7 | 50 | ${ }^{\circ} \mathrm{e}$ |
| Logic State Width Error | $\Delta \mathrm{S}$ | 5 | 50 | ${ }^{\circ} \mathrm{e}$ |  |
| Phase Error | $\Delta \Phi$ | 2 | 35 | ${ }^{\circ} \mathrm{e}$ |  |
| Cycle Error | $\Delta \mathrm{C}$ |  | 15 | 45 | ${ }^{\circ} \mathrm{e}$ |
| Position Error | $\Delta \theta$ |  | 10 | 20 | min. of arc |
| Index Pulse Width | $\mathrm{P}_{0}$ | 240 | 360 | 480 | ${ }^{\circ} \mathrm{e}$ |

## Commutation Characteristics (Channel U, V, W)

Encoding characteristics over the recommended operating conditions and mounting tolerances. These characteristics include codewheel contribution. The typical values are average over the full rotation of the codewheel.

| Parameter | Symbol | Minimum | Maximum | Units |
| :--- | :--- | :--- | :--- | :--- |
| Commutation Format |  |  | Three Phase 4, 6,8,10 poles |  |
| Commutation Accuracy <br> (middle of channel I to channel U) | $\Delta I$ | -1 | +1 | ${ }^{\circ}$ mechanical |
| Commutation Accuracy <br> (Channel U,V and W) | $\Delta U V W$ | -2 | +2 | ${ }^{\circ}$ mechanical |

Device Pinout


Pin \#1 start from left side.

| Pin | Function |
| :--- | :--- |
| 1 | U |
| 2 | I |
| 3 | V |
| 4 | W |
| 5 | Ground |
| 6 | Vcc |
| 7 | A |
| 8 | B |

## Mating Connector

Due to female connector availability, a $8 \times 2$ ( 1.27 mm x 1.27 mm ) female IDC Connector is recommended. The cable used is 0.635 mm pitch flat ribbon cable.

Package Dimensions



FRONT VIEW


BOTTOM VIEW
Notes:

1. Dimensions in mm unless otherwise stated
2. Linear tolerance: Up to 6 mm is $\pm 0.15 \mathrm{~mm}$, Above 6 mm is $\pm 0.5 \mathrm{~mm}$

Figure 1. Encoder module dimensions

Mounting Considerations


Recommended screw size : M2.5 x 0.45
Recommended mounting screw torque : 0.88 Lbin ( $1.0 \mathrm{~kg}-\mathrm{cm}$ )
Refer to AEDS-9240 application note for step by step alignment and installation procedure

Figure 2. Encoder module with codewheel dimensions


1. All dimensions are given in mm
2. Codewheel gap is aligned at 0.200 mm from detector side.

Figure 3. Encoder module with codewheel dimensions

## Output Waveform Specification



QUADRATURE SIGNALS A AND B


INDEX AND COMMUTATION SIGNALS
Figure 4. Output waveform specification of 2 pole-pairs (4 poles) for counter clockwise rotation, viewed from the top
Note: In the above waveform, quadrature signals A, B are not drawn to scale with respect to index pulse and commutation signals.

## Ordering Information

Encoder Only


Alignment Tool
HEDS-8953 - Alignment tool for 360/720 CPR

