## 阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

## Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

## AEDS-965X

Small Optical Encoder Modules 150 and 180 LPI Digital Output

## Data Sheet



## Description

The AEDS-965X is a very small, low package height and high performance incremental encoder module. It can operate at supply voltage, Vcc, $3.3 / 5 \mathrm{~V}$ and the output voltage, Voh, will follow the Vcc voltage level.

When operated in conjunction with a codestrip, this module detects linear position. The encoder consists of lensed LED source and a detector IC enclosed in a small C-shaped plastic package. Due to the brighter LED, coupled with a photodetector array, which is less sensitive to light, the encoder is highly tolerant to aerosol environment. This module is extremely receptive to mounting misalignment.

The two channel digital outputs and Vcc, supply voltage input, are accessed through four solder plated leads located on 2.00 mm ( 0.1 inch ) centers. The supply input of LED, rated at 16 mA is accessed through two leads located at 2.54 mm .

It is designed for use with a linear codestrip. Other options are available. Please contact the factory for more information.

## Features

- Small Size
- Built-in guide bumps for codewheel and codestrip
- Low Package Height
- Insensitive to Radial, Tangential and Axial Play
- $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ recommended operating temperature
- Wide Resolution Range
- Two Channel Quadrature Output
- TTL 3.3V or 5.0V CMOS compatible
- For Linear and Rotary Application
- Wave solderable
- RoHS Compliant
- Aerosol Tolerant


## Applications

- Printers
- Copiers/Fax
- Plotters
- Office Automation Equipments


## Theory of Operation

The AEDS-965X is a C-shaped emitter/detector module. Coupled with a codewheel, it translates rotary motion into a two-channel digital output; coupled with a codestrip, it translates linear motion into a two-channel digital output.
As seen in the Figure 1, the module contains a single Light Emitting Diode (LED) as its light source. The light is collimated into parallel beam by means of a single lens located directly over the LED. Opposite the emitter are the integrated detector circuits.

This IC consists of multiple sets of photodetectors and a signal processing circuitry necessary to produce the digital waveforms.
The codewheel/codestrip moves between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codehweel/ codestrip. The photodiodes that detect these interruptions are arranged in a pattern that corresponds to the radius and count density of the codewheel/Ocodestrip.

These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pairs of detectors. The photodiode outputs are fed through the signal processing circuitry.

Two comparators receive these signals and produce the final outputs for Channels $A$ and $B$. Due to this integrated phasing technique the output of channel $A$ is in quadrature with Channel B (90 degrees out of phase).

## Aerosol Tolerant

The AEDS-965x series uses the Transmissive Optical Technology with specially designed photodetector IC to reduce and compensate the errors due to ink mists contaminations. Coupled with a brighter LED, for better penetration through ink mists deposits, this enables the encoder to continue operating normally in ink mists environment.

## Definitions

Note: Refer to Figure 1 for the output waveform
Count (N): The number of bar and window pairs or counts per revolution (CPR) of the codewheel. Or the number of lines per inch of the codestrip (LPI)

$$
\begin{aligned}
1 \text { shaft Rotation } & =360 \text { degrees } \\
& =\mathrm{N} \text { cycles }
\end{aligned}
$$

1 cycle (c) = 360 electrical degree, equivalent to 1 bar and window pair.

Pulse Width (P): The number of electrical degree that an output is high during one cycle. This value is nominally $180^{\circ}$ e or $1 / 2$ cycle.

Pulse Width Error ( $\Delta \mathbf{P}$ ): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ}$ e.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel $B$. There are 4 states per cycle, each nominally $90^{\circ}$ e.
State Width Error ( $\boldsymbol{\Delta} \mathbf{S}$ ): The deviation, in electrical degrees of each state width from its ideal value of $90^{\circ}$
Phase ( $\phi$ ): The number of electrical degrees between the center of the high state of channel $A$ and the center of the high state of channel $B$.

Phase Error ( $\Delta \phi$ ): the deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Rotation: When the codewheel rotates in the counter clockwise direction (as viewed from the encoder end of the motor), channel A will lead channel $B$. If the codewheel rotates in the clockwise direction, channel $B$ will lead channel $A$.

Optical Radius ( $\mathbf{R}_{\mathbf{o p}}$ ): The distance from the codewheel's center of the rotation to the optical center (O.C) of the encoder modules.

Angular Misalignment Error ( $\mathrm{E}_{\mathrm{A}}$ ): Angular misalignment of the sensor in relation to the tangential direction. This applies for both rotary and linear motion.
Mounting Position ( $\mathbf{R}_{\mathbf{M}}$ ): Distance from Motor Shaft center of rotation to center of Alignment Tab receiving hole.

AEDS-965x Series Block Diagram


Figure 1.

## AEDS-965x Timing Diagram



Figure 1.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Storage Temperature | $\mathrm{T}_{\mathrm{S}}$ | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage (Detector) | $\mathrm{V}_{\mathrm{CC}}$ | -0.5 | 7 | Volts |  |
| Output Voltage | Vo | -0.5 | VcC | V |  |
| Output current per channel | lo | -1.5 | 10 | mA |  |
| Soldering Temperature | $\mathrm{T}_{\text {SOL }}$ |  | 260 | ${ }^{\circ} \mathrm{C}$ | $\mathrm{t} \leq 7 \mathrm{sec}$ |
| DC Forward | $\mathrm{I}_{\text {LED }}$ |  | 40 | mA | $\mathrm{~V}_{\mathrm{F}}<3.0 \mathrm{~V}$ |
| Reverse Voltage | $\mathrm{V}_{\mathrm{R}}$ | 5 | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{AA}$ |  |

Subjecting the part to stresses beyond those listed under this section may cause permanent damage to the device. These are stress ratings only and do not imply that the devices function beyond these ratings. Exposure to the extremes of these conditions for extended periods may affect device reliability.

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Typ. | Max. | Units | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Temperature | $\mathrm{T}_{\mathrm{A}}$ | 0 | 25 | 70 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage (Detector) | $\mathrm{V}_{\mathrm{CC}}$ | 3.0 | 3.3 or 5.0 | 5.2 | Volts | Ripple < 100mVpp |
| Load Capacitance | $\mathrm{C}_{\mathrm{L}}$ |  |  | 100 | pF |  |
| Pullup Resistor | $\mathrm{R}_{\text {pull }}$ |  | none |  | $\mathrm{k} \Omega$ | Recommended no <br> pullup. |
| Count Frequency | $\mathrm{C}_{\mathrm{f}}$ |  |  | 60 | kHz | Velocity (rpm) x N/60 |
| Angular Misalignment | $\mathrm{E}_{\mathrm{A}}$ | -3.0 | 0.0 | +3.0 | Deg. | Mounting consideration |
| Mounting Position | $\mathrm{R}_{\mathrm{M}}$ |  | ROP -2.4 <br> $($ Rop-0.095") |  | mm <br> (inch) | * Refer to mounting <br> consideration |
| DC Forward Current (LED) $\mathrm{I}_{\mathrm{LED}}$ 16 20 30 mARecommended 33 <br> @ Vcc = 3.3 V |  |  |  |  | $\pm 10 \%)$ series resistor <br> between 3.3V supply <br> and Vled. |  |

## Electrical Characteristics

Electrical Characteristics over Recommend Operating Range, typical at $25^{\circ} \mathrm{C}$

|  | Symbol | Min. | Typ.@ <br> 3.3V | Max. | Units | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Papply Current (Detector) | $\mathrm{I}_{\mathrm{CC}}$ | 1.5 | 3.0 | 5 | mA |  |
| High Level Output Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 | 3.3 | 5.2 | V | Typ. $\mathrm{I}_{\mathrm{OH}}=-1.2 \mathrm{~mA} @ 3.3 \mathrm{~V}$ |
| Low Level Output Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.4 | V | Typ. $\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} @ 3.3 \mathrm{~V}$ |
| Rise Time | $\mathrm{t}_{\mathrm{r}}$ |  | 50 |  | ns | $\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$ |
| Fall Time | tf |  | 50 |  | ns |  |
| LED Forward Voltage | VF | 1.3 (turn on) | 2.6 | 3.0 | V | Typical $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ |

[^0]
## Encoding Characteristics

Encoding Characteristics over the Recommended Operating Conditions and Mounting Conditions. These characteristics do not include codewheel/codestrip contribution.

1. The typical values are average over the full rotation of the codewheel at Nominal Mouting Position and Typical Operating Conditions.
2. For a codestrip, the Typical Values are obtained at zero angular displacement and Typical Operating Conditions.
3. Maximums are the worst case values predicted over the full range of Recommended Mounting Tolerances and Operating Conditions, with consideration to population shift.

| Parameter | Symbol | Typ. | Max. | Units |
| :--- | :--- | :--- | :--- | :--- |
| Pulse Width Error | $\Delta \mathrm{P}$ | 7 | 40 | e |
| Logic State Width Error | $\Delta \mathrm{S}$ | 5 | 40 | e |
| Phase Error | $\Delta \Phi$ | 2 | 20 | e |

## Mounting Configuration


$\mathrm{R}_{\mathrm{M}} \pm \mathrm{R}_{\mathrm{OP}}-2.40$ (0.094)

Note:
These dimension includes shaft end play and codewheel warp. All dimensions for mounting in the module and codewheel/codestrip should be measured with respect to the two mounting post shown above.

## Mounting Configuration - Table

| Error | Rop (Option P)=11.00mm <br> Rop (Option Q)=23.36mm | Unit | Notes |
| :--- | :--- | :--- | :--- |
| Eg | Gap | $\pm 0.15$ | mm |
| Recommend CW to put closer to the detector side <br> (upper side), in order to give enough margin for <br> encoder operation. |  |  |  |
| Er | Radial | $\pm 0.13$ | mm |
| Et | Tangential | $\pm 0.13$ | mm |
| Ea | Angular | $\pm 3$ | Deg. |

## Package Dimension

AEDS-9650-X10 (Straight Lead)



## Recommended Wave Solder Profile



| Parameter | Min. | Max. | Nominal values | Units |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | Solder Pot Temperature | NA | 260 | $250-260$ | ${ }^{\circ} \mathrm{C}$ |
| B | Preheat Zone Temperature | 85 | 120 | $100-120$ | ${ }^{\circ} \mathrm{C}$ |
| C | Dip in Time | 5 | 7 | 5 | sec |
| D | Solder Pot Zone (Encoder Lead) | 200 | 260 | NA | ${ }^{\circ} \mathrm{C}$ |

Note:

- Nominal values are evaluated profiles for optimum performance.
- Min/Max are critical limits to ensure encoders in good condition.


## Ordering Information




[^0]:    Note: Refer to Figure 2 for output waveform on tr and tf

