阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

AEDS-96EX Series

Small Optical Encoder Modules 200 LPI Analog Voltage Output

Data Sheet

Description

The AEDS-96EX is a very small high performance, low cost optical incremental encoder module. When operated in conjunction with a codewheel/codestrip, this module detects rotary/linear position .The encoder module consists of a lensed Light Emitting Diode (LED) source and a detector IC enclosed in small C-Shaped plastic package. Due to highly collimated light source and a unique photodetector array, the module is extremely tolerant to mounting misalignment.

The two channel analog outputs and 3.3 V supply input are accessed through four leads located on 2.00 mm centers for the detector and two leads located on 2.54 mm center for the emitter.

AEDS-96EX is designed for use with an appropriate optical radius codewheel. Please contact factory for more information.

Features

- RoHS Compliant
- Small Size
- Low Cost
- Built-in guide bumps for codewheel and codestrip
- Low Package Height
- Insensitive to Radial, Tangential and Axial Play
- $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ recommended operating temperature
- Two Channel Analog Output
- Single 3.3V Supply
- Wave solderable

Specifications

- 200 LPI
- 3.3V Supply*
- 1.52V LED forward voltage (IF $=16 \mathrm{~mA})^{*}$
* Typical Conditions

Applications

- Printers
- Copiers/Fax
- Plotters
- Office Automation Equipments

Theory of Operation

The AEDS-96EX is a C-shaped emitter/detector module. Coupled with a codewheel/codestrip, it translates rotary motion into a two-channel analog output.

The module contains a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the analog waveforms.

The codewheel/codestrip moves between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel/ codestrip.

The photodiodes, which detect these interruptions, are arranged in a pattern that corresponds to the radius and count density of the codewheel/codestrip.
These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pairs of detectors. The photodiode outputs are fed through the signal processing circuitry, which produce the final outputs for Channel A and Channel B. Due to this integrated phasing technique, the analog output of Channel A is in quadrature with Channel B (90 degrees out of phase).

AEDS-96EX Series Block Diagram

Definitions

Count (N): The number of bar and window pairs or counts per revolution (CPR) of the codewheel. Or the number of lines per inch of the codestrip (LPI)

1 shaft Rotation $=360$ degrees $=\mathrm{N}$ cycles
1 cycle (c) = 360 electrical degree, equivalent to 1
bar and window pair.
Direction of Rotation: When the codewheel rotates in the counter-clockwise direction (as viewed from the encoder end of the motor), channel A will lead channel B. If the codewheel rotates in the clockwise direction, channel B will lead channel A.

Line Density: The number of window and bar pair per unit length, express in either lines per inch (LPI) or lines per mm (LPmm)

Optical Radius (Rop): The distance from the codewheel's center of rotation to the optical center (O.C) of the encoder module.

Gap (G): The distance from surface of the encoder to the surface of codewheel or codestrip

Mounting Position (RM): Distance from Motor Shaft center of rotation to center of Alignment Tab receiving hole.

Radial and Tangential Misalignment Error (ER and Er): For rotary motion mechanical displacement in the radial and tangential directions relative to the nominal alignment

Angular Misalignment Error (EA): Angular misalignment of the sensor in relation to then tangential direction. This applies for both rotary and linear motion.of electrical degrees that an output is high during one cycle, nominally 180° e or $1 / 2$ a cycle.

Absolute Maximum Ratings

Subjecting the part to stresses beyond those listed under this section may cause permanent damage to the device. These are stress ratings only and do not imply that the device functions beyond these ratings. Exposure to the extremes of these conditions for extended periods may affect device reliability.

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-40	85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	
Supply voltage (Detector)	V_{CC}	-0.5	7	V	
Output Voltage	Va, Vb	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.4$	V	
Soldering Temperature		260	${ }^{\circ} \mathrm{C}$	$\mathrm{t} \leq 7$ sec	
DC Forward current (LED)	$\mathrm{I}_{\text {LED }}$		50	mA	$\mathrm{VF}<1.8 \mathrm{~V}$
Reverse Voltage	V_{R}		5	V	$\mathrm{IR}=100 \mathrm{uA}$

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Operating Temperature	T	0	25	60	${ }^{\circ} \mathrm{C}$	
Supply Voltage (Detector)	V_{CC}	3.15	3.3	3.45	V	Ripple $<100 \mathrm{mVpp}$
Output Frequency	f		8	50	KHz	(Velocity (rpm) x N) $/ 60$
DC Forward Current (LED)	$\mathrm{I}_{\text {LED }}$	10	16	20	mA	Recommended $110 \Omega(\pm 10 \%)$ series drop resistor between 3.3 V supply and VLED.

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range, typically at $25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typical	Max.	Units	Notes
Supply Current (Detector)	I_{Cc}		5	8	mA	
LED Forward Voltage	V_{F}	1.3 (turn on)	1.52	1.54	V	Typical $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$
		1.5 (operate)				

Encoding Characteristics

The encoding characteristics stated below are obtained using parallel loading of 100pF capacitor and 100KW resistor

Parameter	Symbol	Mean (a)	Min (b)	Max (b)	Units
State width error	$\Delta \mathrm{S}$	6.817		35	${ }^{\circ} \mathrm{e}$
Pulse width error	$\Delta \mathrm{P}$	5.421		35	${ }^{\circ} \mathrm{e}$
State X width error	$\Delta \mathrm{Sx}$	3.033		25	${ }^{\circ} \mathrm{e}$
Pulse X width error	$\Delta \mathrm{Px}$	3.370		25	${ }^{\circ} \mathrm{e}$
Upper crosspoint voltage	$\mathrm{Vx12}, \mathrm{Vx34}$	2.39	1.40	2.60	V
Lower crosspoint voltage	$\mathrm{V} 556, \mathrm{Vx78}$	1.02	0.80	2.30	V
Peak to Peak voltage	VppA	2.13	1.00	3.00	V
VppB					
Analog offset voltage	Voffset A, Voffset B	-14.52	-150	150	mV
${ }^{*}$ Average Linearity Error	Δ Linearity	3.93		9.25	$\%$

Notes:

* Average linearity is the characterized parameter, 2 lines per cycle for each channel for full rotation of the codewheel.
a. Obtained at typical conditions specified in "Recommended Operating Conditions" and nominal mounting position (Radial, Tangential, Gap) of ($0,0,0$)
b. Obtained over the whole "Recommended Operating Conditions" and "Part Mounting Tolerances"

Derating Characteristics

Derating Table of Vpp and Voffset at 3.15, 3.3 and 3.45 Volts (average of 30 units)

AC Parameter	@3.15 V	@3.3V	@3.45V
VppA (V)	2.100	2.170	2.246
VppB (V)	2.170	2.179	2.252
Voffset A (mV)	-40.89	-7.41	24.62
Voffset B (mV)	-44.33	-10.95	21.55

Note: Obtained at typical conditions specified in "Recommended Operating Conditions" and nominal mounting position (Radial, Tangential, Gap) of ($0,0,0$).

Waveform Definition

Test Parameter Definitions

Parameter	Symbol	Definition	Units
Analog peak Voltage	Vap, Vbp, Vam, Vbm	The absolute value in V of the magnitude of the analog signal (i.e. one sided rating) sitting 1.65 V voltage offset reference	V
Analog peak to peak Voltage	VppA VppB	The peak to peak signal magnitude in V of the analog signal	V
Analog peak to peak ratio	VppA/VppB	The ratio of A channel peak analog signal to B channel peak analog signal	-
Analog Crossing	$\begin{aligned} & \text { Vx12, Vx34, } \\ & \text { Vx56, Vx78 } \end{aligned}$	The intersection in v of the A channel analog waveform with either the B channel analog waveform or its compliment.	V
Analog Offset Voltage	Voffset A Voffset B	The offset in V from the mid-point of the analog peak to peak signal to 1.65 V voltage offset reference	mV
State Width	$\begin{aligned} & \text { S1, S2, S3, } \\ & \text { S4 } \end{aligned}$	The number of electrical degrees between a transition in channel A and the neighboring transition in channel B. There are 4 state per cycle, each nominally $900^{\circ} \mathrm{e}$. The transitions are determined by where the analog signal crosses the Zero point	${ }^{\circ} \mathrm{e}$
State Width Error	$\begin{aligned} & \Delta \mathrm{S} 1, \Delta \mathrm{~S} 2 \\ & \Delta \mathrm{~S} 3, \Delta \mathrm{~S} 4 \end{aligned}$	The deviation in electrical degrees of each state width from its ideal value of $900^{\circ} \mathrm{e}$.	${ }^{\circ} \mathrm{e}$
Pulse Width	PA,PB	The number of electrical degrees that an analog output is greater than zero during on ${ }^{\circ}$ e cycle. This value is nominally 1800° e or $1 / 2$ cycle.	${ }^{\circ} \mathrm{e}$
Pulse Width Error	P	The deviation in electrical degrees of each pulse width from its ideal value of $1800^{\circ} \mathrm{e}$.	${ }^{\circ} \mathrm{e}$
State X Width	$\mathrm{S}_{\mathrm{x} 1} \mathrm{~S}_{\mathrm{x} 2} \mathrm{~S}_{\mathrm{x} 3} \mathrm{~S}_{\mathrm{x} 4}$	The number of electrical degree between a transition in channel A and the neighboring transition in channel B. There are 4 state per cycle, each nominally $900^{\circ} \mathrm{e}$. The transitions are determined by where the A analog signal and B analog signal (or its complement) cross.	${ }^{\circ} \mathrm{e}$
State X Width Error	$\begin{aligned} & \Delta \mathrm{S}_{\mathrm{x} 1}, \Delta \mathrm{~S}_{\mathrm{x} 2} \\ & \Delta \mathrm{~S}_{\mathrm{x} 3}, \Delta \mathrm{~S}_{\mathrm{x} 4} \end{aligned}$	The deviation in electrical degrees of each state x width from its nominal value of $900^{\circ} \mathrm{e}$.	${ }^{\circ} \mathrm{e}$
Pulse X Width	$\mathrm{P}_{\mathrm{xA}} \mathrm{P}_{\mathrm{x}}{ }^{\text {a }}$	Pulse X width A is the number of electrical degrees that analog A output is greater than analog B bar output during one cycle. Pulse X width B is the number of electrical degrees that analog B is greater than analog A during one cycle. This value is nominally $1800^{\circ} \mathrm{e}$ or $1 / 2$ cycle.	${ }^{\circ} \mathrm{e}$
Pulse X Width Error	$\mathrm{P}_{\mathrm{xA},}, \mathrm{P}_{\mathrm{xB}}$	The deviation in electrical degrees of each pulse x width from its nominal value of $1800^{\circ} \mathrm{e}$.	${ }^{\circ} \mathrm{e}$
Max Linearity Error	Linearity	Ratio (in percentage) of maximum voltage deviation from a straight line connecting adjacent upper and lower crosspoint voltages to the difference between crosspoint voltages	\%

Mounting Configuration

$\mathrm{R}_{\mathrm{M}} \pm \mathrm{R}_{\mathrm{OP}}-2.40(0.094)$

Error		Rop=11.00mm	Unit	Notes
Eg	Gap	± 0.15	mm	Recommend CW to put closer to the detector side (upper side), in order to give enough margin for encoder operation.
Er	Radial	± 0.13	mm	
Et	Tangential	± 0.13	mm	
Ea	Angular	± 3	Deg.	

Note:
These dimension includes shaft end play and codewheel warp. All dimensions for mounting in the module and codewheel/codestrip should be measured with respect to the two mounting post shown above.

Package Dimension

AEDS-96E0-R10

AEDS-96E1-R10

Recommended Wave Solder Profile

	Parameter	Min.	Max.	Nominal values	Units
A	Solder Pot Temperature	NA	260	$250-260$	${ }^{\circ} \mathrm{C}$
B	Preheat Zone Temperature	85	120	$100-120$	${ }^{\circ} \mathrm{C}$
C	Dip in Time	5	7	5	sec
D	Solder Pot Zone (Encoder Lead)	200	260	NA	${ }^{\circ} \mathrm{C}$

Note:

- Nominal values are evaluated profiles for optimum performance.
- Min/Max are critical limits to ensure encoders in good condition.

