阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

HEDS-9202

Two Channel Optical Incremental Encoder Modules 200 LPI Analog Output

Data Sheet

Description

The HEDS-9202 is a high-performance, low-cost, optical incremental encoder module. When operated in conjunction with either a codewheel or codestrip, this module detects rotary or linear position. The encoder module consists of a lensed LED source and a detector IC enclosed in a small C-shaped plastic package. Due to a highly collimated light source and a unique photodetector array, the module is extremely tolerant to mounting misalignment.

The two channel analog outputs and 5 V supply input are accessed through five 0.025 inch square pins located on 0.1 inch centers. The standard HEDS-9202 is designed for use with an appropriate optical radius codewheel, or linear codestrip.

Applications

The HEDS-9202 provides sophisticated motion detection at a low cost, making closed-loop control very cost-effective. Typical applications include printers, plotters, copiers, and office automation equipment.

Note: Avago Technologies' encoders are not recommended for use in safety critical applications, e.g., ABS braking systems, power steering, life support systems, and critical care medical equipment. Please contact sales representatives if more clarification is needed.

Theory of Operation

The HEDS-9202 is a C-shaped emitter/detector module. Coupled with a codewheel, it translates rotary motion into a two-channel analog output. Coupled with a codestrip, it translates linear motion into analog outputs. The module contains a single Light Emitting

Features

- Low cost
- Multiple mounting options
- 200 Ipi resolution
- Linear and rotary options available
- No signal adjustment required
- Insensitive to radial and axial play
- $-10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ operating temperature
- Two channel analog output
- Single 5 V supply
- Wave solderable

Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the analog waveforms. The codewheel/codestrip moves between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel/ codestrip. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and count density of the codewheel/codestrip. These detectors are also spaced such that a lightp eriod on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are fed through the signal processing
circuitry, which produces the final outputs for channels A and B. Due to this integrated phasing technique, the analog output of channel A is in quadrature with channel B (90 degrees out of phase).

Definitions

Count (\mathbf{N}) = The number of bar and window pairs or Counts Per Revolution (CPR) of the codewheel, or the number of Lines Per Inch of the codestrip (LPI).

```
1 Shaft Rotation = 360 mechani-
            cal degrees
            \(=\mathrm{N}\) cycles
1 cycles (c) \(=360\) electrical
    degrees ( \({ }^{\circ} \mathrm{e}\) )
    \(=1\) bar and window
        pair
```

Pulse Width (\mathbf{P}): The number of electrical degrees that an output is high during one cycle. This value is nominally $180^{\circ} \mathrm{e}$ or $1 / 2$ cycle.

Pulse Width Error (DP): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} \mathrm{e}$.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are four states per cycle, each nominally 90° e.

State Width Error (DS):

The deviation, in electrical degrees, of each state width from its ideal value of 90°.

Phase (F): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. this value is nominally $90^{\circ} \mathrm{e}$ for quadrature output.

Phase E rror (DF): The deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Rotation: When the codewheel rotates counterclockwise, as viewed looking down on the module (so the marking is visible), channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.

Optical Radius (Rop): The distance from the codewheel's center of rotation to the Optical Center (O.C.) of the encoder module.

Mounting Position (RM):

Distance from Motor Shaft center of rotation to center of Alignment Tab receiving hole.

Absolute Maximum Ratings

Subjecting the part to stresses beyond those listed under this section may cause permanent damage to the device. These are stress ratings only and it is not implied that devices function beyond these ratings. Exposure to the extremes of these conditions for extended periods may affect device reliability.

Parameter	Symbol	Min.	Max.	Unit	Notes
Storage Temperature	T_{S}	-40	100	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-10	100	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	-0.5	7	V	
Soldering Temperature			260	${ }^{\circ} \mathrm{C}$	$\mathrm{t} \leq 5 \mathrm{sec}$.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Temperature	T	-10	25	100	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	4.8	5	5.2	V	Ripple $<100 \mathrm{mV} \mathrm{p}_{\mathrm{p}} \mathrm{p}$
Count Frequency			8	120	kHz	$($ Velocity $(\mathrm{rpm}) \times \mathrm{N}) 60$

Waveform Definition

ANALOG

A

DIGITAL

B

Name	Parameter	Definition	Label
Analog Peak		The absolute value, in $\mu \mathrm{A}$, of the magnitude of the analog signal (i.e., one-sided reading).	$I_{A P}, I_{B P}$, $I_{A M}, I_{B M}$
Analog Peak to Peak	Ipp	The peak to peak signal magnitude, in $\mu \mathrm{A}$, of the analog signal.	$\begin{aligned} & I_{\text {APP }} \\ & I_{\text {BPP }} \end{aligned}$
Analog Offset	IOFFSET	The offset, in $\mu \mathrm{A}$, from the mid-point of the analog peak to peak signal to the zero current point.	
State W idth	State W idth	The number of electrical degrees between a transition in channel A and the neighboring transition in channel B. There are 4 states per cycle, each nominally $90^{\circ} e$. The transitions are determined by where the analog signal crosses the Zero point.	State 1 State 2 State 3 State 4
State W idth Error	State W idth Error	The deviation, in electrical degrees, of each state width from its ideal value of $90^{\circ} e$.	
Pulse W idth	Pulse W idth	The number of electrical degrees that an analog output is greater than zero during one cycle. This value is nominally $180^{\circ} \mathrm{e}$ or $1 / 2$ cycle.	P
Pulse W idth Error	Pulse W idth Error	The deviation, in electrical degrees, of each pulse width from its ideal value of $180^{\circ} \mathrm{e}$.	

Electrical/Optical Characteristics
Electrical Characteristics over Recommended Operating Range, Typical at $25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	ICC	16	18	30	mA	

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended M ounting Tolerances.
These characteristics do not include codew heel/codestrip contributions.

	Units		Typ.
Radial	microns	± 400	0
Tangential	microns	± 500	0
Gap (codew heel from detector surface)	microns	$50-850$	250
Temp	${ }^{\circ} \mathrm{C}$	-10 to 100	25
O.R.	mm	15 to linear	23.36
CPR	count	744 to linear	1156
Codew heel Slot/Spoke	ratio	$.9-1.1$	1
		M in.	Max.
Ipp	$\mu \mathrm{A}$	10	85
IOFFSET	$\mu \mathrm{A}$	-4	+4
State W idth Error	e°	-40	+40
Pulse W idth Error	e°	-40	+40

Analog Encoder Interface Circuit

$V_{\text {REF }}=1.4 \mathrm{~V} \pm 0.2 \mathrm{~V}_{(\mathrm{DC})}$

The circuit shown can be used to convert the current output to a voltage. Resistor value, R1, and Capacitor, C, are specified to attain required gain and low pass filtering which are application specific. The gain is chosen to attain maximum output swing and not clamp the op-amp. $V_{\text {REF }}$ should be set to $1.4 \mathrm{~V}+0.2 \mathrm{~V}$. A $0.1 \mu \mathrm{~F}$ bypass capacitor is recommended to be placed within 1 cm of the encoder for optimal power supply noise rejection. Outputs are high impedance (typical $1 \mathrm{M} \Omega$) and susceptible to EMI.

Ordering Information

Device	Lead	Resolution
HEDS-9202	straight	R00
		(200LPI)

M ounting Considerations

Figure 1. Mounting plane side \mathbf{A}.

Figure 2. Mounting plane side B.

Package Dimensions

