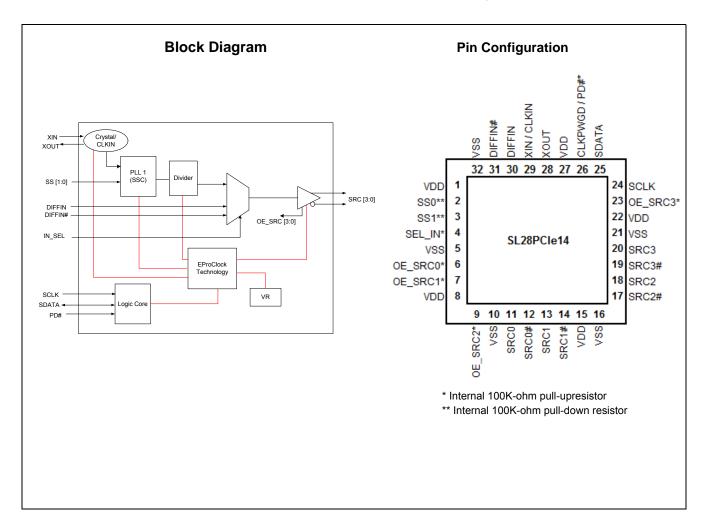
阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .



PCI-Express Gen 2 & Gen 3 Clock Generator & Fan-out Buffer with EProClock[®] Technology

Features

- PCI-Express Gen 2 & Gen 3 Compliant
- · Low power push-pull type differential output buffers
- · Integrated resistors on differential clocks
- HW Selectable Buffered Input or crystal synthesizer mode
- Dedicated Output Enable pin for all clocks
- HW Selectable Frequency and Spread Control

- Four PCI-Express Gen2 & Gen 3 Clocks
- · 25MHz Crystal Input or Clock input
- EProClock® Programmable Technology
- I²C support with readback capabilities
- Triangular Spread Spectrum profile for maximum electromagnetic interference (EMI) reduction
- Industrial Temperature -40°C to 85°C
- 3.3V Power supply
- 32-pin QFN package

32-QFN Pin Definitions

Pin No.	Name	Туре			Description			
1	VDD		3.3V Power Su	pply	·			
2	SS0**	I, PD	Fregency/Spre	ad Control. D	efault SS[1:0] =00.			
3	SS1**	I, PD	(internal 100K	ohm pull-dow	rn)			
			SS1	SS0	Frequency	Spread	Note	
			0	0	100M	OFF	Default	
			0	1	100M	-0.5%		
			1	0	100M	-/+0.25		
			1	1	100M	-0.75%		
			MID	0	125MHz	OFF		
			MID	1	200MHz	OFF		
4	IN_SEL*	I, PU	3.3V input to select between crystal input or external differential buffer input mode 0 = Synthesizer mode, 1=Fan-out Buffer mode (internal 100K-ohm pull-up; switching is not glitchless)					
5	VSS	GND	Ground	Onin puii-up,	switching is not gitterile	33)		
		I,PU		nabled SDCC	alaak (intarnal 1001/ -	hm null us		
6	OE_SRC0*		•		clock. (internal 100K-c	• • •		
7	OE_SRC1*	I,PU	•		clock. (internal 100K-c	nm pull-up)		
8	VDD	PWR	3.3V Power Supply					
9	OE_SRC2*	I,PU	3.3V input to enabled SRC2 clock. (internal 100K-ohm pull-up)					
10	VSS	GND	Ground	1.66				
11	SRC0	· ·			rial reference clock			
12	SRC0#		·		ential serial reference c	lock		
13	SRC1	O, DIF			ial reference clock			
14	SRC1#				ential serial reference c	lock		
15	VDD		3.3V Power Su	pply				
16	VSS	GND	Ground					
17	SRC2#		•		ential serial reference c	lock		
18	SRC2	- /			ial reference clock			
19	SRC3#				ential serial reference c	lock		
20	SRC3	O, DIF		differential ser	ial reference clock			
21	VSS	GND	Ground					
22	VDD		3.3V Power Su					
23	OE_SRC3*	I,PU	•		clock. (internal 100K-c	ohm pull-up)		
24	SCLK	I	SMBus compa		(
25	SDATA	I/O	SMBus compa					
26	CKPWRGD/PD#*	I,PU	3.3V LVTTL input. This pin is a level sensitive strobe used to latch the SS[1:0]. After CKPWRGD (active HIGH) assertion, this pin becomes a real-time input for asserting power down (active LOW)					
27	VDD	PWR	3.3V Power Su	pply				
28	XOUT	0	25.00MHz Cry	stal output, <i>Fl</i>	oat XOUT if using only	CLKIN (Cloc	ck input)	
29	XIN / CLKIN	I	25.00MHz Crystal input or 3.3V, 25MHz Clock Input					
30	DIFFIN	I	True differentia	l serial refere	nce clock input			
31	DIFFIN#	I	Complement d	ifferential seri	al reference clock			
32	VSS	GND	Ground					

EProClock® Programmable Technology

EProClock[®] is the world's first non-volatile programmable clock. The EProClock[®] technology allows board designer to promptly achieve optimum compliance and clock signal integrity; historically, attainable typically through device and/or board redesigns.

 $\mathsf{EProClock}^{\otimes}$ technology can be configured through SMBus or hard coded.

Features:

- > 4000 bits of configurations
- Can be configured through SMBus or hard coded

- Custom frequency sets
- Differential skew control on true or compliment or both
- Differential duty cycle control on true or compliment or both
- Differential amplitude control
- Differential and single-ended slew rate control
- Program Internal or External series resistor on single-ended clocks
- Program different spread profiles
- Program different spread modulation rate

Frequency/Spread Select Pin (SS[1:0])

SS1	SS0	Frequency (MHz)	Spread (%)	Note
0	0	100.00	OFF	Default Value for SS [1:0] =00
0	1	100.00	- 0.5	
1	0	100.00	+/- 0.25	
1	1	100.00	- 0.75	
MID	0	125	OFF	
MID	1	200	OFF	

Frequency/Spread Select Pin SS[1:0]

Apply the appropriate logic levels to SS [1:0] inputs before CKPWRGD assertion to achieve clock frequency selection. When the clock chip sampled HIGH on CKPWRGD and indicates that the voltage is stable then SS [1:0] input values are sampled. This process employs a one-shot functionality and once the CKPWRGD sampled a valid HIGH, all other SS[1:0], and CKPWRGD transitions are ignored.

Serial Data Interface

To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions, such as individual clock output buffers are individually enabled or disabled. The registers associated with the Serial Data Interface initialize to their default setting at power-up. The use of this interface is

optional. Clock device register changes are normally made at system initialization, if any are required. The interface cannot be used during system operation for power management functions.

Data Protocol

The clock driver serial protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The offset of the indexed byte is encoded in the command code described in *Table 1*.

The block write and block read protocol is outlined in *Table 2* while *Table 3* outlines byte write and byte read protocol. The slave receiver address is 11010010 (D2h).

Table 1. Command Code Definition

Bit	Description
7	0 = Block read or block write operation, 1 = Byte read or byte write operation
(6:0)	Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'

Table 2. Block Read and Block Write Protocol

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start

Table 2. Block Read and Block Write Protocol (continued)

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
8:2	Slave address–7 bits	8:2	Slave address–7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code–8 bits	18:11	Command Code–8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Byte Count–8 bits	20	Repeat start
28	Acknowledge from slave	27:21	Slave address–7 bits
36:29	Data byte 1–8 bits	28	Read = 1
37	Acknowledge from slave	29	Acknowledge from slave
45:38	Data byte 2–8 bits	37:30	Byte Count from slave–8 bits
46	Acknowledge from slave	38	Acknowledge
	Data Byte /Slave Acknowledges	46:39	Data byte 1 from slave–8 bits
	Data Byte N–8 bits	47	Acknowledge
	Acknowledge from slave	55:48	Data byte 2 from slave–8 bits
	Stop	56	Acknowledge
			Data bytes from slave / Acknowledge
			Data Byte N from slave–8 bits
			NOT Acknowledge
			Stop

Table 3. Byte Read and Byte Write Protocol

	Byte Write Protocol		Byte Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address–7 bits	8:2	Slave address–7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code–8 bits	18:11	Command Code–8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Data byte–8 bits	20	Repeated start
28	Acknowledge from slave	27:21	Slave address–7 bits
29	Stop	28	Read
		29	Acknowledge from slave
		37:30	Data from slave–8 bits
		38	NOT Acknowledge
		39	Stop

Control Registers

Byte 0: Control Register 0

Bit	@Pup	Type	Name	Description
7	0	R/W	RESERVED	RESERVED
6	0	R/W	RESERVED	RESERVED

Byte 0: Control Register 0

5	0	R/W	RESERVED	RESERVED
4	0	R/W	RESERVED	RESERVED
3	0	R/W	RESERVED	RESERVED
2	0	R/W	RESERVED	RESERVED
1	0	R/W	RESERVED	RESERVED
0	0	R/W	RESERVED	RESERVED

Byte 1: Control Register 1

Bit	@Pup	Туре	Name	Description
7	0	R/W	RESERVED	RESERVED
6	0	R/W	RESERVED	RESERVED
5	0	R/W	RESERVED	RESERVED
4	0	R/W	RESERVED	RESERVED
3	0	R/W	RESERVED	RESERVED
2	1	R/W	SRC0_OE	Output enable for SRC0 0 = Output Disabled, 1 = Output Enabled
1	0	R/W	RESERVED	RESERVED
0	1	R/W	SRC1_OE	Output enable for SRC1 0 = Output Disabled, 1 = Output Enabled

Byte 2: Control Register 2

Bit	@Pup	Туре	Name	Description
7	1	R/W	SRC2_OE	Output enable for SRC2 0 = Output Disabled, 1 = Output Enabled
6	1	R/W	SRC3_OE	Output enable for SRC3 0 = Output Disabled, 1 = Output Enabled
5	0	R/W	RESERVED	RESERVED
4	0	R/W	RESERVED	RESERVED
3	0	R/W	RESERVED	RESERVED
2	0	R/W	RESERVED	RESERVED
1	0	R/W	RESERVED	RESERVED
0	0	R/W	RESERVED	RESERVED

Byte 3: Control Register 3

Bit	@Pup	Туре	Name	Description
7	0	R	Rev Code Bit 3	Revision Code Bit 3
6	0	R	Rev Code Bit 2	Revision Code Bit 2
5	0	R	Rev Code Bit 1	Revision Code Bit 1
4	0	R	Rev Code Bit 0	Revision Code Bit 0
3	1	R	Vendor ID bit 3	Vendor ID Bit 3
2	0	R	Vendor ID bit 2	Vendor ID Bit 2
1	0	R	Vendor ID bit 1	Vendor ID Bit 1
0	0	R	Vendor ID bit 0	Vendor ID Bit 0

Byte 4: Control Register 4

Bit	@Pup	Type	Name	Description
-----	------	------	------	-------------

Byte 4: Control Register 4

7	0	R/W	BC7	Byte count register for block read operation.
6	0	R/W	BC6	The default value for Byte count is 7. In order to read beyond Byte 7, the user should change the byte
5	0	R/W	BC5	count limit.to or beyond the byte that is desired to be read.
4	0	R/W	BC4	
3	0	R/W	BC3	
2	1	R/W	BC2	
1	1	R/W	BC1	
0	1	R/W	BC0	

Byte 5: Control Register 5

Bit	@Pup	Type	Name	Description
7	1	R/W	RESERVED	RESERVED
6	1	R/W	SRC_AMP2	SRC amplitude adjustment
5	0	R/W	SRC_AMP1	000= 300mV, 001=400mV, 010=500mV, 011= 600mV 100= 700mV, 101=800mV, 110=900mV, 111= 1000mV
4	1	R/W	SRC_AMP0	700114, 101-0001114, 110-0001114, 111-10001114
3	1	R/W	RESERVED	RESERVED
2	0	R/W	RESERVED	RESERVED
1	0	R/W	RESERVED	RESERVED
0	0	R/W	RESERVED	RESERVED

OE[3:0] Assertion

All differential outputs that were stopped are to resume normal operation in a glitch-free manner. The maximum latency from the assertion to active outputs is between 2 and 6 clocks of the internal reference clock with all differential outputs resuming simultaneously. All stopped differential outputs must be driven HIGH within 10 ns of OE deassertion to a voltage greater than 200 mV.

OE[3:0] Deassertion

The impact of deasserting the OE pins is that all SRC outputs that are set in the control registers to stoppable via deassertion of OE are to be stopped after their next transition. The final state of all stopped SRC clocks is Low/Low.

PD# (Power down) Clarification

The CKPWRGD/PD# pin is a dual-function pin. During initial power up, the pin functions as CKPWRGD. Once CKPWRGD has been sampled HIGH by the clock chip, the pin assumes PD# functionality. The PD# pin is an asynchronous active LOW input used to shut off all clocks cleanly before shutting off power to the device. This signal is synchronized internally to the device before powering down the clock synthesizer. PD# is also an asynchronous input for powering up the system. When PD# is asserted LOW, clocks are driven to a LOW value and held before turning off the VCOs and the crystal oscillator.

PD# (Power down) Assertion

When PD# has been sampled LOW by the internal reference clock all differential clocks will be stopped in a glitch-free mannter to the LOW-LOW state within their next two consecutive rising edges.

PD# Deassertion

The power up latency will be less than 2ms for crystal input reference and less than 8ms for differential input reference clock. This is the delay from the power supply reaching the minimum value specified in the datasheet, until the time that the part is ready to sample any latched inputs on the first rising edge of CLKPWRGD.

After the first rising edge on the CKPWRGD this pin becmoes PD#. After a valid rising edge on CKPWRGD/PD# pin, a time of not more than 1.8ms is allowed for the clock device's internal PLL's to power up and lock. After this time, all outputs are enabled in a glitch-free manner within a few clock cycles of each clock.

DOC#: SP-AP-0014 (Rev. 0.2)

Absolute Maximum Conditions

Parameter	Description	Condition	Min.	Max.	Unit	
$V_{DD_3.3V}$	Main Supply Voltage	Functional	-	4.6	V	
V _{IN}	Input Voltage	Relative to V _{SS}	-0.5	4.6	V_{DC}	
T _S	Temperature, Storage	Non-functional	-65	150	°C	
T _A	Industrial Temperature, Operating Ambient	Functional	-40	85	°C	
T _A	Commercial Temperature, Operating Ambient	Functional	0	85	°C	
T_J	Temperature, Junction	Functional	_	150	°C	
Ø _{JC}	Dissipation, Junction to Case	JEDEC (JESD 51)	_	20	°C/ W	
\emptyset_{JA}	Dissipation, Junction to Ambient	JEDEC (JESD 51)	-	60	°C/ W	
ESD _{HBM}	ESD Protection (Human Body Model)	JEDEC (JESD 22 - A114)	2000	_	V	
UL-94	Flammability Rating	UL (Class)	V-	-0		

Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

DC Electrical Specifications

Parameter	Description	Condition	Min.	Max.	Unit	
VDD core	3.3V Operating Voltage	3.3 ± 5%	3.135	3.465	V	
V _{IH}	3.3V Input High Voltage (SE)		2.0	$V_{DD} + 0.3$	V	
V _{IL}	3.3V Input Low Voltage (SE)		V _{SS} -0.3	0.8	V	
V _{IHI2C}	Input High Voltage	SDATA, SCLK	2.2	_	V	
V _{ILI2C}	Input Low Voltage	SDATA, SCLK	_	1.0	V	
V _{IH_SS[1:0]_HIGH}	SS Input High Voltage		0.7	VDD+0.3	V	
V _{IH_SS[1:0]_MID}	SS Input MIDVoltage		0.7	1.5	V	
V _{IL_SS[1:0]_LOW}	SS Input Low Voltage		V _{SS} -0.3	0.35	V	
I _{IH}	Input High Leakage Current	Except internal pull-down resistors, $0 < V_{IN} < V_{DD}$	-	5	μА	
I _{IL}	Input Low Leakage Current	Except internal pull-up resistors, $0 < V_{IN} < V_{DD}$	- 5	_	μА	
V _{OH}	3.3V Output High Voltage (SE)	$I_{OH} = -1 \text{ mA}$	2.4	_	V	
V _{OL}	3.3V Output Low Voltage (SE)	I _{OL} = 1 mA	_	0.4	V	
I _{OZ}	High-impedance Output Current		-10	10	μА	
C _{IN}	Input Pin Capacitance		1.5	5	pF	
C _{OUT}	Output Pin Capacitance			6	pF	
L _{IN}	Pin Inductance		_	7	nΗ	
IDD_ _{PD}	Power Down Current		_	1	mA	
I _{DD_3.3V}	Dynamic Supply Current in synthesizer mode	Differential clocks with 5" traces and 2pF load, frequency at 100MHz.	_	50	mA	
I _{DD_3.3V}	Dynamic Supply Current in fanout mode	Differential clocks with 5" traces and 2pF load, frequency at 100MHz.	_	30	mA	

AC Electrical Specifications

Parameter	Description	Condition	Min.	Max.	Unit
Crystal					
L _{ACC}	Long-term Accuracy	Measured at VDD/2 differential	_	250	ppm
Clock Input	•			•	
T _{DC}	CLKIN Duty Cycle	Measured at VDD/2	47	53	%
T_R/T_F	CLKIN Rise and Fall Times	Measured between 0.2V _{DD} and 0.8V _{DD}	0.5	4.0	V/ns
T _{CCJ}	CLKIN Cycle to Cycle Jitter (Sythesizer)	Measured at VDD/2	-	250	ps
T _{LTJ}	CLKIN Long Term Jitter	Measured at VDD/2	_	350	ps
V _{IH}	Input High Voltage	XIN / CLKIN pin	2	VDD+0.3	V
V _{IL}	Input Low Voltage	XIN / CLKIN pin	-	0.8	V
I _{IH}	Input HighCurrent	XIN / CLKIN pin, VIN = VDD	_	35	uA
I _{IL}	Input LowCurrent	XIN / CLKIN pin, 0 < VIN < 0.8	-35	_	uA
SRC at 0.7V				•	
T _{DC}	Duty Cycle	Measured at 0V differential	45	55	%
RMS _{GEN1}	Output PCle* Gen1 REFCLK phase jitter	BER = 1E-12 (including PLL BW 8 - 16 MHz, ζ = 0.54, Td=10 ns, Ftrk=1.5 MHz)	0	108	ps
RMS _{GEN2}	Output PCle* Gen2 REFCLK phase jitter	Includes PLL BW 8 - 16 MHz, Jitter Peaking = 3dB, ζ = 0.54, Td=10 ns), Low Band, F < 1.5MHz	0	3.0	ps
RMS _{GEN2}	Output PCIe* Gen2 REFCLK phase jitter	Includes PLL BW 8 - 16 MHz, Jitter Peaking = 3dB, ζ = 0.54, Td=10 ns), Low Band, F < 1.5MHz	0	3.1	ps
RMS _{GEN3}	Output phase jitter impact – PCIe*	Includes PLL BW 2 - 4 MHz,			
	Gen3	CDR = 10MHz)	0	1.0	ps
T _{CCJ}	Cycle to Cycle Jitter	Measured at 0V differential	_	85	ps
T _{CCJ}	Additive Cycle to Cycle Jitter	In buffer mode. Measured at 0V differential	_	50	ps
L _{ACC}	Long-term Accuracy	Measured at 0V differential	-	100	ppm
T _R / T _F	Rising/Falling Slew rate	Measured differentially from ±150 mV	2.5	8	V/ns
V _{OX}	Crossing Point Voltage at 0.7V Swing		300	550	mV
ENABLE/DIS	ABLE and SET-UP				
T _{STABLE}	Clock Stabilization from Power-up		_	1.8	ms
T _{SS}	Stopclock Set-up Time		10.0	_	ns

Test and Measurement Set-up

For Differential Clock Signals

This diagram shows the test load configuration for the differential clock signals

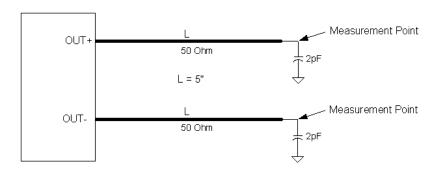


Figure 1. 0.7V Differential Load Configuration

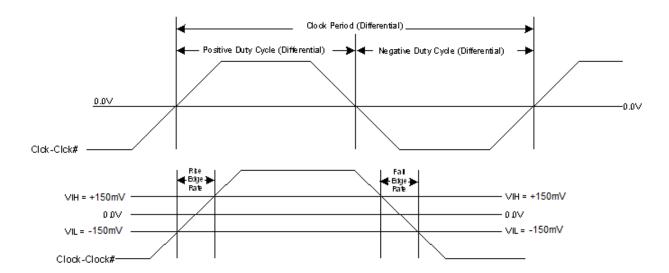


Figure 2. Differential Measurement for Differential Output Signals (for AC Parameters Measurement)

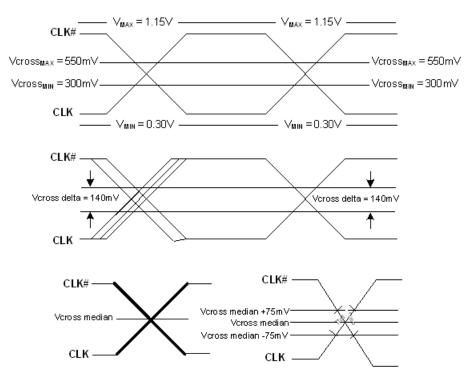
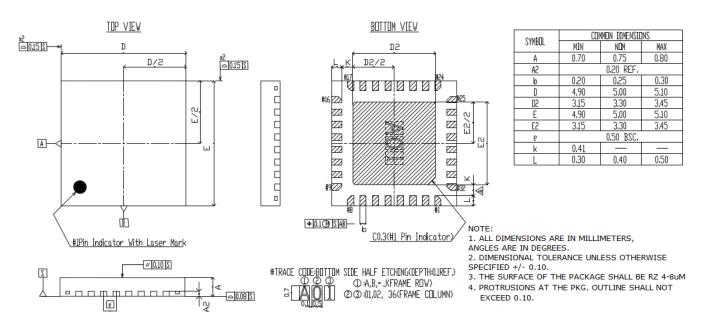


Figure 3. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement)

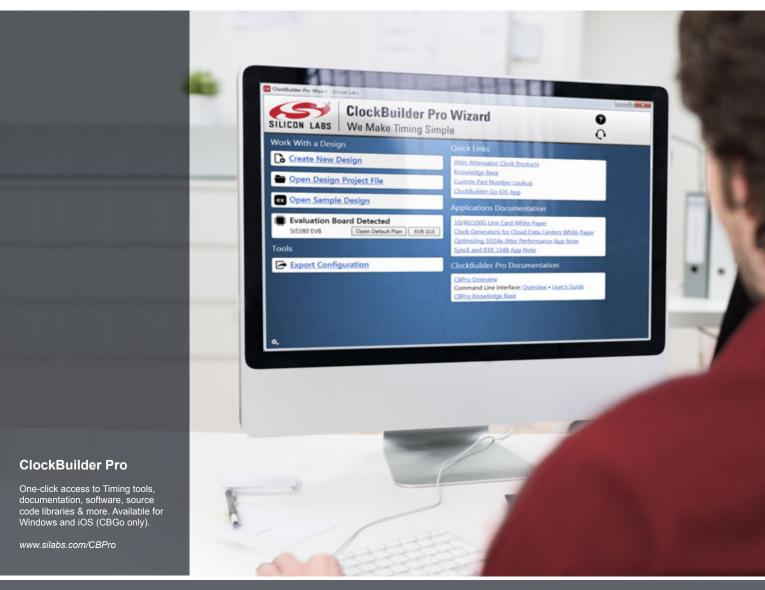


Ordering Information

Part Number	Package Type	Product Flow
Lead-free		
SL28PCIe14ALC	32-pin QFN	Commercial, 0° to 85°C
SL28PCIe14ALCT	32-pin QFN – Tape and Reel	Commercial, 0° to 85°C
SL28PCIe14ALI	32-pin QFN	Industrial, -40° to 85°C
SL28PCle14ALIT	32-pin QFN – Tape and Reel	Industrial, -40° to 85°C

Package Diagrams

32-Lead QFN 5x 5mm


Document History Page

Document Title: SL28PCle14 PC PCI-Express Gen 2 & Gen 3 Clock Generator & Fan-out Buffer with EProClock®

Technology

DOC#: SP-AP-0014 (Rev. 0.2)

REV.	ECR#	Issue Date	Orig. of Change	Description of Change
AA	1695	02/09/11	JMA	Initial Release

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, Silabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA