

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

Four Output Differential Fanout Buffer for PCI Express Gen 1 & 2

ICS9DBL411A

Recommended Application:

PCI-Express fanout buffer

Output Features:

- 4 low power differential output pairs
- Individual OE# control of each output pair

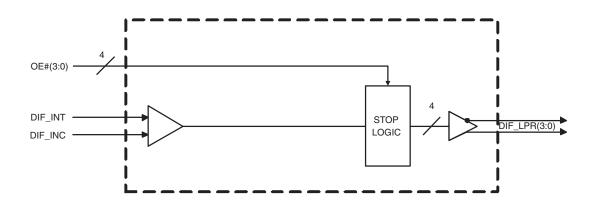
Features/Benefits:

- Low power differential fanout buffer for PCI-Express and CPU clocks
- 20-pin MLF or TSSOP packaging

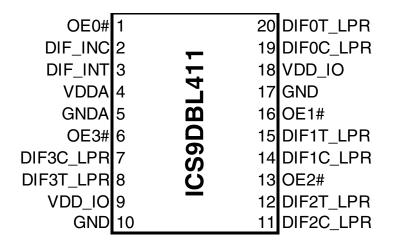
General Description:

The **ICS9DBL411** is a 4 output lower power differential buffer. Each output has its own OE# pin. It has a maximum input frequency of 400 MHz.

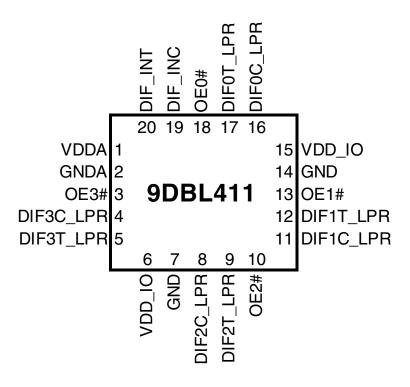
Key Specifications:


- Output cycle-cycle jitter < 25ps additive
- Output to output skew: < 50ps

Power Groups


Pin Num	ber (TSSOP)	Description
VDD	GND	Description
9,18	10,17	VDD_IO for DIF(3:0)
4	5	3.3V Analog VDD & GND

Pin Nun	nber (MLF)	Description
VDD	GND	Description
6,15	7,14	VDD_IO for DIF(3:0)
1	2	3.3V Analog VDD & GND


Funtional Block Diagram

Pin Configuration

20-pin MLF

TSSOP Pin Description

PIN # (TSSOP)	PIN NAME	PIN TYPE	DESCRIPTION	
1	OE0#	IN	Output Enable for DIF0 output. Control is as follows:	
1	020#		0 = enabled, 1 = Low-Low	
2	DIF_INC	IN	Complement side of differential input clock	
3	DIF_INT	IN	True side of differential input clock	
4	VDDA	PWR	3.3V Power for the Analog Core	
5	GNDA	GND	Ground for the Analog Core	
6	OE3#	IN	Output Enable for DIF3 output. Control is as follows:	
0	023#	IIN	0 = enabled, 1 = Low-Low	
7	DIF3C_LPR	OUT	Complement clock of low power differential clock pair. (no 500hm shunt resistor to GND needed)	
8	DIF3T_LPR	OUT	True clock of low power differential clock pair. (no 500hm shunt resistor to GND needed)	
9	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V	
10	GND	GND	Ground pin	
11	DIF2C_LPR	OUT	Complement clock of low power differential clock pair. (no 500hm shunt resistor to GND needed)	
12	DIF2T_LPR	OUT	True clock of low power differential clock pair. (no 500hm shunt resistor to GND needed)	
13	OE2#	IN	Output Enable for DIF2 output. Control is as follows:	
13	UE2#	=2# IN	0 = enabled, 1 = Low-Low	
14	DIF1C_LPR	OUT	Complement clock of low power differential clock pair. (no 500hm shunt resistor to GND needed)	
15	DIF1T_LPR	OUT	True clock of low power differential clock pair. (no 500hm shunt resistor to GND needed)	
16	OE1#	IN	Output Enable for DIF1 output. Control is as follows:	
10	16 OEI#		0 = enabled, 1 = Low-Low	
17	GND	GND	Ground pin	
18	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V	
19	DIF0C_LPR	OUT	Complement clock of low power differential clock pair. (no 500hm shunt resistor to GND needed)	
20	DIF0T_LPR	OUT	True clock of low power differential clock pair. (no 500hm shunt resistor to GND needed)	

MLF Pin Description

PIN # (MLF)	PIN NAME	PIN TYPE	DESCRIPTION
1	VDDA	PWR	3.3V Power for the Analog Core
2	GNDA	GND	Ground for the Analog Core
3	OE3#	IN	Output Enable for DIF3 output. Control is as follows: 0 = enabled, 1 = Low-Low
4	DIF3C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
5	DIF3T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
6	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
7	GND	GND	Ground pin
8	DIF2C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
9	DIF2T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
10	OE2#	IN	Output Enable for DIF2 output. Control is as follows: 0 = enabled, 1 = Low-Low
11	DIF1C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
12	DIF1T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
13	OE1#	IN	Output Enable for DIF1 output. Control is as follows: 0 = enabled, 1 = Low-Low
14	GND	GND	Ground pin
15	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
16	DIF0C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
17	DIF0T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
18	OE0#	IN	Output Enable for DIF0 output. Control is as follows: 0 = enabled, 1 = Low-Low
19	DIF_INC	IN	Complement side of differential input clock
20	DIF_INT	IN	True side of differential input clock

Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Maximum Supply Voltage	VDDA	Core Supply Voltage		4.6	V	1,7
Maximum Supply Voltage	VDD_IO	Low-Voltage Differential I/O Supply	0.99	3.8	V	1,7
Maximum Input Voltage	V _{IH}	3.3V LVCMOS Inputs		4.6	V	1,7,8
Minimum Input Voltage	V _{IL}	Any Input	Vss - 0.5		V	1,7
Storage Temperature	Ts	-	-65	150	°C	1,7
Input ESD protection	ESD prot	Human Body Model	2000		V	1,7

Electrical Characteristics - Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Ambient Operating Temp	Tambient	-	0	70	S	1
Supply Voltage	VDDxxx	Supply Voltage	3.135	3.465	V	1
Supply Voltage	VDDxxx_IO	Low-Voltage Differential I/O Supply	0.99	3.465	V	1
Input High Voltage	V _{IHSE}	Single-ended inputs	2	V _{DD} + 0.3	V	1
Input Low Voltage	V _{ILSE}	Single-ended inputs	V _{ss} - 0.3	0.8	V	1
Differential Input High Voltage	V _{IHDIF}	Differential inputs (single-ended measurement)	600	1.15	V	1
Differential Input Low Voltage	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 0.3	300	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4	8	V/ns	2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5	5	uA	1
	I _{DD_3.3V}	3.3V supply		25	mA	1
Operating Supply Current	IDD_IO+100M	VDD_IO supply @ fOP = 100MHz		15	mA	1
	I _{DD_IO_400M}	VDD_IO supply @ fOP = 400MHz		54	mA	1
Standby Current	I _{DD_SB33}	3.3V supply, Input stopped, OE# pins all high		1	mA	1
	I _{DD_SBIO}	VDD_IO supply, Input stopped		0.1	mA	1
Input Frequency	F,	$V_{DD} = 3.3 V$	33	400	MHz	2
Pin Inductance	L _{oin}			7	nH	1
Input Capacitance	C _{IN}	Logic Inputs	1.5	5	pF	1
input Oapacitance	C _{OUT}	Output pin capacitance		6	рF	1
OE# latency	T _{oe#lat}	Number of clocks to enable or disable output from assertion/deassertion of OE#	1	3	periods	1
Tdrive_OE#	T _{DROE#}	Output enable after OE# de-assertion		10	ns	1
T(OF						
Tfall_OE#	T _{FALL}	Fall/rise time of OE# inputs		5	ns	1

SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
t _{sLR}	Differential Measurement	1	2.5	V/ns	1,2
t _{FLR}	Differential Measurement	1	2.5	V/ns	1,2
t _{slvar}	Single-ended Measurement		20	%	1
V _{HIGH}	Includes overshoot		1150	mV	1
V _{LOW}	Includes undershoot	-300		mV	1
V _{SWING}	Differential Measurement	1200		mV	1
V _{XABS}	Single-ended Measurement	300	550	mV	1,3,4
V _{XABSVAR}	Single-ended Measurement		140	mV	1,3,5
D _{CYCDIS0}	Differential Measurement, fIN<=100MHz		0.5	%	1,6
D _{CYCDIS1}	Differential Measurement 100MHz < fIN<=267MHz		+5	%	1,6
D _{CYCDIS2}	Differential Measurement, fIN>267MHz		+7	%	1,6
DIFJ _{C2C}	Differential Measurement, Additive		25	ps	1
DIF _{SKEW}	Differential Measurement		50	ps	1
t _{PD}	Input to output Delay	2.5	3.5	ns	1
t _{phase_addHI}	1.5MHz < fIN < Nyquist (50MHz)		0.8	ps rms	1
t _{phase_addLO}	10KHz < fIN < 1.5MHz		0.1	ps rms	1
	t _{SLR} t _{FLR} t _{SLVAR} V _{HIGH} V _{LOW} V _{SWING} V _{XABS} V _{XABS} V _{XABSVAR} D _{CYCDIS0} D _{CYCDIS1} D _{CYCDIS2} DIFJ _{C2C} DIFJ _{C2C} DIF _{SKEW} t _{PD}	$\begin{tabular}{ c c c c c c } \hline t_{SLR} & Differential Measurement \\ \hline t_{SLR} & Differential Measurement \\ \hline t_{SLVAR} & Single-ended Measurement \\ \hline t_{SLVAR} & Includes overshoot \\ \hline V_{HIGH} & Includes overshoot \\ \hline V_{LOW} & Includes undershoot \\ \hline V_{SWING} & Differential Measurement \\ \hline V_{XABS} & Single-ended Measurement \\ \hline V_{XABS} & Single-ended Measurement \\ \hline D_{CYCDIS0} & Differential Measurement, \\ fIN<=100MHz \\ \hline D_{CYCDIS1} & Differential Measurement, \\ 100MHz < fIN<=267MHz \\ \hline D_{CYCDIS2} & Differential Measurement, \\ fIN>267MHz \\ \hline DIFJ_{C2C} & Differential Measurement, \\ fIN>267MHz \\ \hline DIFJ_{SKEW} & Differential Measurement \\ \hline t_{pD} & Input to output Delay \\ \hline t_{phase_addHI} & 1.5MHz < fIN < Nyquist (50MHz) \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

AC Electrical Characteristics - DIF Low Power Differential Outputs

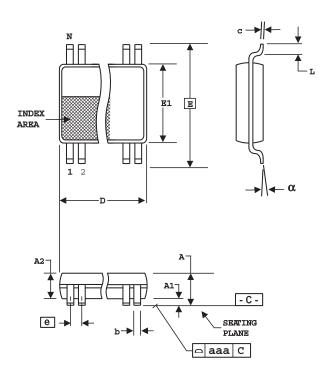
Notes on Electrical Characteristics:

¹Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

⁴ Only applies to the differential rising edge (CLK rising and CLK# falling)


⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

⁶ Tthis is the figure refers to the maximum distortion of the input wave form.

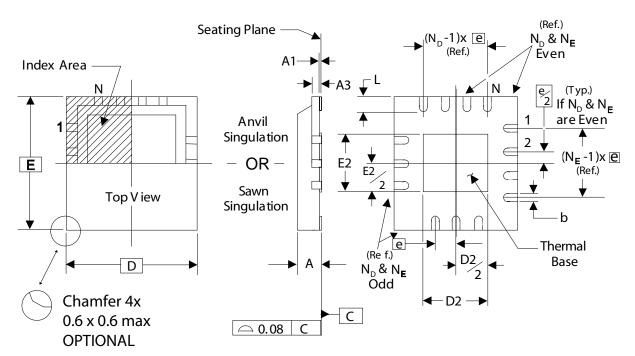
⁷ Operation under these conditions is neither implied, nor guaranteed.

⁸ Maximum input voltage is not to exceed maximum VDD

20-pin TSSOP Package Drawing and Dimensions

	(17	'3 mil)	(25.6 mil)	
	In Milli	meters	In In	ches
SYMBOL	COMMON D	IMENSIONS	COMMON D	IMENSIONS
	MIN	MAX	MIN	MAX
A		1.20		.047
A1	0.05	0.15	.002	.006
A2	0.80	1.05	.032	.041
b	0.19	0.30	.007	.012
С	0.09	0.20	.0035	.008
D	SEE VAF	RIATIONS	SEE VARIATIONS	
E	6.40 E	BASIC	0.252 BASIC	
E1	4.30	4.50	.169	.177
е	0.65 E	BASIC	0.0256 BASIC	
L	0.45	0.75	.018	.030
N	SEE VARIATIONS		SEE VAF	RIATIONS
а	0°	8°	0°	8°
aaa		0.10		.004

20-Lead, 4.40 mm. Body, 0.65 mm. Pitch TSSOP (173 mil) (25 6 mil)


VARIATIONS

N	D mm.		D (inch)	
IN	MIN	MAX	MIN	MAX
20	6.40	6.60	.252	.260

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

20-pin MLF Package Drawing and Dimensions

THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

DIMENSIONS

SYMBOL	MIN.	MAX.	
A	0.8	1.0	
A1	0	0.05	
A3	0.20 Reference		
b	0.18	0.3	
е	0.50 E	BASIC	

DIMENSIONS

SYMBOL	ICS 20L TOLERANCE
N	20
N _D	5
N _E	5
D x E BASIC	4.00 x 4.00
D2 MIN. / MAX.	2.00 / 2.25
E2 MIN. / MAX.	2.00 / 2.25
L MIN. / MAX.	0.45 / 0.65

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DBL411AKLF	Tubes	20-pin MLF	0 to +70°C
9DBL411AKLFT	Tape and Reel	20-pin MLF	0 to +70°C
9DBL411AGLF	Tubes	20-pin TSSOP	0 to +70°C
9DBL411AGLFT	Tape and Reel	20-pin TSSOP	0 to +70°C

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. "A" is the device revision designator (will not correlate to the datasheet revision).

Revision History

Rev.	Issue Date	Description	Page #
0.1	8/1/2006	Initial Release.	-
0.2	9/22/2006	Updated MLF Package Dimensions.	8
		1. Updated electrical characteristics - additive jitter, cycle-to-cycle, tpd, skews,	
		slew rates, Idd, etc.	
		2. Corrected power grouping table for TSSOP pkg	
Α	7/31/2007	3. Final Release	1,5,6
		1. Highlighted that V_{IHDIF} and V_{ILDIF} are single ended measurments.	
		2. Corrected VSWING paramater from 300mV to 1200mV.	
В	2/21/2008	3. Updated duty cycle distortion table with a 3rd figure for speeds <=100MHz.	5
С	6/28/2012	Typo for "Differential Input Low Voltage" units; changed "V" to "mV"	

This product is protected by United States Patent NO. 7, 342, 420 and other patents.

Innovate with IDT and accelerate your future networks. Contact:

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

408-284-6578 pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, ICS, and the IDT logo are trademarks of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA

IDT[®] Four Output Differential Buffer for PCI Express