

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

6-OUTPUT LOW POWER DIFFERENTIAL SYNTHESIZER FOR PCIE GEN2

9FGL699

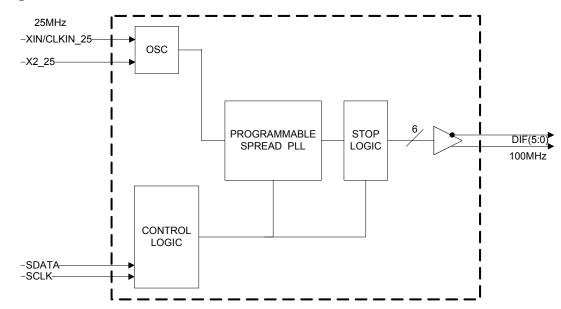
Description

The 9FGL699 is a 6-output low-power clock sythesizer for PCIe Gen2. It runs from a 25MHz XTAL, provides spread spectrum capability, and has an SMBus for software control of the device.

Recommended Application

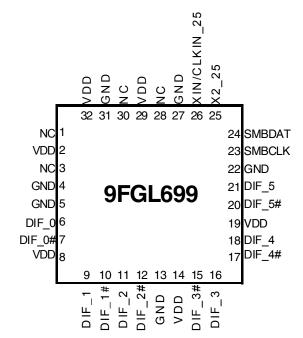
6-Output Low Power Differential Synthesizer for PCIe Gen2

Output Features


6 - 100MHz Differential low power push pull (HCSL compatible) output pairs

Features/Benefits

- 32-pin QFN; Space-savings
- Push Pull outputs; Low power consumption, reduced component count
- PCIe Gen2; Supports latest systems
- Spread Spectrum Capability; reduced EMI when needed
- D2/D3 SMBus Write/Read SMBus address


Key Specifications

- Cycle-to-cycle jitter < 85ps
- Output-to-output skew < 100 ps
- Current consumption < 40mA
- PCIe Gen2 phase jitter < 3.0ps RMS

Block Diagram

Pin Configuration

Power Management

OE (SMBUS)	Differential Outputs
1	DIF/DIF# = running
0	DIF/DIF# = Low/Low

Pin Descriptions

Pin#	Pin Name	Туре	Pin Description
1	NC	N/A	No Connection.
2	VDD	PWR	Power supply, nominal 3.3V
3	NC	N/A	No Connection.
4	GND	PWR	Ground pin.
5	GND	PWR	Ground pin.
6	DIF_0	OUT	0.7V differential true clock output
7	DIF_0#	OUT	0.7V differential Complementary clock output
8	VDD	PWR	Power supply, nominal 3.3V
9	DIF_1	OUT	0.7V differential true clock output
10	DIF_1#	OUT	0.7V differential Complementary clock output
11	DIF_2	OUT	0.7V differential true clock output
12	DIF_2#	OUT	0.7V differential Complementary clock output
13	GND	PWR	Ground pin.
14	VDD	PWR	Power supply, nominal 3.3V
15	DIF_3#	OUT	0.7V differential Complementary clock output
16	DIF_3	OUT	0.7V differential true clock output
17	DIF_4#	OUT	0.7V differential Complementary clock output
18	DIF_4	OUT	0.7V differential true clock output
19	VDD	PWR	Power supply, nominal 3.3V
20	DIF_5#	OUT	0.7V differential Complementary clock output
21	DIF_5	OUT	0.7V differential true clock output
22	GND	PWR	Ground pin.
23	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
24	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
25	X2_25	OUT	Crystal output, Nominally 25.00MHz.
26	XIN/CLKIN_25	IN	Crystal input or Reference Clock input. Nominally 25MHz.
27	GND	PWR	Ground pin.
28	NC	N/A	No Connection.
29	VDD	PWR	Power supply, nominal 3.3V
30	NC	N/A	No Connection.
31	GND	PWR	Ground pin.
32	VDD	PWR	Power supply, nominal 3.3V

General SMBus Serial Interface Information for 9FGL699

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- · Controller (host) will send a separate start bit
- · Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Co	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit	1	
S	lave Address		
WR	WRite		
			ACK
Beg	inning Byte = N		
			ACK
RT	Repeat starT		
S	lave Address		
RD	ReaD		
		-	ACK
		-	Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		ę	0
	0	X Byte	0
	0	×	0
	0		
	1		Byte N + X - 1
Ν	Not acknowledge	-	
Р	stoP bit		

	Index Bl	ock W	rite Operation
Control	ler (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave	Address		
WR	WRite		
			ACK
Beginnin	g Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnir	ng Byte N		
			ACK
0		×	
0		X Byte	0
0		ē	0
			0
Byte N	l + X - 1		
			ACK
Р	stoP bit		

Read Address	Write Address
D3 _(H)	D2 _(H)

Byt	te 0 Pin #		Name	Name Control Function Type 0 1		1	Default	
Bit 7	- Reserved					0		
Bit 6	- Reserved					0		
Bit 5	Spre		Spre	ead Enable	RW	Off	-0.50%	1
Bit 4		- Reserved				0		
Bit 3		-		Reserv	ed			0
Bit 2		-		Reserv	ed			0
Bit 1	- P				0			
Bit 0		-		Reserv	ed			0

SMBus Table: Device Control Register, READ/WRITE ADDRESS (D3/D2)

SMBus Table: Output Enable Register

Byt	e 1	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	-		Reserved				0
Bit 6	-		DIF_0 EN	Output Enable	RW	Disable	Enable	1
Bit 5	- Reserved					0		
Bit 4	-	- Reserved					0	
Bit 3	-	-	DIF_1 EN	Output Enable	RW	Disable	Enable	1
Bit 2	-	-		Reserv	ed			0
Bit 1	- Reserved				0			
Bit 0	-	-		Reserv	ed			0

SMBus Table: Reserved Register

Byt	e 2	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	- Reserved						0	
Bit 6	- Reserved						0	
Bit 5	-	-		Reserve	ed			0
Bit 4	-	- Reserved					0	
Bit 3	-	-		Reserve	ed			0
Bit 2	-	-		Reserve	ed			0
Bit 1	- Reserved					0		
Bit 0	-	-		Reserve	ed			0

SMBus Table: Output Enable Register

Byt	e 3	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	-	DIF_5 EN	Output Enable	RW	Disable	Enable	1
Bit 6	-	-	DIF_4 EN	Output Enable	RW	Disable	Enable	1
Bit 5	-			Reserv	ed			0
Bit 4	-			Reserved				
Bit 3	-			Reserv	ed			0
Bit 2	-	-		Reserv	ed			0
Bit 1	-	- Reserved			0			
Bit 0	-	-		Reserv	ed			0

SMBus Table: Reserved Register

Byt	te 4	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7		- Reserved						
Bit 6		- Reserved						0
Bit 5		- Reserved						0
Bit 4		-	Reserved					0
Bit 3		-		Reserv	ed			0
Bit 2		-		Reserv	ed			0
Bit 1		-	Reserved					0
Bit 0		-		Reserv	ed			0

SMBus Table: Output amplitude adjustment

Byt	te 5	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7		-	DIF 5/6 AMP	Amplitude adjustment	RW	00=700mV 01=800mV		0
Bit 6		-			RW		10=900mV 11=1000mV	
Bit 5		-	DIF 1/2/3 AMP	Amplitude adjustment	RW		00=700mV 01=800mV	
Bit 4		-			RW		00mV 100mV	1
Bit 3		-		Reserv	ed			0
Bit 2		-		Reserv	ed			0
Bit 1		-	DIF 0 AMP	Amplitude adjustment	RW		00mV 00mV	0
Bit 0		-			RW	10=900mV 11=1000mV		1

SMBus Table: Reserved Register

Byt	e 6	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7		-		Reserv	ed			0
Bit 6		-		Reserv	ed			0
Bit 5	-	-		Reserved				
Bit 4	-	-		Reserved				
Bit 3	-	-		Reserv	ed			0
Bit 2	-	-		Reserved				0
Bit 1	-	-	Reserved				0	
Bit 0		-		Reserve	ed			0

SMBus Table: Vendor & Revision ID Register

Byt	e7 P	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-		RID3		R	-	-	0
Bit 6	-	RID2		REVISION ID	R	-	-	0
Bit 5	-		RID1	REVISION ID	R	-	-	0
Bit 4	-		RID0		R	-	-	0
Bit 3	-		VID3		R	-	-	0
Bit 2	-		VID2	VENDOR ID	R	-	-	0
Bit 1	-		VID1	VENDOR ID	R	-	-	0
Bit 0	-		VID0		R	-	-	1

IDT® 6-OUTPUT LOW POWER DIFFERENTIAL SYNTHESIZER FOR PCIE GEN2

SMBus Table: Reserved Register

By	te 8	Pin #	Name	Control Function	Туре	0	1	Default		
Bit 7				Reserv	ed			0		
Bit 6				Reserved						
Bit 5				Reserved						
Bit 4			Reserved							
Bit 3				Reserv	ed			1		
Bit 2				Reserv	ed			1		
Bit 1				Reserv	ed			1		
Bit 0				Reserv	ed			1		

SMBus Table: Output Enable Register

Byt	te 9	Pin #	Name	Control Function	Туре	0	1	Default		
Bit 7				Reserv	ed			0		
Bit 6	-	-	DIF_3 EN	Output Enable	RW	Disable	Enable	1		
Bit 5	-	-	DIF_2 EN	Output Enable	RW	Disable	Enable	1		
Bit 4				Reserved						
Bit 3				Reserv	ed			0		
Bit 2				Reserv	ed			0		
Bit 1				Reserved						
Bit 0				Reserv	ed			0		

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9FGL699. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
Input Low Voltage	VIL		GND-0.5			V	1
Input High Voltage	V _{IH}	Except for SMBus interface			V _{DD} +0.5V	V	1
Input High Voltage	VIHSMB	SMBus clock and data pins			5.5V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	Р			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

Electrical Characteristics–Input/Supply/Common Output Parameters

TA = T_{COM}; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating Temperature	Т _{сом}	Commmercial range	0		70	°C	1
Input Frequency	Fin	X1 pin		25.000		MHz	1
Pin Inductance	L_{pin}				7	nH	1
	C _{IN}	Logic Inputs	1.5		5	pF	1
Capacitance	CINXTAL	Crystal inputs			6	pF	1
	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization to 1st clock			1.8	ms	1,2
SS Modulation Frequency	f _{MODIN}	Allowable Frequency (Triangular Modulation)	30	31.500	33	kHz	1
Tfall	t _F	Fall time of control inputs			5	ns	1,2
Trise	t _R	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	V _{ILSMB}				0.8	V	1
SMBus Input High Voltage	V _{IHSMB}		2.1		V _{DDSMB}	V	1
SMBus Output Low Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	V	1
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	1
Nominal Bus Voltage	V _{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	1
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
MBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	1

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

Electrical Characteristics–DIF 0.7V Low Power Differential Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1		4	V/ns	1, 2, 3
Slew rate matching	ΔTrf	Slew rate matching, Scope averaging on			20	%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging	660		850	mV	1
Voltage Low	VLow	on)	-150		150		1
Max Voltage	Vmax	Measurement on single ended signal using absolute			1150	mV	1
Min Voltage	Vmin	value. (Scope averaging off)	Р			IIIV	1
Vswing	Vswing	Scope averaging off	300			mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	300		550	mV	1, 5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off			140	mV	1, 6

 $T_A = T_{COM}$. Supply Voltage VDD = 3.3 V +/-5%, See Test Loads for loading conditions

¹Guaranteed by design and characterization, not 100% tested in production. $C_L = 2pF$ with $R_S = 33\Omega$ for $Zo = 50\Omega$ (100 Ω differential trace impedance).

² Measured from differential waveform

 3 Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate of Clock / falling edge rate of Clock#. It is measured in a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope uses for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross abs.

Electrical Characteristics–Current Consumption

TA = T_{COM}: Supply Voltage VDD = 3.3 V +/-5%, See Test Loads for loading conditions

	-		1				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{D D3.3}	VDD, All outputs active @100MHz			40	mA	1
Cuaranteed by design and characterization, not 100% tested in production							

Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics–Output Duty Cycle, Jitter, and Skew Characteristics

TA = T_{COM}; Supply Voltage VDD = 3.3 V +/-5%, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS	NOTES
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45		55	%	1
Skew, Output to Output	t _{sk3}	V _T = 50%			100	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	PLL mode			85	ps	1,3

¹Guaranteed by design and characterization, not 100% tested in production.

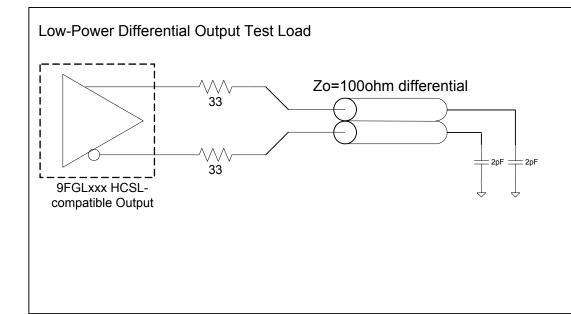
³ Measured from differential waveform

9

9FGL699

Electrical Characteristics–Phase Jitter Parameters

TA = T_{COM}; Supply Voltage VDD = 3.3 V +/-5%, See Test Loads for loading conditions


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
	t _{jphPCleG1}	PCle Gen 1			86	ps (p-p)	1,2,3,6
		PCIe Gen 2 Lo Band			2	ps	1,2,6
Phase Jitter, PCI Express	+	10kHz < f < 1.5MHz			5	(rms)	1,2,0
	ⁱ jp hPCleG2	PCIe Gen 2 High Band			3.1	ps	106
		1.5MHz < f < Nyquist (50MHz)			3.1	(rms)	1,2,6

¹ Guaranteed by design and characterization, not 100% tested in production.

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁶ Applies to all differential outputs

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		34		°C/W
Ambient	θ_{JA}	1 m/s air flow		29		°C/W
	θ_{JA}	3 m/s air flow		27		°C/W
Thermal Resistance Junction to Case	θ_{JC}			32		°C/W

Marking Diagram

Notes:

- 1. 'LOT' is the lot number.
- 2. 'COO' is country of origin.
- 3. YYWW is the last two digits of the year and week that the part was assembled.
- 4. "L" denotes RoHS compliant package.

(Ref) Seating Plane (N_D-1)x e N_D & N_E (Ref) Even Index Area A1 (Typ) A3 N If $N_D \& N_E$ 2 Anvil are Even Singulation (N_E-1)x e Е E2 -- or --(Ref) E2 2 ¥. Top View Sawn Singulation h Δ (Ref) D $N_D \& N_E$ е Thermal Base Odd D2 С -D2-0.08 С \frown Millimeters Symbol Min Max 0.8 1.0 А A1 0 0.05 A3 0.20 Reference b 0.18 0.3 0.50 BASIC е D x E BASIC 5.00 x 5.00 D2 MIN./MAX. 3.00 3.30 E2 MIN./MAX. 3.00 3.30 L MIN./MAX. 0.30 0.50 Ν 32

Package Outline and Package Dimensions (32-pin MLF)

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
9FGL699AKLF	see page 11	Trays	32-pin MLF	0 to +70° C
9FGL699AKLFT		Tape and Reel	32-pin MLF	0 to +70° C

"LF" suffix to the part number are the Pb-Free configuration, RoHS compliant.

"A" is the device revision designator (will not correlate with the datasheet revision).

ND

NF

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

8

8

Revision History

Rev.	Issue Date	WHO	Description	Page #
A	04/05/12	AT	Released to Final	
В	01/31/13		Updated Cycle-to-cycle jitter max spec from 125ps to 85ps per latest characterization data.	9

9FGL699

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

www.idt.com/go/clockhelp pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, ICS, and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA