

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

SYNCHRONOUS ETHERNET FREQUENCY TRANSLATOR

ICS840271I

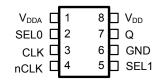
General Description

Block Diagram

The ICS8402711 is a PLL-based Frequency Translator intended for use in telecommunication applications such as Synchronous Ethernet. The internal PLL translates Ethernet clock frequencies such as 125MHz (1Gb Ethernet), 156.25MHz

(10GbE XAUI) and 161.1328MHz (10Gb Ethernet) to an output frequency of 25MHz. The PLL does not any require external components. The input frequency is selectable by a 2-pin interface. The ICS840271I is optimized for low cycle-to-cycle jitter on the 25MHz output signal. The input of the device accepts differential (LVPECL, LVDS, LVHSTL, SSTL, HCSL) or single-ended (LVCMOS) signals. The extended temperature range supports telecommunication and networking equipment requirements. The ICS840271I uses a small RoHS 6, 8-pin TSSOP package and is an effective solution for space-constrained applications.

Features


- Clock frequency translator for Synchronous Ethernet applications
- One single-ended output (LVCMOS or LVTTL levels), 16Ω output impedance
- Differential input pair (CLK, nCLK) accepts LVPECL, LVDS, LVHSTL, SSTL, HCSL input levels
- Supports input clock frequencies of: 125MHz, 156.25MHz or 161.1328MHz
- Generates a 25MHz output clock signal
- Internal resistor bias on nCLK pin allows the user to drive CLK input with external single-ended (LVCMOS/LVTTL) input levels
- Internal PLL is optimized for low cycle-to-cycle jitter at the output
- Full 3.3V or 2.5V supply voltage

Q

- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

CLK Pre-PLL divider Output nCLK Feedback divider divider 25 MHz Input Control Logic 00 = PLL Bypass SEL(1:0) 01 = 161.1328125 MHz 10 = 156.2500000 MHz 11 = 125.000000 MHz

Pin Assignment

ICS840271I 8 Lead TSSOP 4.40mm x 3.0mm x 0.925mm package body G Package Top View

Number	Name	Ту	уре	Description
1	V _{DDA}	Power		Analog supply pin.
2	SEL0	Input	Pulldown	Selects the input reference frequency and the PLL bypass mode. LVCMOS/LVTTL interface levels. See Table 3.
3	CLK	Input	Pulldown	Non-inverting differential clock input.
4	nCLK	Input	Pullup/ Pulldown	Inverting differential clock input. Internal resistor bias to $V_{DD}/2$.
5	SEL1	Input	Pullup	Selects the input reference frequency and the PLL bypass mode. LVCMOS/LVTTL interface levels. See Table 3.
6	GND	Power		Power supply ground.
7	Q	Output		Single-ended clock output. LVCMOS/LVTTL interface levels.
8	V _{DD}	Power		Core supply pin.

Table 1. Pin Descriptions

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
D	D	V _{DD} = 3.465V		16		Ω
R _{OUT} Output In	Output Impedance	V _{DD} = 2.625V		19		Ω

Function Tables

Table 3. SEL[1:0] Function Table

	Inputs			
SEL1	SEL0	CLK, nCLK (MHz)	Mode	Output (MHz)
0	0	REF	PLL Bypass	REF/ 5
0	1	161.1328125	PLL Enabled	25
1 (default)	0 (default)	156.25	PLL Enabled	25
1	1	125	PLL Enabled	25

NOTE: REF = Input clock signal frequency

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating	
Supply Voltage, V _{DD}	4.6V	
Inputs, V _I	-0.5V to V _{DD} + 0.5V	
Outputs, I _O (LVCMOS)	-0.5V to V _{DD} + 0.5V	
Package Thermal Impedance, θ_{JA}	129.5°C/W (0 mps)	
Storage Temperature, T _{STG}	-65°C to 150°C	

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, V_{DD} = 3.3V±5%, T_{A} = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		V _{DD} - 0.08	3.3	V _{DD}	V
I _{DD}	Power Supply Current				75	mA
I _{DDA}	Analog Supply Current				8	mA

Table 4B. Power Supply DC Characteristics, V_{DD} = 2.5V±5%, T_{A} = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDA}	Analog Supply Voltage		V _{DD} – 0.08	2.5	V _{DD}	V
I _{DD}	Power Supply Current				72	mA
I _{DDA}	Analog Supply Current				8	mA

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V	Input High Voltogo		V _{DD} = 3.3V	2		V _{DD} + 0.3	V
V _{IH}	Input High Voltage		V _{DD} = 2.5V	1.7		V _{DD} + 0.3	V
V	law the second		V _{DD} = 3.3V	-0.3		0.8	V
V _{IL} Input Low Voltage			V _{DD} = 2.5V	-0.3		0.7	V
	Input High Current	SEL1	V _{DD} = V _{IN} = 3.465V or 2.625V			5	μA
I _{IH} Input High Current	SEL0	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			150	μA	
	Input Low Current	SEL1	V _{DD} = 3.465V, V _{IN} = 0V	-150			μA
IIL	Input Low Current	SEL0	V _{DD} = 3.465V, V _{IN} = 0V	-5			μA
V	Output Lligh Voltage	- <u>i</u>	V _{DD} = 3.465V, I _{OH} = 12mA	2.6			V
V _{OH}	Output High Voltage		V _{DD} = 2.625V, I _{OH} = 12mA	1.8			V
V _{OL}	Output Low Voltage		$V_{DD} = 3.465V \text{ or } 2.625V, I_{OL} = -12mA$			0.5	V

Table 4C. LVCMOS/LVTTL DC Characteristics, V_{DD} = 3.3V \pm 5\% or 2.5V $\pm 5\%$, T_A = -40°C to 85°C

Table 4D. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
I _{IH}	Input High Current	CLK/nCLK	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			150	μA
I _{IL} Input Low Current	CLK	$V_{DD} = 3.465V \text{ or } 2.625V,$ $V_{IN} = 0V$	-5			μΑ	
	Input Low Current	nCLK	V _{DD} = 3.465V or 2.625V, V _{IN} = 0V	-150			μΑ
V _{PP}	Peak-to-Peak Voltag	e; NOTE 1		0.15		1.3	V
V _{CMR}	Common Mode Inpu NOTE 1, 2	t Voltage;		GND + 0.5		V _{DD} – 0.85	V

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2: Common mode input voltage is defined as VIH.

AC Electrical Characteristics

PLL Lock Time

Table SA.	Table 5A. AC characteristics, $v_{DD} = 3.3 v \pm 3$ %, $r_A = -40$ C to 35 C						
Symbol	Parameter	Test Conditions	Minimum	Typical			
f _{OUT}	Output Frequency			25			
<i>t</i> iit(cc))	Cycle-to-Cycle Jitter	SEL0 ≠ SEL1					
<i>i</i> jii(CC))	Cycle-IO-Cycle Jillei	SEL0 = SEL1 = 1					

Table 54 AC Characteristics $V_{PP} = 3.3V + 5\%$ T₄ = -40°C to 85°C

t_{LOCK} SEL 1 = 1, SEL0 = X 50 ms **Output Rise/Fall Time** 20% to 80% 200 700 t_R / t_F ps 47 odc **Output Duty Cycle** 53 % NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the

SEL1 = 0, SEL0 = 1

device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

Table 5B. AC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency			25		MHz
<i>t</i> jit(cc)) Cycle	Cycle to Cycle litter	SEL0 ≠ SEL1			50	ps
	Cycle-to-Cycle Jitter	SEL0 = SEL1 = 1			15	ps
	Did La als Times	SEL1 = 0, SEL0 = 1			1	s
^t LOCK	PLL Lock Time	SEL 1 = 1, SEL0 = X			50	ms
t _R / t _F	Output Rise/Fall Time	20% to 80%	200		700	ps
odc	Output Duty Cycle		47		53	%

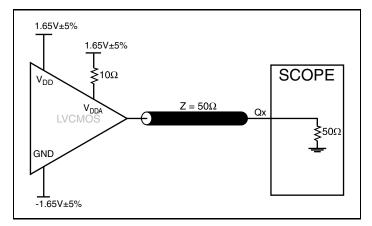
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

Maximum

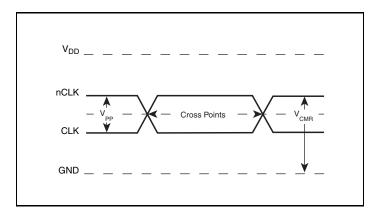
40

15

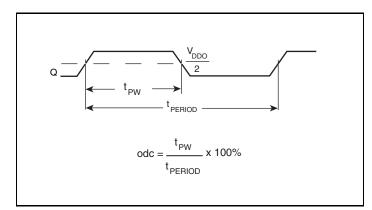
1

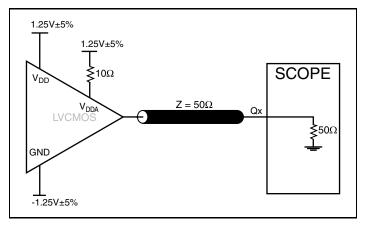

Units MHz

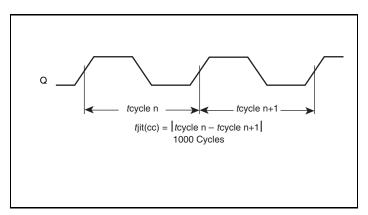
ps

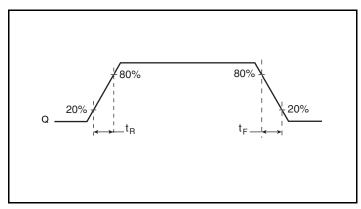

ps

s




3.3V Output Load AC Test Circuit


Differential Input Level



2.5V Output Load AC Test Circuit

Cycle-to-Cycle Jitter

Output Rise/Fall Time

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The ICS840271I provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} and V_{DDA} should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. *Figure 1* illustrates this for a generic V_{DD} pin and also shows that V_{DDA} requires that an additional 10 Ω resistor along with a 10µF bypass capacitor be connected to the V_{DDA} pin.

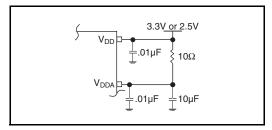


Figure 1. Power Supply Filtering

Wiring the Differential Input to Accept Single Ended Levels

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{DD} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

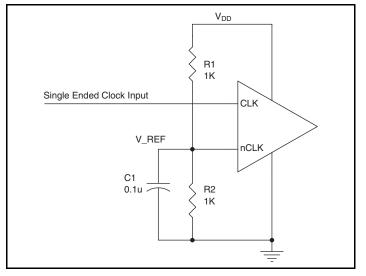
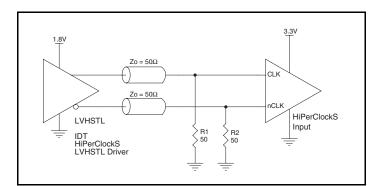
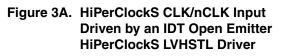


Figure 2. Single-Ended Signal Driving Differential Input

Recommendations for Unused Input Pins


Inputs:


LVCMOS Control Pins

All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both signals must meet the V_{PP} and V_{CMR} input requirements. *Figures 3A to 3F* show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver

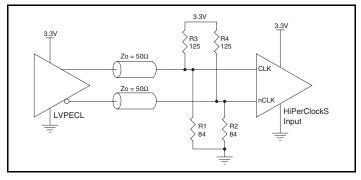


Figure 3C. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

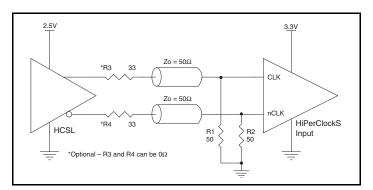


Figure 3E. HiPerClockS CLK/nCLK Input Driven by a 3.3V HCSL Driver

component to confirm the driver termination requirements. For example, in Figure 3A, the input termination applies for IDT HiPerClockS open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

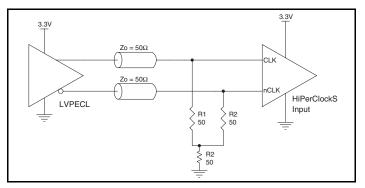


Figure 3B. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

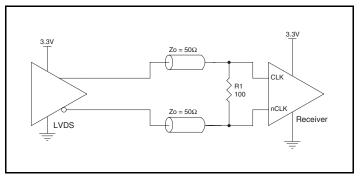


Figure 3D. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVDS Driver

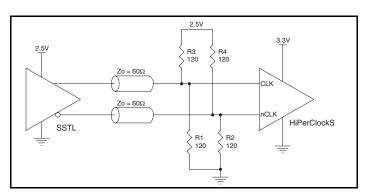


Figure 3F. HiPerClockS CLK/nCLK Input Driven by a 2.5V SSTL Driver

Schematic Example

Figure 4 shows an example of ICS8402711 applications schematic. In this example, the device is operated at V_{DD} = 3.3V. The input is driven by either a 3.3V LVPECL or LVDS driver. One example of LVCMOS termination is shown in this schematic. The decoupling capacitors should be located a close as possible to the power pin.

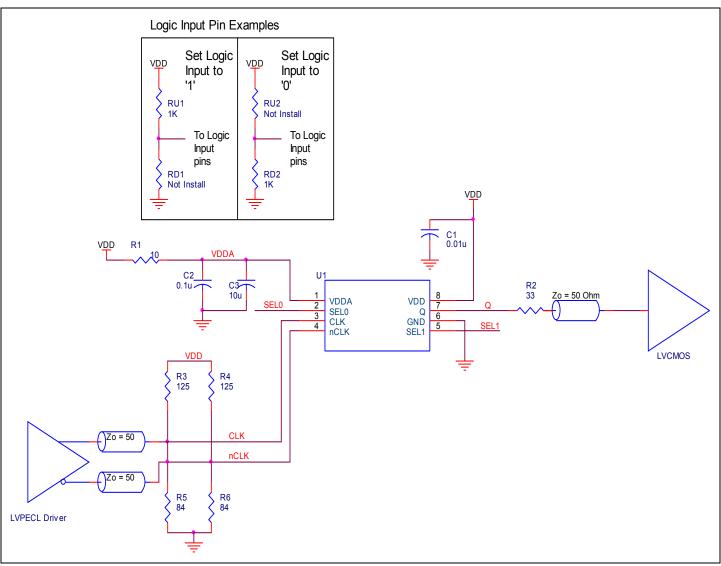


Figure 4. ICS8402711 Schematic layout

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS8402711. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS8402711 is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

- Power (core)_{MAX} = V_{DD_MAX} * (I_{DD} + I_{DDA}) = 3.465V *(75mA + 8mA) = 287.6mW
- Output Impedance R_{OUT} Power Dissipation due to Loading 50Ω to V_{DD}/2
 Output Current I_{OUT} = V_{DD_MAX} / [2 * (50Ω + R_{OUT})] = 3.465V / [2 * (50Ω + 16Ω)] = 26.25mA
- Power Dissipation on the R_{OUT} per LVCMOS output Power (R_{OUT}) = R_{OUT} * $(I_{OUT})^2$ = 16 Ω * (26.25mA)² = **11mW per output**

Total Power Dissipation

- Total Power
 - = Power (core)_{MAX} + Total Power (R_{OUT}) = 287.6mW + 11mW **= 298.6mW**

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 129.5°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}C + 0.299W * 129.5^{\circ}C/W = 123.7^{\circ}C$. This is below the limit of $125^{\circ}C$.

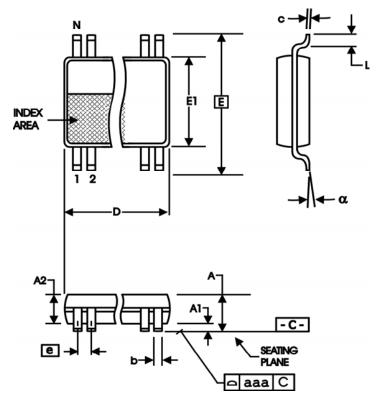
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 8 Lead TSSOP, Forced Convection

θ _{JA} by Velocity					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W		

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 8 Lead TSSOP


θ_{JA} vs. Air Flow					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W		

Transistor Count

The transistor count for ICS840271I is: 2732

Package Outline and Package Dimensions

Package Outline - G Suffix for 8 Lead TSSOP

Table 8. Package Dimensions

All Dimensions in Millimeters				
Symbol	Minimum	Maximum		
Ν	8			
Α		1.20		
A1	0.5	0.15		
A2	0.80	1.05		
b	0.19	0.30		
С	0.09	0.20		
D	2.90	3.10		
E	6.40 Basic			
E1	4.30	4.50		
е	0.65 Basic			
L	0.45	0.75		
α	0 °	8°		
aaa		0.10		

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
840271BGILF	71BIL	"Lead-Free" 8 Lead TSSOP	Tube	-40°C to 85°C
840271BGILFT	71BIL	"Lead-Free" 8 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Contact Information:

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT

Technical Support

netcom@idt.com +480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800-345-7015 (inside USA) +408-284-8200 (outside USA)

© 2009 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA