

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

8741004

Differential-to-LVDS/0.7V Differential PCI Express™ Jitter Attenuator

DATA SHEET

General Description

The 8741004 is a high performance Differential-to-LVDS/0.7V Differential Jitter Attenuator designed for use in PCI Express™ systems. In some PCI Express systems, such as those found in desktop PCs, the PCI Express clocks are generated from a low bandwidth, high phase noise PLL frequency synthesizer. In these systems, a jitter attenuator may be required to attenuate high frequency random and deterministic jitter components from the PLL synthesizer and from the system board. The 8741004 has 3 PLL bandwidth modes: 200kHz, 600kHz and 2MHz. The 200kHz mode will provide maximum jitter attenuation, but with higher PLL tracking skew and spread spectrum modulation from the motherboard synthesizer may be attenuated. The 600kHz provides an intermediate bandwidth that can easily track triangular spread profiles, while providing good litter attenuation. The 2MHz bandwidth provides the best tracking skew and will pass most spread profiles, but the jitter attenuation will not be as good as the lower bandwidth modes. Because some 2.5Gb serdes have x20 multipliers while others have x25 multipliers, the 8741004 can be set for 1:1 mode or 5/4 multiplication mode (i.e. 100MHz input/125MHz output) using the F SEL pins.

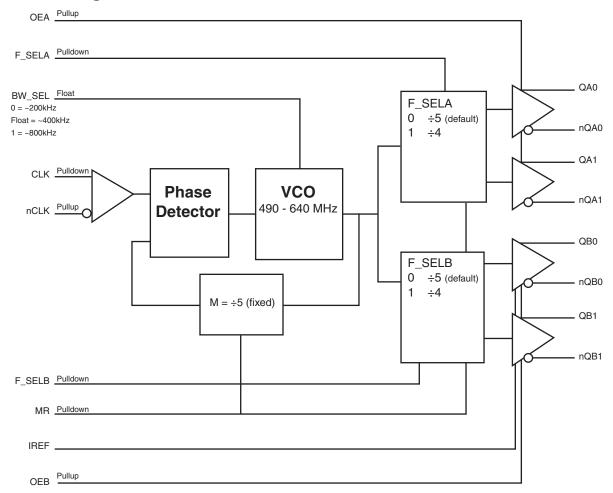
The 8741004 uses IDT's 3rd Generation FemtoClock[™] PLL technology to achieve the lowest possible phase noise. The device is packaged in a 24 Lead TSSOP package, making it ideal for use in space constrained applications such as PCI Express add-in cards.

PLL Bandwidth

BW_SEL 0 = PLL Bandwidth: ~200kHz Float = PLL Bandwidth: ~600kHz (default) 1 = PLL Bandwidth: ~2MHz

Features

- Two LVDS and two 0.7V differential output pairs Bank A has two LVDS output pairs and Bank B has two 0.7V differential output pairs
- One differential clock input pair
- CLK, CLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL
- Output frequency range: 98MHz 160MHz
- Input frequency range: 98MHz 128MHz
- VCO range: 490MHz 640MHz
- Cycle-to-cycle jitter: 35ps (maximum)
- Full 3.3V operating supply
- Three bandwidth modes allow the system designer to make jitter attenuation/tracking skew design trade-offs
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) package


Pin Assignment

nQA1 🗌	1	24	nQB1
QA1 🗆	2	23	🗆 QB1
V _{DDO}	3	22	VDDO
QA0 🗆	4	21	QB0
nQA0 🗌	5	20	nQB0
MR 🗆	6	19	IREF
BW_SEL	7	18	F_SELB
nc 🗌	8	17	OEB
Vdda 🗖	9	16	🗆 GND
F_SELA	10	15	GND
V _{DD}	11	14	nCLK
OEA 🗌	12	13	CLK

8741004

24-Lead TSSOP 4.4mm x 7.8mm x 0.925mm package body G Package Top View

Block Diagram

Table 1. Pin Descriptions

Number	Name	Ţ	уре	Description
1, 2	QA1, QA1	Output		Differential output pair. LVDS interface levels.
3, 22	V _{DDO}	Power		Output supply pins.
4, 5	QA0, <u>QA0</u>	Output		Differential output pair. LVDS interface levels.
6	MR	Input	Pulldown	Active High Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs $Q[Ax:Bx]$ to go LOW and the inverted outputs $\overline{Q[Ax:Bx]}$ to go HIGH. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS/LVTTL interface levels.
7	BW_SEL	Input	Pullup/ Pulldown	PLL Bandwidth input. LVCMOS/LVTTL interface levels. See Table 3B.
8	nc	Unused		No connect.
9	V _{DDA}	Power		Analog supply pin.
10	F_SELA	Input	Pulldown	Frequency select pins for QAx/QAx outputs. LVCMOS/LVTTL interface levels. See Table 3C.
11	V _{DD}	Power		Core supply pin.
12	OEA	Input	Pullup	Output enable for QAx pins. When HIGH, QAx/QAx outputs are enabled. When LOW, the QAx/QAx outputs are in a high impedance state. LVCMOS/LVTTL interface levels. See Table 3A.
13	CLK	Input	Pulldown	Non-inverting differential clock input.
14	CLK	Input	Pullup	Inverting differential clock input.
15, 16	GND	Power		Power supply ground.
17	OEB	Input	Pullup	Output enable for QBx pins. When HIGH, QBx/ $\overline{\text{QBx}}$ outputs are enabled. When LOW, the QBx/ $\overline{\text{QBx}}$ outputs are in a high impedance state. LVCMOS/LVTTL interface levels. See Table 3A.
18	F_SELB	Input	Pulldown	Frequency select pins for QBx/QBx outputs. LVCMOS/LVTTL interface levels. See Table 3C.
19	IREF	Input		A fixed precision resistor (RREF = 475Ω) from this pin to ground provides a reference current used for differential current-mode QB0/nQB0 clock outputs.
20, 21	<u>QB0</u> , QB0	Output		Differential output pair. HCSL interface levels.
23, 24	QB1, QB1	Output		Differential output pair. HCSL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

Function Tables

Table 3A. Output Enable Function Table

Inputs		Outputs			
OEA	OEB	QA[0:1]/QA[0:1] QB[0:1]/QB[0:			
0	0	Hi-Z	Hi-Z		
1	1	Enabled	Enabled		

Table 3C. Frequency Select Table

Inputs	
F_SEL[A, B]	Divider
0	÷5 (default)
1	÷4

Table 3B. PLL Bandwidth Function Table

Input	
BW_SEL	PLL Bandwidth
0	~200kHz
Float	~600kHz (default)
1	~2MHz

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, V _O	-0.5V to V _{DDO} + 0.5V
Package Thermal Impedance, θ_{JA}	82.3°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		V _{DD} – 0.12	3.3	V _{DD}	V
V _{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current				45	mA
I _{DDA}	Analog Supply Current				12	mA
I _{DDO}	Output Supply Current				80	mA

Symbol	Parameter		Test Conditions	Minimum	Typical Maximum		Units
V _{IH}	Input High Voltage	OEA, OEB, MR, F_SELA, F_SELB		2		V _{DD} + 0.3	V
		BW_SEL		V _{DD} – 0.3		V _{DD} + 0.3	V
V _{IL} Input Low Voltage	OEA, OEB, MR, F_SELA, F_SELB		-0.3		0.8	V	
		BW_SEL		-0.3		+0.3	V
V _{IM}	Input Mid Voltage	BW_SEL		$V_{DD}/2 - 0.1$		$V_{DD}/2 + 0.1$	V
IIH	Input High Current	F_SELA, F_SELB, MR, BW_SEL	$V_{DD} = V_{IN} = 3.465V$			150	μA
		OEA, OEB	$V_{DD} = V_{IN} = 3.465V$			5	μA
IIL Input Low Current	MR, F_SELA, F_SELB,	V _{DD} = 3.465V, V _{IN} = 0V	-5			μA	
		OEA, OEB, BW_SEL	V _{DD} = 3.465V, V _{IN} = 0V	-150			μA

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Table 4C. Differential DC Characteristics, V_{DD} = V_{DDO} = 3.3V ± 5%, T_{A} = 0°C to 70°C

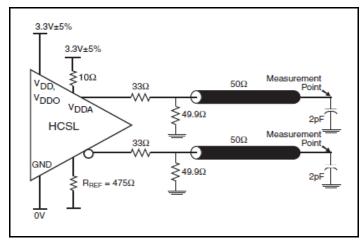
Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
1	Input High Current	CLK	$V_{DD} = V_{IN} = 3.465V$			150	μA
ΙΗ	Input High Current	CLK	$V_{DD} = V_{IN} = 3.465V$			5	μA
	Input Low Current	CLK	V _{DD} = 3.465V, V _{IN} = 0V	-5			μA
Ι _{ΙĽ}	Input Low Current	CLK	V _{DD} = 3.465V, V _{IN} = 0V	-150			μA
V _{PP}	Peak-to-Peak Voltage	e; NOTE 1		0.15		1.3	V
V _{CMR}	Common Mode Input	Voltage; NOTE 1, 2		GND + 0.5		V _{DD} – 0.85	V

NOTE 1: $V_{\rm IL}$ should not be less than -0.3V NOTE 2: Common mode input voltage is defined as $V_{\rm IH}.$

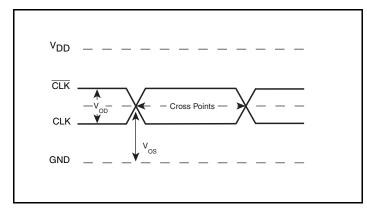
Table 4D. LVDS DC Characteristics, V_{DD} = V_{DDO} = 3.3V ± 5%, T_{A} = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OD}	Differential Output Voltage		290	390	490	mV
ΔV_{OD}	V _{OD} Magnitude Change				50	mV
V _{OS}	Offset Voltage		1.2	1.35	1.5	V
ΔV_{OS}	V _{OS} Magnitude Change				50	mV

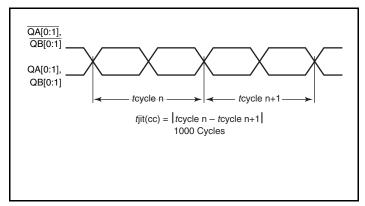
AC Electrical Characteristics

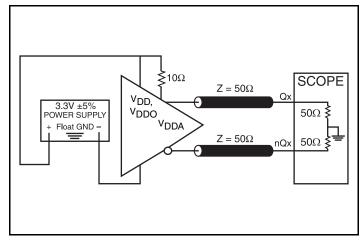

Table 5. 0.7V Differential AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

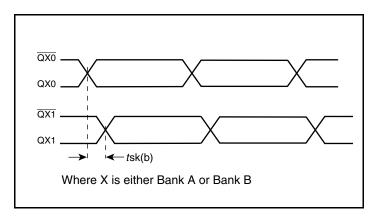
Parameter	Symbol		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency			98		160	MHz
<i>t</i> jit(cc)	Cycle-to-Cycle Jitter; NOTE	1				35	ps
<i>t</i> sk(b)	Bank Skew, NOTE 2					30	ps
V _{HIGH}	Output Voltage High	QBx/QBx		530		870	mV
V _{LOW}	Output Voltage Low	QBx/QBx		-150			mV
V _{OVS}	Max. Voltage, Overshoot	QBx/QBx				V _{HIGH} + 0.35	V
V _{UDS}	Min. Voltage, Undershoot	QBx/QBx		-0.3			V
V _{rb}	Ringback Voltage	QBx/QBx				0.2	V
V _{CROSS}	Absolute Crossing Voltage	QBx/QBx	@ 0.7V Swing	250		550	mV
ΔV_{CROSS}	Total Variation of V _{CROSS} over all edges	QBx/QBx	@ 0.7V Swing			140	mV
t _R / t _F	Output Rise/Fall Time	QBx/QBx	measured between 0.175V to 0.525V	175		700	ps
		QAx/QAx	20% to 80%	250		600	ps
$\Delta t_{R} / \Delta t_{F}$	Rise/Fall Time Variation	QBx/QBx				125	ps
t _{RFM}	Rise/Fall Matching	QBx/QBx				20	%
odc	Output Duty Cycle	1		48		52	%

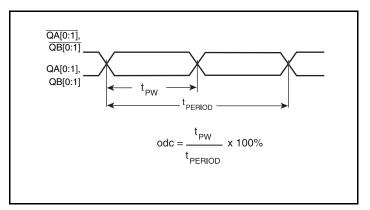

NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 2: Defined as skew within a bank of outputs at the same voltage and with equal load conditions.

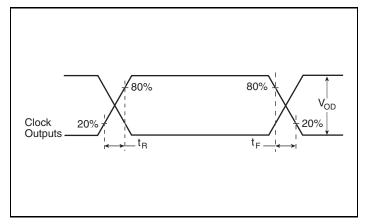

Parameter Measurement Information


3.3V HCSL Output Load AC Test Circuit

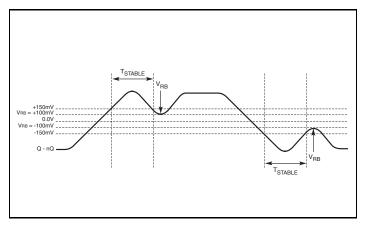

Differential Input Level


Cycle-to-Cycle Jitter

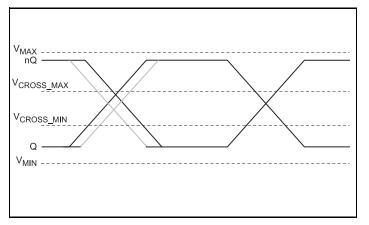
3.3V LVDS Output Load AC Test Circuit

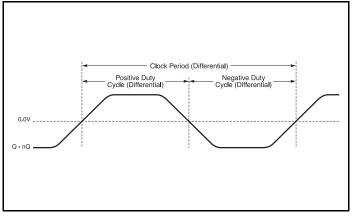


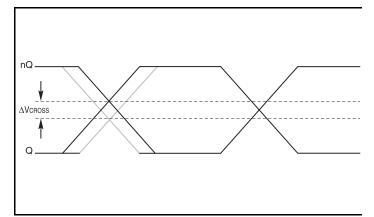
Bank Skew

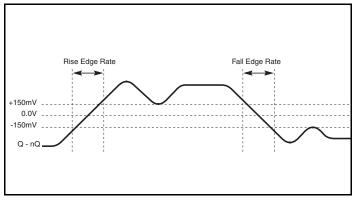


Output Duty Cycle/Pulse Width/Period

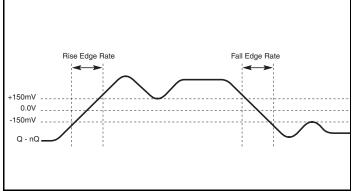

Parameter Measurement Information, continued



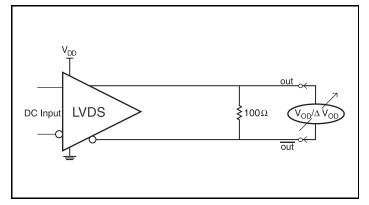

Differential Measurement Points for Ringback


SE Measurement Points for Absolute Cross Point/Swing

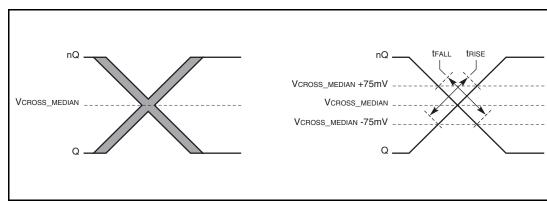
Differential Measurement Points for Duty Cycle/Period

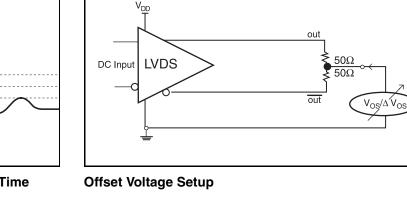


SE Measurement Points for Delta Cross Point



Differential Measurement Points for Rise/Fall Time


Parameter Measurement Information, continued


Differential Measurement Points for Rise/Fall Time

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 8741004 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} , V_{DDA} and V_{DDO} should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic V_{DD} pin and also shows that V_{DDA} requires that an additional 10 $\!\Omega$ resistor along with a $10\mu F\,$ bypass capacitor be connected to the V_{DDA} pin.

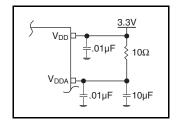
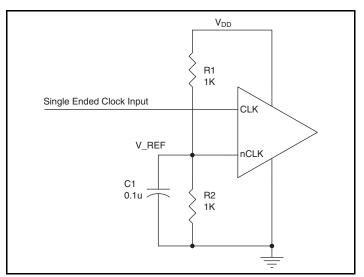
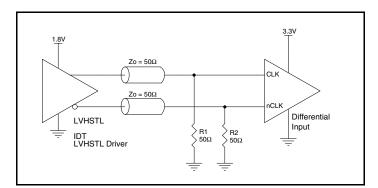


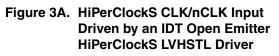
Figure 1. Power Supply Filtering

Wiring the Differential Input to Accept Single Ended Levels

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of




Figure 2. Single-Ended Signal Driving Differential Input


R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{DD} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

ATTENUATOR

Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 3A to 3F* show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver

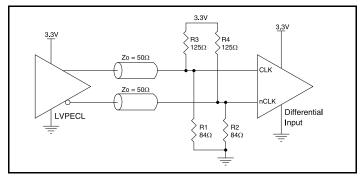


Figure 3C. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

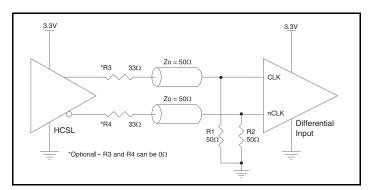


Figure 3E. HiPerClockS CLK/nCLK Input Driven by a 3.3V HCSL Driver

component to confirm the driver termination requirements. For example, in Figure 3A, the input termination applies for IDT HiPerClockS open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

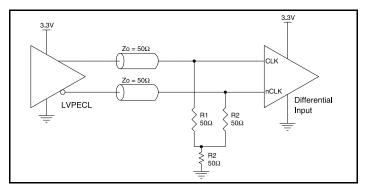


Figure 3B. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

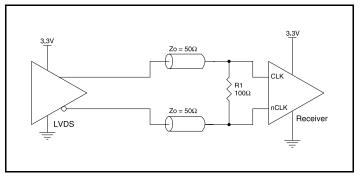
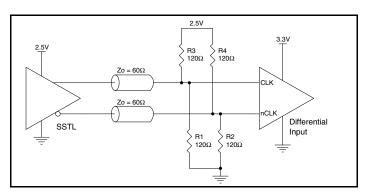
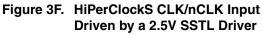




Figure 3D. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVDS Driver

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Outputs:

Differential Outputs

All unused differential outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

LVDS Outputs

All unused LVDS output pairs can be either left floating or terminated with 100 Ω across. If they are left floating, we recommend that there is no trace attached.

LVDS Driver Termination

A general LVDS interface is shown in *Figure 4.* In a 100 Ω differential transmission line environment, LVDS drivers require a matched load termination of 100 Ω across near the receiver input.

For a multiple LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the unused outputs.

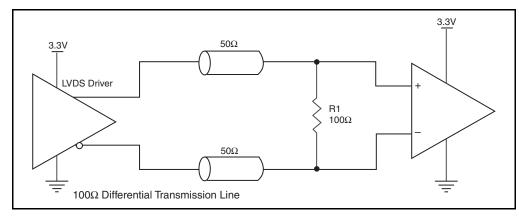


Figure 4. Typical LVDS Driver Termination

Recommended Termination

Figure 5A is the recommended termination for applications which require the receiver and driver to be on a separate PCB. All traces should be 50Ω impedance.

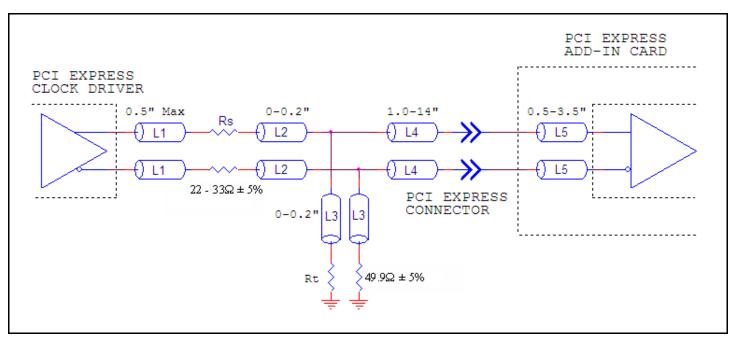


Figure 5A. Recommended Termination

Figure 5B is the recommended termination for applications which require a point to point connection and contain the driver and

receiver on the same PCB. All traces should all be 50Ω impedance.

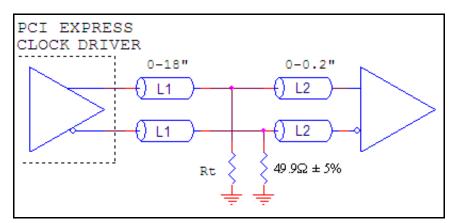


Figure 5B. Recommended Termination

Power Considerations

This section provides information on power dissipation and junction temperature for the 8741004. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS741004 is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{DD_MAX} * (I_{DD_MAX} + I_{DDA_MAX}) = 3.465V * (45mA + 12mA) = 197.5mW
- Power (LVDS_output)_{MAX} = V_{DDO MAX} * I_{DDO MAX} = 3.465V * 80mA = 277.2mW
- Power (HCSL_output)_{MAX} = 44.5mW * 2 = **89mW**

Total Power_MAX = (3.465V, with all outputs switching) = 197.5mW + 277.2mW + 89mW = 563.7mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 82.3°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}C + 0.564W * 82.3^{\circ}C/W = 116.4^{\circ}C$. This is below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).

Table 6. Thermal Resistance θ_{JA} for 24 Lead TSSOP, Forced Convection

θ _{JA} Vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	82.3°C/W	78.0°C/W	75.9°C/W

3. Calculations and Equations.

The purpose of this section is to calculate power dissipation on the IC per HCSL output pair.

HCSL output driver circuit and termination are shown in Figure 6.

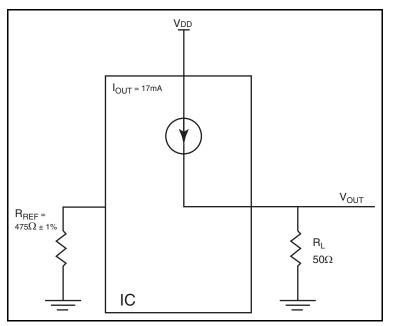


Figure 6. HCSL Driver Circuit and Termination

HCSL is a current steering output which sources a maximum of 17mA of current per output. To calculate worst case on-chip power dissipation, use the following equations which assume a 50Ω load to ground.

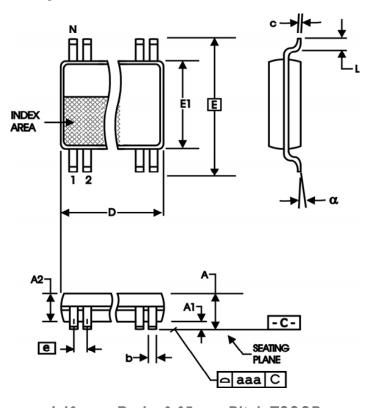
The highest power dissipation occurs when V_{DD-MAX} .

Power = $(V_{DD_{MAX}} - V_{OUT}) * I_{OUT}$, since $V_{OUT} = I_{OUT} * R_L$ = $(V_{DD_{MAX}} - I_{OUT} * R_L) * I_{OUT}$ = $(3.465V - 17mA * 50\Omega) * 17mA$

Total Power Dissipation per output pair = 44.5mW

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 24 Lead TSSOP


θ_{JA} vs. Air Flow				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	82.3°C/W	78.0°C/W	75.9°C/W	

Transistor Count

The transistor count for 8741004 is: 1318

Package Outline and Package Dimensions

Package Outline - G Suffix for 24 Lead TSSOP

Table 8. Package Dimensions

All Dimensions in Millimeters			
Symbol	Minimum	Maximum	
Ν	24		
Α		1.20	
A1	0.5	0.15	
A2	0.80	1.05	
b	0.19	0.30	
C	0.09	0.20	
D	7.70	7.90	
E	6.40 Basic		
E1	4.30	4.50	
е	0.65 Basic		
L	0.45	0.75	
α	0°	8 °	
aaa		0.10	

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8741004AGLF	ICS8741004AGL	"Lead-Free" 24 Lead TSSOP	Tray	0°C to 70°C
8741004AGLFT	ICS8741004AGL	"Lead-Free" 24 Lead TSSOP	2500 Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
	T4C	5	Differential DC Characteristics Table - added NOTE.	
۸	T5	T5 6 AC Characteristics Table - corrected V _{HIGH} /V _{LOW} units from ps to mV.	AC Characteristics Table - corrected V _{HIGH} /V _{LOW} units from ps to mV.	10/31/07
A	A 8&9		Added HCSL Parameter Measurement Information.	10/31/07
		11	Updated Differential Clock Input Interface section.	
A	T3C	4 14 & 15	Added F_SEL Function Table. Power Considerations - updated Power Dissipation section to coincide with updates to the Calculations & Equations section on page 15.	5/29/08
А	Т9	17	Ordering Information - removed leaded devices. Updated data sheet format.	7/20/15

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA

Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com

Tech Support email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright ©2015 Integrated Device Technology, Inc.. All rights reserved.