

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

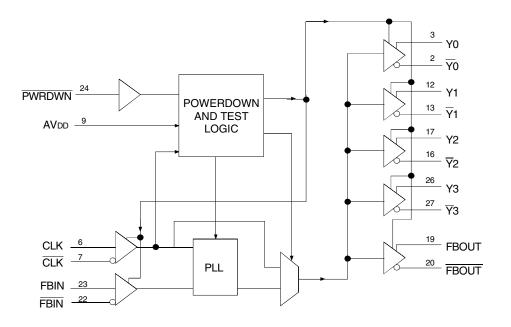
2.5V PHASE LOCKED LOOP CLOCK DRIVER

FEATURES:

- PLL clock driver for DDR (Double Data Rate) synchronous DRAM applications
- Spread spectrum clock compatible
- Operating frequency: 60MHz to 220MHz
- Low jitter (cycle-to-cycle): ±50ps
- Distributes one differential clock input to four differential clock outputs
- Enters low power mode and 3-state outputs when input CLK signal is less than 20MHz or PWRDWN is low
- Operates from a 2.5V supply
- Consumes <200µA quiescent current
- External feedback pins (FBIN, FBIN) are used to synchronize outputs to input clocks
- · Available in TSSOP package

APPLICATIONS:

 For all DDR1 speeds: PC1600 (DDR200), PC2100 (DDR266), PC2700 (DDR333), PC3200 (DDR400)

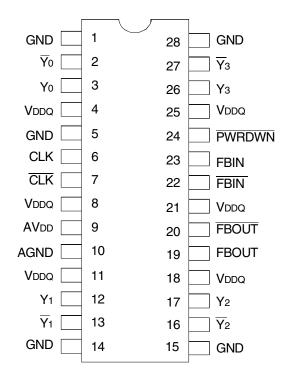

DESCRIPTION:

The CSPT855 is a high-performance, low-skew, low-jitter zero delay buffer that distributes one differential clock input pair(CLK, CLK) to four differential output pairs (Y [0:3], $\overline{Y$ [0:3]}) and one differential pair of feedback clock outputs (FBOUT, FBOUT). When PWRDWN is high, the outputs switch in phase and frequency with CLK. When PWRDWN is low, all outputs are disabled to a high-impedance state (3-state), and the PLL is shut down (low-power mode). The device also enters this low-power mode when the input frequency falls below a suggested detection frequency that is below 20MHz (typical 10MHz). An input frequency detection circuit detects the low-frequency condition, and after applying a >20MHz input signal, this detection circuit reactivates the PLL and enables the outputs.

When AV_DD is tied to GND, the PLL is turned off and by passed for test purposes. The CSPT855 is also able to track spread spectrum clocking for reduced EMI.

Since the CSPT855 is based on PLL circuitry, it requires a stabilization time to achieve phase-lock of the PLL. This stabilization time is required following power up.

FUNCTIONAL BLOCK DIAGRAM



1

The IDT logo is a registered trademark of Integrated Device Technology, Inc. COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

NOVEMBER 2008

PINCONFIGURATION

TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Max	Unit
Vddq, AVdd	Supply Voltage Range	-0.5 to +3.6	V
VI ⁽²⁾	Input Voltage Range	-0.5 to VDDQ + 0.5	V
Vo ⁽²⁾	Output Voltage Range	-0.5 to VDDQ + 0.5	V
Iк (Vı < 0 or	Input Clamp Current	±50	mA
VI < VDDQ)			
loк (Vo < 0 or	Output Clamp Current	±50	mA
Vo > Vddq)			
lo	Continuous Output Current	±50	mA
(VO = 0 to VDDQ)			
VDDQ or GND	Continuous Current	±100	mA
(³⁾ ац	Package Thermal Impedance	105.8	°C/W
Tstg	Storage Temperature Range	– 65 to +150	°C

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. This value is limited to 3.6V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

PIN DESCRIPTION

Pin Name	Pin Number	I/O	Description
AGND	10		Ground for analog supply
AVdd	9		Analog supply
CLK, CLK	6, 7	I	Differential clock input
FBIN, FBIN	22,23	I	Feedback differential clock input
FBOUT, FBOUT	19,20	0	Feedback differential clock output
GND	1, 5, 14, 15, 28		Ground
PWRDWN	24	I	Control input to turn device in the power-down mode
VDDQ	4, 8, 11, 18, 21, 25		I/O supply
Y[0:3]	3, 12, 17, 26	0	Buffered output copies of input clock, CLK
Y[0:3]	2, 13, 16, 27	0	Buffered output copies of input clock, CLK

FUNCTION TABLE⁽¹⁾

	INPUTS					OUTPUTS		
AVDD	PWRDWN	CLK	CLK	Y	Ϋ́	FBOUT	FBOUT	PLL
GND	Н	L	Н	L	Н	L	Н	Bypassed/OFF
GND	Н	Н	L	Н	L	Н	L	Bypassed/OFF
Х	L	L	Н	Z	Z	Z	Z	OFF
Х	L	Н	L	Z	Z	Z	Z	OFF
2.5V (nom)	Н	L	Н	L	Н	L	Н	ON
2.5V (nom)	Н	Н	L	Н	L	Н	L	ON
2.5V (nom)	Х	<20MHz ⁽²⁾	<20MHz ⁽²⁾	Z	Z	Z	Z	OFF

NOTES:

1. H = HIGH Voltage Level

L = LOW Voltage Level

Z = High-Impedance OFF-State

X = Don't Care

2. Typically 10MHz.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

Symbol	Paramet	er	Min.	Тур.	Max.	Unit
AVDD, VDDQ	Supply Voltage		2.3	—	2.7	V
VIL	Input Voltage LOW	CLK, <u>CLK</u> , FBIN, <u>FBIN</u>	—	—	Vddq/2-0.18	V
		PRWDWN	- 0.3	—	0.7	
Vih	Input Voltage HIGH	CLK, <u>CLK</u> , FBIN, <u>FBIN</u>	VDDQ/2+0.18	—	—	V
		PRWDWN	1.7	—	VDDQ + 0.3	
	DC Input Signal Voltage ⁽²⁾		- 0.3	_	VDDQ	V
Vid	Differential Input Signal Voltage ⁽³⁾	CLK, FBIN	0.36	—	VDDQ + 0.6	V
Vo(x)	Output Differential Cross-Voltage ⁽⁴⁾		VDDQ/2 - 0.2	Vdda/2	VDDQ/2 + 0.2	V
VI(X)	Input Differential Pair Cross-Voltage ⁽⁴⁾		VDDQ/2 - 0.2	—	VDDQ/2 + 0.2	V
Іон	HIGH-Level Output Current		—	—	- 12	mA
IOL	LOW-Level Output Current		—	—	12	mA
SR	Input Slew Rate, see figure 8		1	_	4	V/ns
TA	Operating Free-Air Temperature	Commercial	0	_	+70	°C
		Industrial	-40	_	+85	

NOTES:

1. Unused inputs must be held HIGH or LOW to prevent them from floating.

2. DC input signal voltage specifies the allowable DC execution of differential input.

3. Differential input signal voltage specifies the differential voltage | VTR - VCP | required for switching, where VTR is the true input level and VCP is the complementary input level.

4. Differential cross-point voltage is expected to track variations of Vodo and is the voltage at which the differential signals must be crossing.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Commercial: TA = 0°C to +70°C; Industrial: TA = -40°C to +85°C

Symbol	Parameter		Conditions	Min.	Тур.(1)	Max.	Unit
Vik	Input Voltage (All Inputs)		VDDQ = 2.3V, II = -18mA	_	_	- 1.2	V
Vон	HIGH-Level Output Voltage		VDDQ = Min. to Max., IOH = -1mA	Vddq-0.1	_	_	V
			VDDQ = 2.3V, IOH = -12mA	1.7	_	_	
Vol	LOW-Level Output Voltage		VDDQ = Min. to Max., IOL = 1mA	_	—	0.1	V
			VDDQ = 2.3V, IOL = 12mA	_	—	0.6	
Іон	HIGH-Level Output Curren	t	VDDQ = 2.3V, VO = 1V	- 18	- 32	_	mA
Iol	LOW-Level Output Current		VDDQ = 2.3V, VO = 1.2V	26	35	_	mA
Vod	Output Voltage Swing		Differential outputs are terminated with 120 Ω	1.1	_	VDDQ-0.4	V
Vox	Output Differential Cross Voltage ⁽²⁾		Differential outputs are terminated with 120 Ω	VDDQ/2-0.2	Vddq/2	VDDQ/2 + 0.2	V
lı	InputCurrent		VDDQ = 2.7V, VI = 0V to 2.7V	_	_	±10	μA
loz	High-Impedance State Output Current		VDDQ = 2.7V, VO = VDDQ or GND	_	_	±10	μA
IDD(PD)	Power-Down Current on Vi	DDQ and AVDD	CLK and CLK = 0MHz, PWRDWN = LOW,	_	100	200	μA
			Σ of IDD and AIDD				
IDD	Dynamic Current on VDDQ	CL = 14pF	fo = 167MHz, Differential outputs terminated with 120Ω	_	150	180	mA
	CL = 0pF		fo = 167MHz, Differential outputs terminated with 120Ω	_	130	160	
AIDD	Supply Current on Avdd		fo = 167MHz	_	8	10	mA
Сі	Input Capacitance		VDDQ = 2.5V, VI = VDDQ or GND	2	2.5	3	pF
Со	Output Capacitance		VDDQ = 2.5V, VI = VDDQ or GND	2.5	3	3.5	pF

NOTES:

1. All typical values are at respective nominal VDDQ.

2. Differential cross-point voltage is expected to track variation of VDDQ and is the voltage at which the differential signals must be crossing.

TIMING REQUIREMENTS

Symbol	Parameter	Min.	Max.	Unit
f CLK	Operating Clock Frequency	60	220	MHz
tDC	Input Clock Duty Cycle	40	60	%
t.	Stabilization Time (PLL Mode) ⁽¹⁾	—	10	μs
t.	Stabilization Time (Bypass Mode) ⁽²⁾	—	30	ns

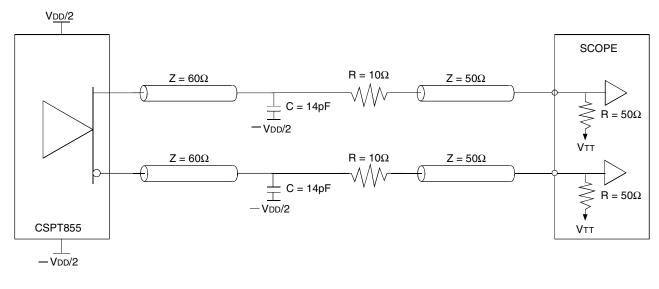
NOTES:

1. Recovery time required when the device goes from power-down mode into bypass mode (test mode with AVDD at GND).

2. Time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. For phase lock to be obtained, a fixed-frequency, fixed-phase reference signal must be present at CLK. Until phase lock is obtained, the specifications for propagation delay, skew, and jitter parameters given in the switching characteristics table are not applicable. This parameter does not apply for input modulation under SSC application.

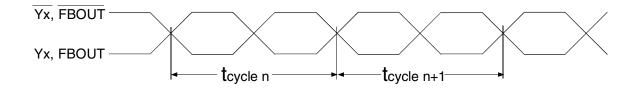
SWITCHINGCHARACTERISTICS

Symbol	Description		Test Conditions	Min.	Тур. ⁽¹⁾	Max.	Unit
tPLH ⁽²⁾	LOW to HIGH Level Propagation Delay Time		Test mode, CLK to any output	_	4.5	_	ns
tPHL ⁽²⁾	HIGH to LOW Level Propagation Delay Time		Test mode, CLK to any output	_	4.5	_	ns
UIT(PER) ⁽³⁾	Jitter (period), see figure 6		66MHz	- 55	_	55	ps
	~ · ~		100/ 133/ 167/ 200 MHz	- 35	_	35	1
tjit(cc) ⁽³⁾	Jitter (cycle-to-cycle), see figure 2		66MHz	- 60	_	60	ps
			100/ 133/ 167/ 200 MHz	-50	_	50	
UIT(HPER) ⁽³⁾	Half-Period Jitter, see figure 7		66MHz	-130	_	130	
			100MHz	- 90	_	90	ps
				- 75	_	75	1
tslr(0)	Output Clock Slew Rate (single-ended), see figure 8		Load: 120Ω/14pF	1	_	2	V/ns
			Load: 120Ω / 4pF	1	_	3	1
			66MHz	- 180	_	180	
		SSC Off	100/ 133 MHz	-130	_	130	
tD(Ø) ⁽³⁾	Dynamic Phase Offset (includes jitter)		167/ 200 MHz	- 90	—	90	ps
	see figure 4		66MHz	-230	_	230	
		SSC On	100/ 133 MHz	-170	_	170	1
			167/ 200 MHz	-100	_	100	1
t(Ø)	Static Phase Offset, see figure 3		66MHz	- 150	_	150	
			100/ 133/ 167 MHz	-100	_	100	ps
			200MHz	- 50	_	50	
tsk(0) ⁽⁴⁾	Output Skew, see figure 5			_	_	50	ps
tR,tF	Output Rise and Fall Times (20% to 80%)		Load: 120Ω / 14pF	650	_	900	ps

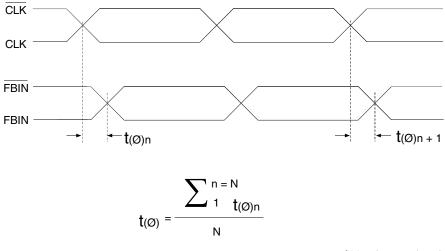

NOTES:

1. All typical values are at respective nominal VDDO.

2. Refers to transition of non-inverting output.


3. This parameter guaranteed by design but not production tested.

4. All differential output pins are terminated with 120 Ω / 14pF.


NOTE: 1. V(TT) = GND

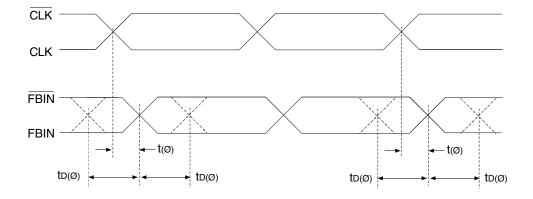
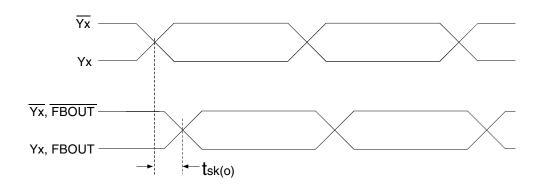
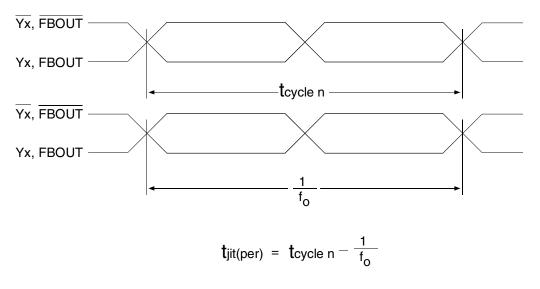
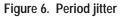

 $t_{jit(cc)} = t_{cycle n} - t_{cycle n+1}$

Figure 2. Cycle-to-Cycle jitter




(N is a large number of samples)


Figure 3. Static Phase Offset



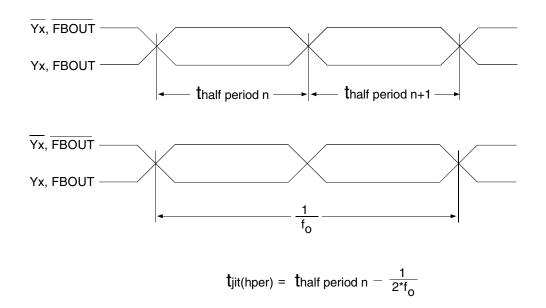


Figure 7. Half-Period jitter

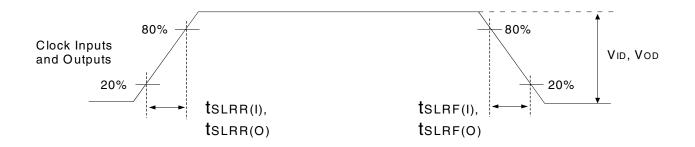
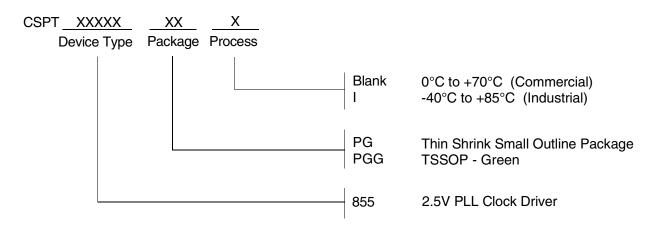



Figure 8. Input and Output Slew Rates

ORDERING INFORMATION

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 *for SALES:* 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com