阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

8-OUTPUT SMALL FORM FACTOR PCIE GEN 1-2-3 CLOCK GENERATOR

IDT6P41302

Description

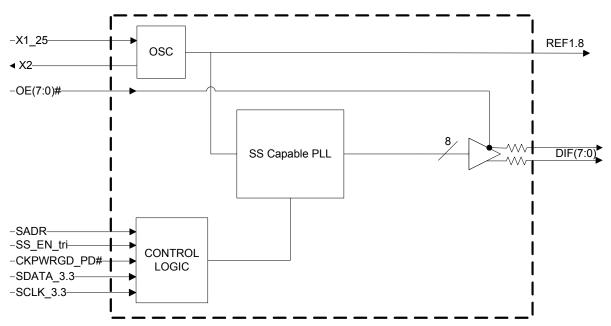
The IDT6P41302 is an 8-output very low power clock generator for PCIe Gen1-2-3 applications with integrated output terminations providing Zo=100 Ω . The device has 8 output enables for clock management and supports 2 different spread spectrum levels in addition to spread off.

Recommended Application

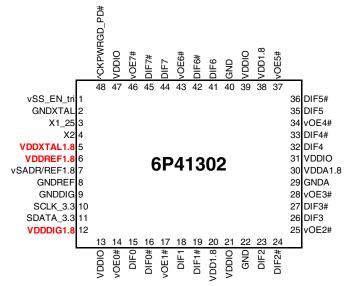
PCIe Gen1-2-3 Clock Generator for Freescale designs

Output Features

- 8 0.7V low-power HCSL-compatible (LP-HCSL) DIF pairs w/Zo=100 Ω
- 1 1.8V LVCMOS REF output w/Wake-On-LAN (WOL) support


Key Specifications

- DIF cycle-to-cycle jitter <50ps
- DIF output-to-output skew <50ps
- DIF phase jitter is PCle Gen1-2-3 compliant
- REF phase jitter is < 1.5ps RMS


Features/Benefits

- Integrated terminations provide 100Ω differential Zo; reduced component count and board space
- 1.8V operation; reduced power consuption
- Outputs can optionally be supplied from any voltage between 1.05 and 1.8V; maximum power savings
- OE# pins; support DIF power management
- LP-HCSL differential clock outputs; reduced power and board space
- Programmable Slew rate for each output; allows tuning for various line lengths
- Programmable output amplitude; allows tuning for various application environments
- DIF outputs blocked until PLL is locked; clean system start-up
- Selectable 0%, -0.25% or -0.5% spread on DIF outputs; reduces EMI
- External 25MHz crystal; supports tight ppm with 0 ppm synthesis error
- Configuration can be accomplished with strapping pins;
 SMBus interface not required for device control
- 3.3V tolerant SMBus interface works with legacy controllers
- Space saving 48-pin 6x6 mm VFQFPN; minimal board space
- Selectable SMBus addresses; multiple devices can easily share an SMBus segment

Block Diagram

Pin Configuration

48-pin VFQFPN, 6x6 mm, 0.4mm pitch

- vv prefix indicates internal 60KOhm pull down resistor
- v prefix indicates internal 120KOhm pull down resistor
- ^ prefix indicates internal 120KOhm pull up resistor

Pins 5, 6 and 12 are the Suspend voltage rails.

SMBus Address Selection Table

	SADR	Address	+ Read/Write Bit
State of SADR on first application	0	1101000	Х
of CKPWRGD PD#	1	1101010	х

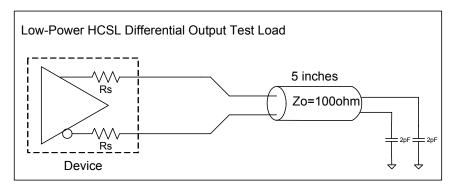
Power Management Table

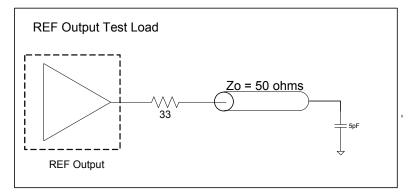
CKPWRGD PD#	SMBus		DIFx		REF
CKFWKGD_FD#	OE bit	OEx#	True O/P	Comp. O/P	IXLI
0	Х	Х	Low	Low	Hi-Z ¹
1	1	0	Running	Running	Running
1	0	1	Low	Low	Low

^{1.} REF is Hi-Z until the 1st assertion of CKPWRGD_PD# high. After this, when CKPWRG_PD# is low, REF is Low.

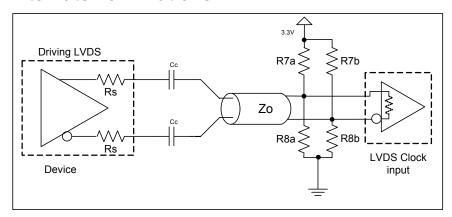
Power Connections

Pin Number			Description
VDD	VDDIO	GND	Description
5		2	XTAL OSC
6		8	REF Power
12		9	Digital (dirty) Power
20,38	13,21,31,39, 47	22,29,40	DIF outputs
30		29	PLL Analog


Pin Descriptions


PIN#	PIN NAME	TYPE	DESCRIPTION
		LATCHED	Latched select input to select spread spectrum amount at initial power up :
1	vSS_EN_tri	IN	1 = -0.5% spread, M = -0.25%, 0 = Spread Off
2	GNDXTAL	GND	GND for XTAL
3	X1 25	IN	Crystal input, Nominally 25.00MHz.
4	X2	OUT	Crystal output.
5	VDDXTAL1.8	PWR	Power supply for XTAL, nominal 1.8V
6	VDDREF1.8	PWR	VDD for REF output. nominal 1.8V.
7	vSADR/REF1.8	LATCHED I/O	Latch to select SMBus Address/1.8V LVCMOS copy of X1 pin.
8	GNDREF	GND	Ground pin for the REF outputs.
9	GNDDIG	GND	Ground pin for digital circuitry
10	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
11	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
12	VDDDIG1.8	PWR	1.8V digital power (dirty power)
13	VDDIO	PWR	Power supply for differential outputs
14	vOE0#	IN	Active low input for enabling DIF pair 0. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
15	DIF0	OUT	Differential true clock output
16	DIF0#	OUT	Differential Complementary clock output
17	vOE1#	IN	Active low input for enabling DIF pair 1. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
18	DIF1	OUT	Differential true clock output
19	DIF1#	OUT	Differential Complementary clock output
20	VDD1.8	PWR	Power supply, nominal 1.8V
21	VDDIO	PWR	Power supply for differential outputs
22	GND	GND	Ground pin.
23	DIF2	OUT	Differential true clock output
24	DIF2#	OUT	Differential Complementary clock output
25	vOE2#	IN	Active low input for enabling DIF pair 2. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
26	DIF3	OUT	Differential true clock output
27	DIF3#	OUT	Differential Complementary clock output
28	vOE3#	IN	Active low input for enabling DIF pair 3. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
29	GNDA	GND	Ground pin for the PLL core.
30	VDDA1.8	PWR	1.8V power for the PLL core.
31	VDDIO	PWR	Power supply for differential outputs
32	DIF4	OUT	Differential true clock output
33	DIF4#	OUT	Differential Complementary clock output
34	vOE4#	IN	Active low input for enabling DIF pair 4. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
35	DIF5	OUT	Differential true clock output
36	DIF5#	OUT	Differential Complementary clock output
37	vOE5#	IN	Active low input for enabling DIF pair 5. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
38	VDD1.8	PWR	Power supply, nominal 1.8V
39	VDDIO	PWR	Power supply for differential outputs

Pin Descriptions (cont.)


PIN#	PIN NAME	TYPE	DESCRIPTION
40	GND	GND	Ground pin.
41	DIF6	OUT	Differential true clock output
42	DIF6#	OUT	Differential Complementary clock output
43	vOE6#	IN	Active low input for enabling DIF pair 6. This pin has an internal pull-down.
43	VOE0#	IIN	1 =disable outputs, 0 = enable outputs
44	DIF7	OUT	Differential true clock output
45	DIF7#	OUT	Differential Complementary clock output
46	vOE7#	IN	Active low input for enabling DIF pair 7. This pin has an internal pull-down.
40	VOE7#	IIN	1 =disable outputs, 0 = enable outputs
47	VDDIO	PWR	Power supply for differential outputs
			Input notifies device to sample latched inputs and start up on first high
48	^CKPWRGD_PD#	IN	assertion. Low enters Power Down Mode, subsequent high assertions exit
			Power Down Mode. This pin has internal pull-up resistor.

Test Loads

Alternate Terminations

Driving LVDS inputs with the 6P41302

	,	Value	
	Receiver has	Receiver does not	
Component	termination	have termination	Note
R7a, R7b	10K ohm	140 ohm	
R8a, R8b	5.6K ohm	75 ohm	
Cc	0.1 uF	0.1 uF	
Vcm	1.2 volts	1.2 volts	

5

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDT6P41302. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
1.8V Supply Voltage	VDDxx	Applies to VDD, VDDA and VDDIO	-0.5		2.5	V	1,2
Input Voltage	V_{IN}		-0.5		$V_{DD}+0.5V$	V	1, 3
Input High Voltage, SMBus	V_{IHSMB}	SMBus clock and data pins			3.6V	V	1
Storage Temperature	Ts		-65		150	ç	1
Junction Temperature	Tj				125	ç	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Current Consumption

TA = T_{COM} or T_{IND}. Supply Voltage per VDD, VDDIO of normal operation conditions, See Test Loads for Loading Conditions

COM - TIND, - apply - and g - p - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	I _{DDAOP}	VDDA, All outputs active @100MHz		6	8	mA	1
Operating Supply Current	I _{DDOP}	VDD, All outputs active @100MHz		12	15	mA	1
	I _{DDIOOP}	VDDIO, All outputs active @100MHz		28	35	mA	1
Suspend Supply Current	I _{DDSUSP}	Pins 5, 6, and 12, PD#=0, Wake-On-LAN enabled		6	8	mA	1, 2
Powerdown Current	I _{DDPD}	VDDA, VDD, Outputs Low/Low	·	0.6	1	mA	1, 3
Fowerdown Current	I _{DDIODZ}	VDDIO,Outputs Low/Low		0	0.5	mA	1, 3

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Differential Output Duty Cycle, Jitter, and Skew Characteristics

 $TA = T_{COM}$ or T_{IND} ; Supply Voltage per VDD, VDDIO of normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	49.9	55	%	1
Skew, Output to Output	t _{sk3}	V _T = 50%		37	50	ps	1
Jitter, Cycle to cycle	t _{icyc-cyc}	PLL mode		12	50	ps	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 2.5V.

²This is the current required to have the REF output running in suspend mode (Byte 3, bit 5 = 1)

 $^{^{3}}PD# = 0$ and Byte 3, bit 5 = 0.

² Measured from differential waveform

Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating Conditions

 $TA = T_{COM}$ or T_{IND} ; Supply Voltage per VDD, VDDIO of normal operation conditions, See Test Loads for Loading Conditions

171 - TOOM OF TIND; Cupply V	itago por vi	DD, VDDIO of Hormal operation conditions, See Test	LOUGUS TOT LO	daining 00	ilaitionio		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
1.8V Supply Voltage	VDD	Supply voltage for core, analog and single-ended LVCMOS outputs	1.7	1.8	1.9	٧	1
IO Supply Voltage	VDDIO	Supply voltage for differential Low Power Outputs	0.9975	1.05	1.9	V	1
Ambient Operating							1
Temperature	T _{IND}	Industrial range	-40	25	85	°C	'
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus	0.75 V _{DD}		$V_{DD} + 0.3$	V	1
Input Mid Voltage	V_{IM}	Single-ended tri-level inputs ('_tri' suffix)	$0.4~V_{DD}$		0.6 V _{DD}	V	1
Input Low Voltage	V_{IL}	Single-ended inputs, except SMBus	-0.3		0.25 V _{DD}	V	1
Schmitt Trigger Postive Going Threshold Voltage	V_{T+}	Single-ended inputs, where indicated	0.4 V _{DD}		0.7 V _{DD}	V	1
Schmitt Trigger Negative Going Threshold Voltage	V _T .	Single-ended inputs, where indicated	0.1 V _{DD}		0.4 V _{DD}	٧	1
Hysteresis Voltage	V_{H}	V _{T+} - V _{T-}	0.1 V _{DD}		0.4 V _{DD}	V	1
Output High Voltage	V_{IH}	Single-ended outputs, except SMBus. I _{OH} = -2mA	V _{DD} -0.45			V	1
Output Low Voltage	V_{IL}	Single-ended outputs, except SMBus. I _{OL} = -2mA			0.45	V	1
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	1
Innut Current		Single-ended inputs					
Input Current	I _{INP}	$V_{IN} = 0 \text{ V}$; Inputs with internal pull-up resistors	-200	200	uA	1	
		V _{IN} = VDD; Inputs with internal pull-down resistors					
Input Frequency	F _{in}	XTAL, or X1 input	23	25	27	MHz	1
Pin Inductance	L _{pin}				7	nH	1
O-m-sit-m-s	C _{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.6	1.8	ms	1,2
SS Modulation Frequency	f _{MOD}	Allowable Frequency (Triangular Modulation)	31	31.6	32	kHz	1
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	1	2	3	clocks	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of single-ended control inputs			5	ns	1,2
Trise	t _R	Rise time of single-ended control inputs			5	ns	1,2
SMBus Input Low Voltage	V_{ILSMB}	$V_{DDSMB} = 3.3V$, see note 4 for $V_{DDSMB} < 3.3V$			0.8	V	1,4
SMBus Input High Voltage	V_{IHSMB}	$V_{DDSMB} = 3.3V$, see note 5 for $V_{DDSMB} < 3.3V$	2.1		3.6	V	1,5
SMBus Output Low Voltage	V_{OLSMB}	@ I _{PULLUP}			0.4	V	1
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	1
Nominal Bus Voltage	V_{DDSMB}		1.7		3.6	V	1
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			400	kHz	1

¹ Guaranteed by design and characterization, not 100% tested in production.

² Control input must be monotonic from 20% to 80% of input swing.

³ Time from deassertion until outputs are >200 mV

 $^{^{4}}$ For V_{DDSMB} < 3.3V, V_{ILSMB} <= 0.35 V_{DDSMB}

 $^{^{5}}$ For $V_{DDSMB} < 3.3V$, $V_{IHSMB} >= 0.65V_{DDSMB}$

Electrical Characteristics-DIF 0.7V Low Power HCSL Outputs

TA = T_{COM} or T_{IND}. Supply Voltage per VDD, VDDIO of normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on 3.0V/ns setting	2	2.7	4	V/ns	1, 2, 3
Siew rate	1 11	Scope averaging on 2.0V/ns setting	1	2	3	V/ns	1, 2, 3
Slew rate matching	∆Trf	Slew rate matching, Scope averaging on		6.5	20	%	1, 2, 4
Voltage High	V _{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	784	850	mV	1,7,8
Voltage Low	V_{LOW}	averaging on)	-150	-33	150	'''	1
Max Voltage	Vmax	Measurement on single ended signal using		816	1150	mV	1
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	-42		IIIV	1
Vswing	Vswing	Scope averaging off	300	1634		mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	427	550	mV	1, 5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		12	140	mV	1, 6

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Differential Output Phase Jitter Parameters

TA = T_{COM} or T_{IND}. Supply Voltage per VDD, VDDIO of normal operation conditions, See Test Loads for Loading Conditions

						INDUSTR		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	Y LIMIT	UNITS	NOTES
Phase Jitter, PCI Express	t _{jphPCleG1}	PCIe Gen 1	20	25	32	86	ps (p-p)	1,2,3,5
	+	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz	0.8	0.9	1	3	ps (rms)	1,2,5
	^I jphPCleG2	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)	1.5	1.6	1.8	3.1	ps (rms)	1,2,5
	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)	0.34	0.36	0.43	1	ps (rms)	1,2,4,5

¹ Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ -Vcross to be smaller than Vcross absolute.

 $^{^{7}}$ 660mV Vhigh is the minimum when VDDIO is >= 1.05V +/-5%. If VDDIO is < 1.05V +/-5%, the minimum Vhigh will be VDDIOmin - 250mV. For example for VDDIO = 0.9V +/-5%, VHIGHmin will be 860mV - 250mV = 610mV.

⁸ At default SMBus settings.

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Calculated from Intel-supplied Clock Jitter Tool

⁵ Applies to all differential outputs

Electrical Characteristics-REF

TA = T_{COM} or T_{IND}; Supply Voltage per VDD of normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX		MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values		0		ppm	1,2
Clock period	T _{period}	25 MHz output nominal		40		ns	1,2
Rise/Fall Slew Rate	t _{rf1}	$V_{OH} = VDD-0.45V, V_{OL} = 0.45V$	0.5	1.3	2.5	V/ns	1,3
Duty Cycle	d _{t1X}	$V_T = VDD/2 V$	45	49.1	55	%	1,4
Duty Cycle Distortion	d _{tcd}	$V_T = VDD/2 V$	0	2	3	%	1,5
Jitter, cycle to cycle	t _{jcyc-cyc}	$V_T = VDD/2 V$		19	250	ps	1,4
Noise floor	t _{jdBc1k}	1kHz offset		-130	-105	dBc	1,4
Noise floor	t _{jdBc10k}	10kHz offset to Nyquist		-140	-120	dBc	1,4
Jitter, phase	t _{iphREF}	12kHz to 5MHz		0.63	1.5	ps (rms)	1,4

¹Guaranteed by design and characterization, not 100% tested in production.

Clock Periods-Differential Outputs with Spread Spectrum Disabled

				Me	easurement W	indow				
	Center	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC OFF	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
DIF	100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2

Clock Periods-Differential Outputs with Spread Spectrum Enabled

Ī			Measurement Window								
		Center	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
	SSC ON	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
	DIF	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is trimmed to 25.00 MHz

³ Typical value occurs when REF slew rate is set to default value

⁴ When driven by a crystal.

⁵ When driven by an external oscillator via the X1 pin. X2 should be floating in this case.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is trimmed to 25.00 MHz

General SMBus Serial Interface Information

How to Write

- · Controller (host) sends a start bit
- · Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Blo	ock '	Write Operation
Controll	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave A	Address		
WR	WRite		
			ACK
Beginning	g Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnin	ig Byte N		
			ACK
0		×	
0		X Byte	0
0		Ö	0
			0
Byte N	Byte N + X - 1		
			ACK
Р	stoP bit		

Note: Read/Write address is latched on SADR pin.

How to Read

- · Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

	Index Block F	Read O	peration
Cor	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
RT	RT Repeat starT		
SI	ave Address		
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		<u>e</u>	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

SMBus Table: Output Enable Register 1

Byte 0	Name	Control Function	Туре	0	1	Default
Bit 7	DIF OE7	Output Enable	RW	Low/Low	Enabled	1
Bit 6	DIF OE6	Output Enable	RW	Low/Low	Enabled	1
Bit 5	DIF OE5	Output Enable	RW	Low/Low	Enabled	1
Bit 4	DIF OE4	Output Enable	RW	Low/Low	Enabled	1
Bit 3	DIF OE3	Output Enable	RW	Low/Low	Enabled	1
Bit 2	DIF OE2	Output Enable	RW	Low/Low	Enabled	1
Bit 1	DIF OE1	Output Enable	RW	Low/Low	Enabled	1
Bit 0	DIF OE0	Output Enable	RW	Low/Low	Enabled	1

^{1.} A low on these bits will overide the OE# pin and force the differential output Low/Low

SMBus Table: SS Readback and Control Register

Byte 1	Name	Control Function	Type	0	1	Default
Bit 7	SSENRB1	SS Enable Readback Bit1	R	00' for SS_EN_tri =	0, '01' for SS_EN_tri	Latch
Bit 6	SSENRB1	SS Enable Readback Bit0	R	= 'M', '11 for SS_EN_tri = '1'		Latch
Bit 5	SSEN_SWCNTRL	Enable SW control of SS	RW		Values in B1[4:3] control SS amount.	0
Bit 4	SSENSW1	SS Enable Software Ctl Bit1	RW ¹	00' = SS Off, '0	1' = -0.25% SS,	0
Bit 3	SSENSW0	SS Enable Software Ctl Bit0	RW ¹	'10' = Reserved	, '11'= -0.5% SS	0
Bit 2		Reserved				1
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	00 = 0.6V	01 = 0.7V	1
Bit 0	AMPLITUDE 0	Controls Output Amplitude	RW	10= 0.8V	11 = 0.9V	0

^{1.} B1[5] must be set to a 1 for these bits to have any effect on the part.

SMBus Table: DIF Slew Rate Control Register

Byte 2	Name	Control Function	Туре	0	1	Default
Bit 7	SLEWRATESEL DIF7	Adjust Slew Rate of DIF7	RW	2.0V/ns	3.0V/ns	1
Bit 6	SLEWRATESEL DIF6	Adjust Slew Rate of DIF6	RW	2.0V/ns	3.0V/ns	1
Bit 5	SLEWRATESEL DIF5	Adjust Slew Rate of DIF5	RW	2.0V/ns	3.0V/ns	1
Bit 4	SLEWRATESEL DIF4	Adjust Slew Rate of DIF4	RW	2.0V/ns	3.0V/ns	1
Bit 3	SLEWRATESEL DIF3	Adjust Slew Rate of DIF3	RW	2.0V/ns	3.0V/ns	1
Bit 2	SLEWRATESEL DIF2	Adjust Slew Rate of DIF2	RW	2.0V/ns	3.0V/ns	1
Bit 1	SLEWRATESEL DIF1	Adjust Slew Rate of DIF1	RW	2.0V/ns	3.0V/ns	1
Bit 0	SLEWRATESEL DIF0	Adjust Slew Rate of DIF0	RW	2.0V/ns	3.0V/ns	1

SMBus Table: Nominal Vhigh Amplitude Control/ REF Control Register

Byte 3	Name	Control Function	Type	0	1	Default
Bit 7	REF	Slew Rate Control	RW	00 = 0.9 V/ns	01 =1.3V/ns	0
Bit 6	KEF	Siew Nate Control		10 = 1.6V/ns	11 = 1.8V/ns	1
Bit 5	REF Power Down Function	Wake-on-Lan Enable for REF	RW	REF does not run in	REF runs in Power	0
	TEL 1 OWEL DOWN 1 UNELION	Wake-on-Lan Enable for KET	1000	Power Down	Down	
Bit 4	REF OE	REF Output Enable	RW	Low	Enabled	1
Bit 3		Reserved				1
Bit 2		Reserved				1
Bit 1	Reserved					
Bit 0		Reserved				1

Byte 4 is Reserved

SMBus Table: Revision and Vendor ID Register

Byte 5	Name	Control Function	Туре	0	1	Default
Bit 7	RID3		R			0
Bit 6	RID2	Revision ID	R	A rev = 0000		0
Bit 5	RID1	Vension in	R			0
Bit 4	RID0		R		0	
Bit 3	VID3		R			0
Bit 2	VID2	VENDOR ID	R	0001 = IDT		0
Bit 1	VID1	VENDOR ID	R			0
Bit 0	VID0		R			1

SMBus Table: Device Type/Device ID

Byte 6	Name	Control Function	Туре	0	1	Default
Bit 7	Device Type1	Device Type	R	00 = FGV, 01 = DBV,		0
Bit 6	Device Type0	Device Type	R	10 = DMV, 1	0	
Bit 5	Device ID5		R			0
Bit 4	Device ID4		R			0
Bit 3	Device ID3	Device ID	R	001000 hina	ny or 08 hay	1
Bit 2	Device ID2	Device iD	R	001000 billa	001000 binary or 08 hex	
Bit 1	Device ID1		R			0
Bit 0	Device ID0		R			0

SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Туре	0	1	Default	
Bit 7	Reserved						
Bit 6	Reserved						
Bit 5	Reserved						
Bit 4	BC4		RW			0	
Bit 3	BC3		RW	Writing to this regist	er will configure how	1	
Bit 2	BC2	Byte Count Programming	RW	many bytes will be i	read back, default is	0	
Bit 1	BC1		RW	= 8 b	ytes.	0	
Bit 0	BC0		RW	1		0	

Recommended Crystal Characteristics (3225 package)

•		•	•
PARAMETER	VALUE	UNITS	NOTES
Frequency	25	MHz	1
Resonance Mode	Fundamental	1	1
Frequency Tolerance @ 25°C	±20	PPM Max	1
Frequency Stability, ref @ 25°C Over Operating Temperature Range	±20	PPM Max	1
Temperature Range (commerical)	0~70	°C	1
Temperature Range (industrial)	-40~85	°C	2
Equivalent Series Resistance (ESR)	50	Ω Max	1
Shunt Capacitance (C _O)	7	pF Max	1
Load Capacitance (C _L)	8	pF Max	1
Drive Level	0.3	mW Max	1
Aging per year	±5	PPM Max	1

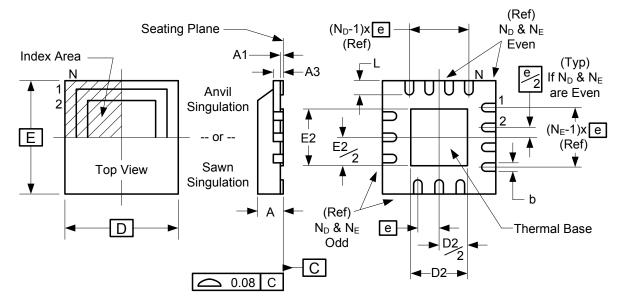
Notes:

- 1. Fox Electronics 603-25-150 or equivalent
- 2. For I-temp, contact Fox Electronics at Foxonline.com

Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP.	UNITS	NOTES
Thermal Resistance	θ_{JC}	Junction to Case	NDG48	33	°C/W	1
	θ_{Jb}	Junction to Base		2.1	°C/W	1
	θ_{JA0}	Junction to Air, still air		37	°C/W	1
	θ_{JA1}	Junction to Air, 1 m/s air flow		30	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow		27	°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow		26	°C/W	1

¹ePad soldered to board


Marking Diagram

IDT6P413 02NDGI YYWW\$ • LOT

Notes:

- 2. 'G' denotes RoHS compliant package.
- 3. 'I' deontes industrial temperature grade.
- 3. '\$' is the mark code.
- 4. 'YYWW' is the last two digits of the year and week that the part was assembled.
- 6. 'LOT' is the lot number.

Package Outline and Package Dimensions (NDG48)

	Millimeters		
Symbol	Min	Max	
Α	0.8	1.0	
A1	0	0.05	
A3	0.20 Reference		
b	0.18	0.3	
е	0.40 BASIC		
D x E BASIC	6.00 x 6.00		
D2 MIN./MAX.	3.95	4.25	
E2 MIN./MAX.	3.95	4.25	
L MIN./MAX.	0.30	0.50	
N_D	12		
N _E	12		

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
6P41302NDGI	Trays	48-pin VFQFPN	-40 to +85° C
6P41302NDGI8	Tape and Reel	48-pin VFQFPN	-40 to +85° C

"G" after the two-letter package code denotes Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

14

IDT6P41302

8-OUTPUT SMALL FORM FACTOR PCIE GEN 1-2-3 CLOCK GENERATOR

Revision History

Rev.	Issue Date	Intiator	Description	Page #
Α	2/22/2013	RDW	Initial release - final	

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775 For Tech Support

www.idt.com/go/clockhelp pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

