

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

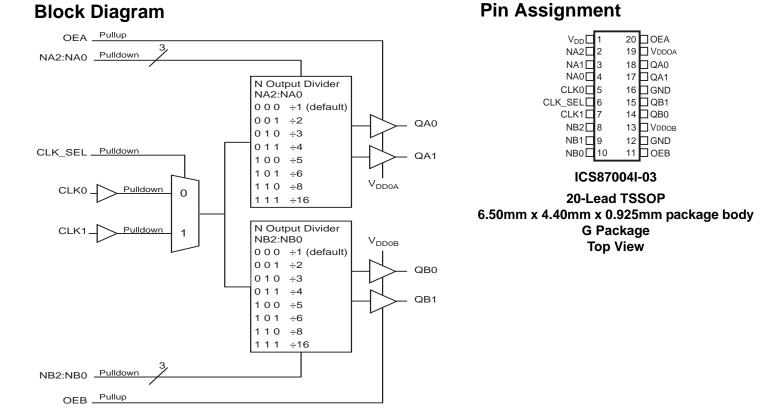
3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

LVCMOS/ LVTTL Fanout Buffer/ Divider

ICS87004I-03

DATA SHEET


General Description

The ICS87004I-03 is a low skew, ÷1, ÷2 ÷3, ÷4 ÷5, ÷6 ÷8, ÷16 LVCMOS/LVTTL Fanout Buffer/Divider. The ICS87004I-03 has selectable clock inputs that accept single ended input levels. Output enable pin controls whether the output is in the active or high impedance state.

The ICS87004I-03 is characterized at 3.3V, 2.5V and mixed 3.3V,2.5V, 3.3V,1.8V, 2.5V,1.8V input/output supply operating modes.Guaranteed bank, output, and part-to-part skew characteristics make the ICS87004I-03 ideal for those applications demanding well defined performance and repeatability.

Features

- Two banks of two LVCMOS/LVTTL outputs
- Selectable LVCMOS/LVTTL clock inputs
- LVCMOS_CLK supports the following input types: LVCMOS, LVTTL
- Maximum output frequency: 250MHz
- Output skew: 40ps (typical)
- Bank skew: 20ps (typical)
- Part-to-part skew: 60ps (typical)
- Power supply modes: CORE / OUTPUT 3.3V / 3.3V 3.3V / 2.5V 3.3V / 1.8V 2.5V / 2.5V 2.5V / 1.8V
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

ICS87004BGI-03 REVISION A FEBRUARY 22, 2012

1

©2012 Integrated Device Technology, Inc.

Number	Name	1	Гуре	Description
1	V _{DD}	Power		Power supply pin.
2, 3, 4	NA2, NA1, NA0	Input	Pulldown	N divider select pins for Bank A outputs. LVCMOS / LVTTL interface levels.
5, 7	CLK0, CLK1	Input	Pulldown	Single-ended clock inputs. LVCMOS / LVTTL interface levels.
6	CLK_SEL	Input	Pulldown	Input clock selection. LVCMOS / LVTTL interface levels. See Table 6.
8, 9, 10	NB2, NB1, NB0	Input	Pulldown	N divider select pins for Bank B outputs. LVCMOS / LVTTL interface levels.
11	OEB	Input	Pullup	Output enable control input for Bank B outputs. LVCMOS / LVTTL interface levels. See Table 5.
12, 16	GND	Power		Power supply core ground.
13	V _{DDOB}	Power		Bank B output supply pin.
14, 15	QB0, QB1	Output		Single-ended Bank B clock outputs. LVCMOS / LVTTL interface levels.
17, 18	QA1, QA0	Output		Single-ended Bank A clock outputs. LVCMOS / LVTTL interface levels.
19	V _{DDOA}	Power		Bank A output supply pin.
20	OEA	Input	Pullup	Output enable control input for Bank A outputs. LVCMOS / LVTTL interface levels. See Table 4.

Table 1. Pin Descriptions

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
R _{PULLUP}	Input Pullup Resistor			51		kΩ
		$V_{DDOA} = V_{DDOB} = 3.465V$		10		pF
C _{PD}	Power Dissipation Capacitance (per output)	$V_{DDOA} = V_{DDOB} = 2.625V$		10		pF
		$V_{DDOA} = V_{DDOB} = 1.95V$		10		pF
		$V_{DDOA} = V_{DDOB} = 3.3V \pm 5\%$		17		Ω
R _{OUT}	Output Impedance	$V_{DDOA} = V_{DDOB} = 2.5V \pm 5\%$		20		Ω
		$V_{DDOA} = V_{DDOB} = 1.8V \pm 0.15V$		28		Ω

Function Table

Table 3. Programmable Output Divider Function Table

	Inputs			MAX Output Frequency
NX2	NX1	NX0	N Divider Value	(MHz)
0	0	0	÷1 (default)	250
0	0	1	÷2	125
0	1	0	÷3	83.333
0	1	1	÷4	62.5
1	0	0	÷5	50
1	0	1	÷6	41.667
1	1	0	÷8	31.25
1	1	1	÷16	15.625

NOTE: Bank A and Bank B outputs are only synchronous if the same divider value is selected (NA2:0=NB2:0).

Table 4. OEA Function Table

OEA	Function
0	Bank A outputs are disabled in high-impedance state.
1 (default)	Bank A outputs are enabled

Table 5. OEB Function Table

OEB	Function
0	Bank B outputs are disabled in high-impedance state.
1 (default)	Bank B outputs are enabled

Table 6. Input Clock Selection

CLK_SEL	Input Clock
0 (default)	CLK0
1	CLK1

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, V _O	-0.5V to V _{DDOX} + 0.5V
Package Thermal Impedance, θ_{JA}	91.1°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 7A. Power Supply DC Characteristics, V_{DD} = 3.3V±5%, V_{DDOA} = V_{DDOB} = 3.3V±5% or 2.5V±5% or 1.8V±0.15V, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Power Supply Voltage		3.135	3.3	3.465	V
			3.135	3.3	3.465	V
V _{DDOA,} V _{DDOB}	Output Supply Voltage		2.375	2.5	2.625	V
- DDOB			1.65	1.8	1.95	V
I _{DD}	Power Supply Current				55	mA
I _{DDOA,} I _{DDOB}	Output Supply Current	No input clock or output loading			2	mA

Table 7B. Power Supply DC Characteristics, V_{DD} = 2.5V±5%, V_{DDOA} = V_{DDOB} = 2.5V±5% or 1.8V±0.15V, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Power Supply Voltage		2.375	2.5	2.625	V
V _{DDOA,}	Output Supply Current		2.375	2.5	2.625	V
V _{DDOB}	Output Supply Current		1.65	1.8	1.95	V
I _{DD}	Power Supply Current				55	mA
I _{DDOA,} I _{DDOB}	Output Supply Current	No input clock or output loading			2	mA

Table 7C. LVCMOS/LVTTL DC Characteristics, V_{DD} = 3.3V±5%, or 2.5V±5%, V_{DDOA} = V_{DDOB} = 3.3V±5% or 2.5V±5% or 1.8V±0.15V, T_A = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
M	Input High Voltage		V _{DD} = 3.3V	2		V _{DD} + 0.3	V
V _{IH}	input nigh voi	lage	V _{DD} = 2.5V	1.7		V _{DD} + 0.3	V
			V _{DD} = 3.3V	-0.3		0.8	V
V _{IL}	Input Low Voltage		V _{DD} = 2.5V	-0.3		0.7	V
	Input	NA[2:0], NB[2:0], CLK[0:1], CLK_SEL	V _{DD} = V _{IN} = 3.465V or 2.625V			150	μA
	High Current	OEA, OEB	V _{DD} = V _{IN} = 3.465V or 2.625V			5	μA
		NA[2:0], NB[2:0], CLK[0:1], CLK_SEL	V _{DD} = 3.465V or 2.625V, V _{IN} = 0V	-5			μA
	Low Current	OEA, OEB	$V_{DD} = 3.465 V \text{ or } 2.625 V, V_{IN} = 0 V$	-150			μA
			$V_{DDOA} = V_{DDOB} = 3.3V$	2.6			V
V _{OH}	Output High Vo	oltage; NOTE 1	$V_{DDOA} = V_{DDOB} = 2.5V$	1.8			V
			$V_{DDOA} = V_{DDOB} = 1.8V$	1.25			V
V		oltage; NOTE 1	$V_{DDOA} = V_{DDOB} = 3.3$ Vor 2.5V			0.5	V
V _{OL}			$V_{DDOA} = V_{DDOB} = 1.8V$			0.4	V
I _{OZL}	Output Hi-Z Current Low			-5			μA
I _{OZH}	Output Hi-Z Cu	urrent Low				5	μA

NOTE 1: Outputs terminated with 50 Ω to V_{DDOX}/2. See Parameter Measurement Information, Output Load Test Circuit diagrams.

AC Electrical Characteristics

Table 8A. AC Characteristics, $V_{DD} = V_{DDOA} = V_{DDOB} = 3.3V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency				250	MHz
t _{PD} Pr	Propgation Delay, NOTE 1	N≤ 2	3.8	4.8	5.8	ns
	Flopgation Delay, NOTE 1	N>2	4.0	5.5	7.0	ns
<i>t</i> sk(o)	Output Skew; NOTE 2, 3			40	200	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 3, 4			50	300	ps
<i>t</i> sk(b)	Bank Skew: NOTE 3, 5			20	85	ps
t _R / t _F	OutputRise/Fall Time	20% to 80%	400	700	900	ps
odo		N=1	35		55	%
odc	Output Duty Cycle	N>1	40		60	%
t _{EN}	Output Enable Time; NOTE 6				5	ns
t _{DIS}	Output Disable Time; NOTE 6				5	ns

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at $fin \le 250$ MHz.

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDOX}/2$ of the output.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOX}/2.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDOX}/2$.

NOTE: 5 Defined as skew within a bank with equal load conditions.

NOTE 6: These parameters are guaranteed by characterization. Not tested in production.

Table 8B. AC Characteristics, V_{DD} = 3.3V±5%, V_{DDOA} = V_{DDOB} = 2.5V±5%, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
fout	Output Frequency				250	MHz
+	Propgation Delay, NOTE 1	N≤ 2	4.0	5.0	6.0	
t _{PD}	Propgation Delay, NOTE 1	N>2	4.5	6.0	7.5	ns
<i>t</i> sk(o)	Output Skew; NOTE 2, 3			40	200	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 3, 4			60	550	ps
<i>t</i> sk(b)	Bank Skew: NOTE 3, 5			20	85	ps
t _R / t _F	OutputRise/Fall Time	20% to 80%	400	800	1200	ps
ada		N=1	35		55	%
odc	Output Duty Cycle	N>1	40		60	%
t _{EN}	Output Enable Time; NOTE 6				5	ns
t _{DIS}	Output Disable Time; NOTE 6				5	ns

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at $f in \le 250 MHz$.

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDOX}/2$ of the output.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOX}/2.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDOX}/2$.

NOTE: 5 Defined as skew within a bank with equal load conditions.

NOTE 6: These parameters are guaranteed by characterization. Not tested in production.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency				250	MHz
t _{PD}	Propgation Delay, NOTE 1	N≤ 2	4.0	5.5	7.0	ns
		N>2	4.8	6.3	7.8	ns
<i>t</i> sk(o)	Output Skew; NOTE 2, 3			40	200	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 3, 4			60	600	ps
<i>t</i> sk(b)	Bank Skew: NOTE 3, 5			20	85	ps
t _R / t _F	OutputRise/Fall Time	20% to 80%	0.4	1	2.5	ns
odc	Output Duty Cycle	N=1	35		55	%
		N>1	40		60	%
t _{EN}	Output Enable Time; NOTE 6				5	ns
t _{DIS}	Output Disable Time; NOTE 6				5	ns

Table 8C. AC Characteristics, V_{DD} = 3.3V±5%, V_{DDOA} = V_{DDOB} = 1.8V±0.15V, T_A = -40°C to 85°C

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at $fin \le 250MHz$

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDOX}/2$ of the output.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOX}/2.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDOX}/2$.

NOTE: 5 Defined as skew within a bank with equal load conditions.

NOTE 6: These parameters are guaranteed by characterization. Not tested in production.

Table 8D. AC Characteristics, $V_{DD} = V_{DDOA} = V_{DDOB} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency				250	MHz
t _{PD}	Propgation Delay, NOTE 1	N≤ 2	4.0	5.0	6.0	ns
		N>2	4.5	6.0	7.5	ns
<i>t</i> sk(o)	Output Skew; NOTE 2, 3			40	200	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 3, 4			50	350	ps
<i>t</i> sk(b)	Bank Skew: NOTE 3, 5			20	85	ps
t _R / t _F	OutputRise/Fall Time; NOTE 6	20% to 80%	400	900	1200	ps
odc	Output Data Outla	N=1	35		55	%
	Output Duty Cycle	N>1	40		60	%
t _{EN}	Output Enable Time; NOTE 6				5	ns
t _{DIS}	Output Disable Time; NOTE 6				5	ns

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at $fin \le 250MHz$ unless noted otherwise.

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDOX}/2$ of the output.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOX}/2.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDOX}/2$.

NOTE: 5 Defined as skew within a bank with equal load conditions.

NOTE 6: These parameters are guaranteed by characterization. Not tested in production.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency				250	MHz
t _{PD}	Propgation Delay, NOTE 1	N≤ 2	4.0	5.5	7.0	ns
		N>2	4.8	6.3	7.8	ns
<i>t</i> sk(o)	Output Skew; NOTE 2, 3			40	200	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 3, 4			50	600	ps
<i>t</i> sk(b)	Bank Skew: NOTE 3, 5			20	85	ps
t _R / t _F	OutputRise/Fall Time; NOTE 6	20% to 80%	0.4	1.1	2.5	ns
odc	Output Duty Cycle	N=1	35		55	%
		N>1	40		60	
t _{EN}	Output Enable Time; NOTE 6				5	ns
t _{DIS}	Output Disable Time; NOTE 6				5	ns

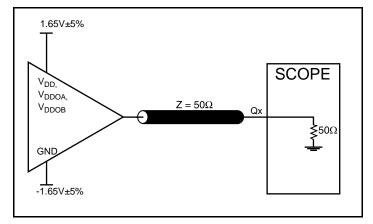
Table 8E. AC Characteristics, V_{DD} = 2.5V±5%, V_{DDOA} = V_{DDOB} = 1.8V±0.15V, T_A = -40°C to 85°C

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

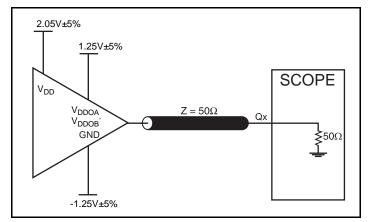
All parameters measured at $f in \le 250 MHz$ unless noted otherwise.

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDOX}/2$ of the output.

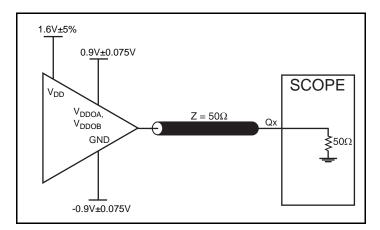
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOX}/2.

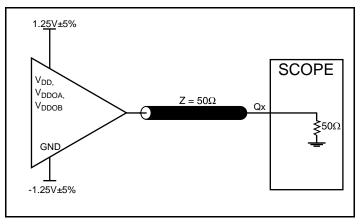

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

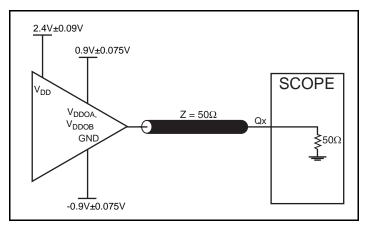
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDOX}/2$.

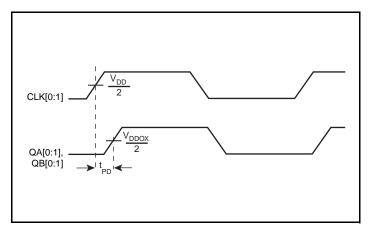

NOTE: 5 Defined as skew within a bank with equal load conditions.

NOTE 6: These parameters are guaranteed by characterization. Not tested in production.

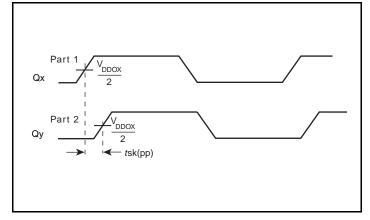

Parameter Measurement Information


3.3V Core/3.3V Output Load AC Test Circuit

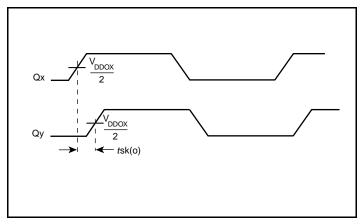

3.3V Core/2.5V Output Load AC Test Circuit


2.5V Core/1.8V Output Load AC Test Circuit

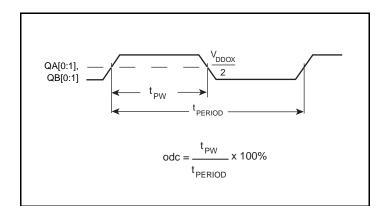
2.5V Core/2.5V Output Load AC Test Circuit

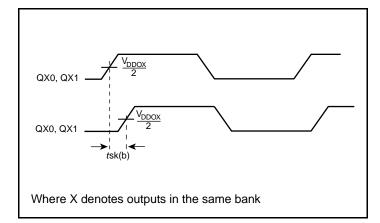


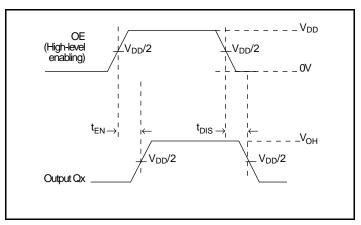
3.3V Core/1.8V Output Load AC Test Circuit

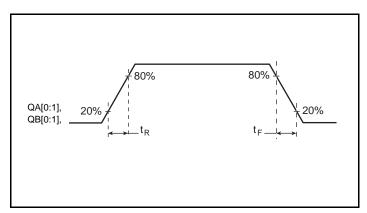


Propagation Delay


Parameter Measurement Information, continued




Output Skew



Output Enable/Disable

Output Rise/Fall Time

Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

CLK Inputs

For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the CLK input to ground.

LVCMOS Control Pins

All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Outputs:

LVCMOS Outputs

All unused LVCMOS outputs can be left floating We recommend that there is no trace attached.

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS87004I-03.

1. Power Dissipation.

The total power dissipation for the ICS87004I-03 is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

- Power (core)_{MAX} = V_{DD MAX} * (I_{DD} + I_{DDOX}) = 3.465V *(55mA + 2mA) = 197.51mW
- Output Impedance R_{OUT} Power Dissipation due to Loading 50Ω to V_{DD}/2
 Output Current I_{OUT} = V_{DD_MAX} / [2 * (50Ω + R_{OUT})] = 3.465V / [2 * (50Ω + 15Ω)] = 26.7mA
- Power Dissipation on the R_{OUT} per LVCMOS output
 Power (R_{OUT}) = R_{OUT} * (I_{OUT})² = 15Ω * (26.7mA)² = 10.7mW per output
- Total Power (R_{OUT}) = 10.7mW * 4 = **42.6mW**

Dynamic Power Dissipation at 250MHz

Power (250MHz) = $(C_{PD} + C_1)$ * Frequency * $(V_{DD})^2$ = 15pF * 250MHz * $(3.465V)^2$ = 45.02mW per output

Total Power (250MHz) = 45.02mW * 4 = 180.09mW

Total Power Dissipation

- Total Power
 - = Power (core)_{MAX} + Power (R_{OUT}) + Power (250MHz) = 197.51mW + 42.6mW + 180.90mW **= 420.22mW**

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 91.1°C/W per Table 5 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

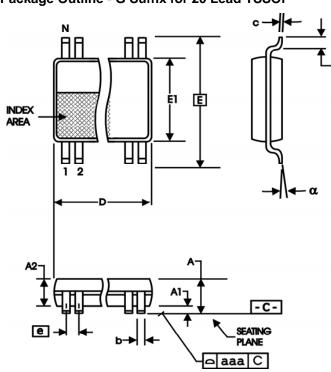
 $85^{\circ}C + 0.420W * 91.1^{\circ}C/W = 123.3^{\circ}C$. This is below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 9. Thermal Resistance θ_{JA} for 20 Lead TSSOP, Forced Convection

$ heta_{JA}$ by Velocity					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	91.1°C/W	86.7°C/W	84.6°C/W		

Reliability Information


Table 10. θ_{JA} vs. Air Flow Table for a 20 Lead TSSOP

$ heta_{JA}$ vs. Air Flow					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	91.1°C/W	86.7°C/W	84.6°C/W		

Transistor Count

The transistor count for ICS87004I-03 is: 2769

Package Outline and Package Dimensions

Package Outline - G Suffix for 20 Lead TSSOP

Table 7. Package Dimensions

All Dimensions in Millimeters						
Symbol	Minimum	Maximum				
Ν	20					
Α		1.20				
A1	0.05	0.15				
A2	0.80	1.05				
b	0.19	0.30				
C	0.09	0.20				
D	6.40	6.60				
E	6.40 Basic					
E1	4.30	4.50				
е	0.65 Basic					
L	0.45	0.75				
α	0°	8°				
aaa		0.10				

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 11. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
87004BGI-03LF	ICS7004BI03L	"Lead-Free" 20 Lead TSSOP	Tube	-40°C to 85°C
87004BGI-03LFT	ICS7004BI03L	"Lead-Free" 20 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

We've Got Your Timing Solution

6024 Silver Creek Valley Road San Jose, California 95138

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT

Technical Support

netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.