阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

3.3 V / 5.0 V Ultra-Low Skew 1:4 Clock Fanout Buffer

Description

The NB3N551 is a low skew 1-to 4 clock fanout buffer, designed for clock distribution in mind. The NB3N551 specifically guarantees low output-to-output skew. Optimal design, layout and processing minimize skew within a device and from device to device.

The output enable (OE) pin three-states the outputs when low.

Features

- Input/Output Clock Frequency up to 180 MHz
- Low Skew Outputs (50 ps typical)
- RMS Phase Jitter (12 kHz 20 MHz): 43 fs (Typical)
- Output goes to Three-State Mode via OE
- Operating Range: $V_{DD} = 3.0 \text{ V}$ to 5.5 V
- Ideal for Networking Clocks
- Packaged in 8-pin SOIC
- Industrial Temperature Range
- These are Pb-Free Devices

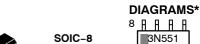



Figure 1. Block Diagram

ON Semiconductor®

http://onsemi.com

SOIC-8 D SUFFIX CASE 751

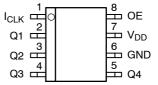
MARKING

3N551 = Specific Device Code A = Assembly Location

L = Wafer Lot Y = Year W = Work Week ■ Pb-Free Package

DFN8 MN SUFFIX CASE 506AA

6K = Specific Device Code


M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
NB3N551DG	SOIC-8 (Pb-Free)	98 Units/Rail
NB3N551DR2G	SOIC-8 (Pb-Free)	2500/Tape & Reel
NB3N551MNR4G	DFN-8 (Pb-Free)	1000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. OE, OUTPUT ENABLE FUNCTION

OE	Function
0	Disable
1	Enable

Table 2. PIN DESCRIPTION

Pin#	Name	Туре	Description
1	I _{CLK}	(LV)CMOS/(LV)TTL Input	Clock Input. Internal pull—up resistor.
2	Q1	(LV)CMOS/(LV)TTL Output	Clock Output 1
3	Q2	(LV)CMOS/(LV)TTL Output	Clock Output 2
4	Q3	(LV)CMOS/(LV)TTL Output	Clock Output 3
5	Q4	(LV)CMOS/(LV)TTL Output	Clock Output 4
6	GND	Power	Negative supply voltage; Connect to ground, 0 V
7	V_{DD}	Power	Positive supply voltage (3.0 V to 5.5 V)
8	OE	(LV)CMOS/(LV)TTL Input	Output Enable for the clock outputs. Outputs are enabled when HIGH or when left open; OE pin has internal pull-up resistor. Three-states outputs when LOW.
-	EP	Thermal Exposed Pad	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V_{DD}	Positive Power Supply	GND = 0 V	-	7.0	V
V _I /V _O	Input/Output Voltage	t ≤ 1.5 ns	-	GND-1.5 \leq V _I /V _O \leq V _{DD} +1.5	V
T _A	Operating Temperature Range, Industrial	-	-	≥ -40 to ≤ +85	°C
T _{stg}	Storage Temperature Range	-	-	−65 to +150	°C
θЈА	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8	190 130	°C/W °C/W
θЈС	Thermal Resistance (Junction-to-Case)	(Note 1)	SOIC-8	41 to 44	°C/W
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	(Note 1)	DFN8	35 to 40	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

Table 4. ATTRIBUTES

Charac	Value				
ESD Protection	> 4 kV > 200 V				
Moisture Sensitivity, Indefinite T	Level 1				
Flammability Rating	UL-94 code V-0 @ 0.125 in				
Transistor Count	531 Devices				
Meets or Exceeds JEDEC Standard EIA/JESD78 IC Latchup Test					

^{2.} For additional Moisture Sensitivity information, refer to Application Note AND8003/D.

Table 5. DC CHARACTERISTICS (V_{DD} = 3.0 V to 3.6 V, GND = 0 V, T_A = -40° C to $+85^{\circ}$ C) (Note 3)

Symbol	Characteristic		Тур	Max	Unit
I _{DD}	Power Supply Current @ 135 MHz, No Load, V _{DD} = 3.3 V	-	20	40	mA
V _{OH}	Output HIGH Voltage – I _{OH} = –25 mA, V _{DD} = 3.3 V	2.4	-	-	٧
V _{OL}	Output LOW Voltage – I _{OL} = 25 mA	-	-	0.4	V
V _{OH}	Output HIGH Voltage – I _{OH} = –12 mA (CMOS level)	V _{DD} - 0.4	-	-	V
V _{IH} , I _{CLK}	Input HIGH Voltage, I _{CLK}	(V _{DD} /2)+0.7	-	3.8	V
V _{IL,} I _{CLK}	Input LOW Voltage, I _{CLK}	-	-	(V _{DD} /2)-0.7	٧
V _{IH,} OE	Input HIGH Voltage, OE		-	VDD	V
V _{IL,} OE	Input LOW Voltage, OE	0	-	0.8	V
ZO	Nominal Output Impedance	_	20	-	Ω
RPU	Input Pull-up Resistor, OE	_	220	-	kΩ
CIN	Input Capacitance, OE	_	5.0	-	pF
IOS	Short Circuit Current	_	± 50	-	mA

DC CHARACTERISTICS (V_{DD} = 4.5 V to 5.5 V, GND = 0 V, T_A = -40°C to +85°C) (Note 3)

Symbol	Characteristic	Min	Тур	Max	Unit
I _{DD}	Power Supply Current @ 135 MHz, No Load, V _{DD} = 5.0 V	-	50	95	mA
V _{OH}	Output HIGH Voltage – I _{OH} = –35 mA	2.4	-	-	V
V _{OL}	Output LOW Voltage – I _{OL} = 35 mA	-	-	0.4	V
V _{OH}	Output HIGH Voltage – I _{OH} = –12 mA (CMOS level)	V _{DD} - 0.4	-	-	V
V _{IH} , I _{CLK}	Input HIGH Voltage, I _{CLK}	(V _{DD} /2) + 1	-	5.5	V
V _{IL,} I _{CLK}	Input LOW Voltage, I _{CLK}	-	-	(V _{DD} /2) – 1	V
V _{IH,} OE	Input HIGH Voltage, OE	2.0	-	V_{DD}	V
V _{IL,} OE	Input LOW Voltage, OE	0	-	0.8	V
ZO	Nominal Output Impedance	-	20	-	Ω
RPU	Input Pull-up Resistor, OE	-	220	-	kΩ
CIN	Input Capacitance, OE	-	5.0	-	pF
IOS	Short Circuit Current	-	±80	-	mA

Table 6. AC CHARACTERISTICS ($V_{DD} = 3.0 \text{ V to } 5.5 \text{ V}$, GND = 0 V, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$) (Note 3)

Symbol	Characteristic	Conditions	Min	Тур	Max	Unit
f _{in}	Input Frequency		-	-	180	MHz
t _{jitter} (φ)	RMS Phase Jitter (Integrated 12 kHz – 20 MHz) (See Figures 2 and 3)	f _{carrier} = 25 MHz f _{carrier} = 50 MHz	- -	43 16	- -	fs
t _{jitter (pd)}	Period Jitter (RMS, 1σ)		-	2.0	-	ps
t _r /t _f	Output rise and fall times; 0.8 V to 2.0 V		-	0.5	1.0	ns
t _{pd}	Propagation Delay, CLK to Qn, 0 – 180 MHz, (Note 4)		1.5	3.0	6.0	ns
t _{skew}	Output-to-Output Skew; (Note 5)		_	50	160	ps

^{3.} Outputs loaded with external $R_L = 33-\Omega$ series resistor and $C_L = 15$ pF to GND. Duty cycle out = duty in. A 0.01 μ F decoupling capacitor should be connected between V_{DD} and GND. A 33 Ω series terminating resistor may be used on each clock output if the trace is longer than

- Measured with rail-to-rail input clock.
 Measured on rising edges at V_{DD} ÷ 2.

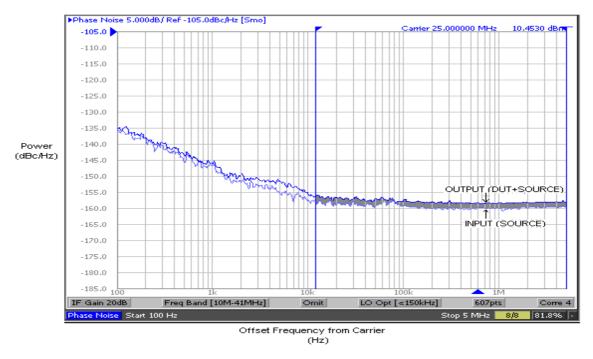


Figure 2. Phase Noise Plot at 25 MHz at an Operating Voltage of 3.3 V, Room Temperature

The above plot captured using Agilent E5052A shows Additive Phase Noise of the NB3N551 device measured with an input source generated by Agilent E8663B. The RMS phase jitter contributed by the device (integrated between 12 kHz to 20 MHz; as shown in the shaded region of the plot) is 43 fs (RMS Jitter of the input source is 203.31 fs and Output (DUT+Source) is 247.06 fs).

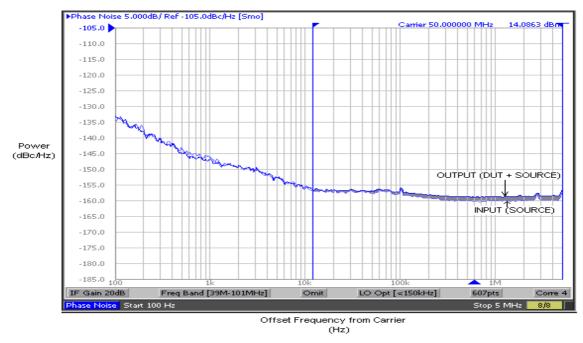
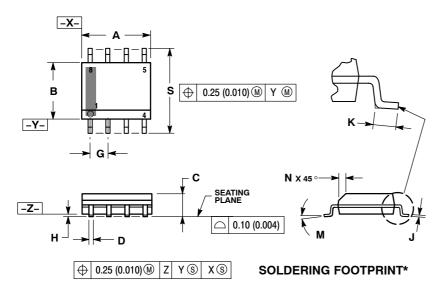
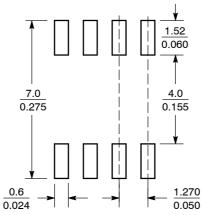



Figure 3. Phase Noise Plot at 50 MHz at an Operating Voltage of 5 V, Room Temperature

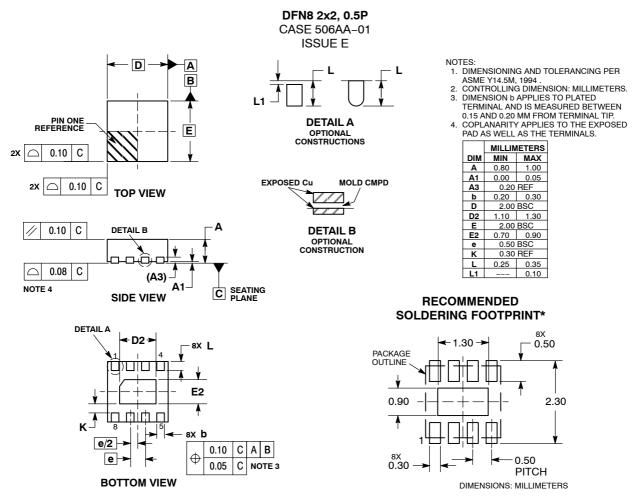
The above plot captured using Agilent E5052A shows Additive Phase Noise of the NB3N551 device measured with an input source generated by Agilent E8663B. The RMS phase jitter contributed by the device (integrated between 12 kHz to 20 MHz; as shown in the shaded region of the plot) is 16 fs (RMS Jitter of the input source is 104.08 fs and Output (DUT + Source) is 119.77 fs).

PACKAGE DIMENSIONS


SOIC-8 NB CASE 751-07 **ISSUE AK**

NOTES:

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.
 751-01 THRU 751-06 ARE OBSOLETE. NEW
 STANDARD IS 751-07.


	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 ° 8		
N	0.25	0.50	0.010	0.020	
s	5.80	6.20	0.228	0.244	

 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 6:1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opport

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative