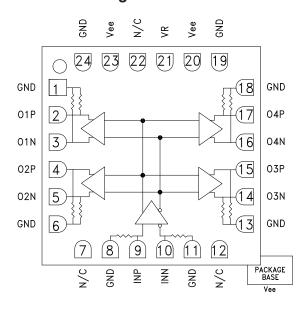
阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .


13 Gbps, 1:4 FANOUT BUFFER w/ PROGRAMMABLE OUTPUT VOLTAGE

Typical Applications

The HMC940LC4B is ideal for:

- RF ATE Applications
- Broadband Test & Measurement
- Serial Data Transmission up to 13 Gbps
- Clock Buffering up to 13 GHz

Functional Diagram

Features

Inputs Terminated Internally in 50 Ohms
Differential Inputs are DC Coupled

Propagation Delay: 101 ps

Fast Rise and Fall Times: 26 / 25 ps

Programmable Differential

Output Voltage Swing: 600 - 1400 mV

Power Dissipation: 440 mW

24 Lead Ceramic 4x4 mm SMT Package: 16 mm²

General Description

The HMC940LC4B is a 1:4 Fanout Buffer designed to support data transmission rates up to 13 Gbps, and clock frequencies as high as 13 GHz. All differential inputs and outputs are DC coupled and terminated on chip with 50 Ohm resistors to ground. The outputs may be used in either single-ended or differential modes, and should be AC or DC coupled into 50 Ohm resistors connected to ground.

The HMC940LC4B also features an output level control pin, VR which allows for loss compensation or for signal level optimization. The HMC940LC4B operates from a single -3.3V DC supply and is available in a ceramic RoHS compliant 4x4 mm SMT package.

Electrical Specifications, $T_A = +25$ °C Vee = -3.3V, VR = 0V

Parameter	Conditions	Min.	Тур.	Max	Units
Power Supply Voltage (Vee)		-3.6	-3.3	-3.0	٧
Power Supply Current			133		mA
Maximum Data Rate			13		Gbps
Maximum Clock Rate			13		GHz
Input High Voltage		-0.5		0.5	٧
Input Low Voltage		-1.0		0.0	V
Input Return Loss	Frequency <15 GHz		10		dB
Output Amplitude	Single-Ended, peak-to-peak		585		mVp-p
	Differential, peak-to-peak		1170		mVp-p
Output High Voltage			-15		mV
Output Low Voltage			-600		mV
Output Rise / Fall Time	Single-Ended, 20% - 80%		26 / 25		ps

HMC940* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

• HMC940LC4B Evaluation Board

DOCUMENTATION

Data Sheet

• HMC940 Data Sheet

TOOLS AND SIMULATIONS

HMC940 IBIS Model

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: LC4, LC4B (QTR: 2014-00380 REV: 01)
- Semiconductor Qualification Test Report: BiCMOS-A (QTR: 2013-00235)

DESIGN RESOURCES

- HMC940 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC940 EngineerZone Discussions.

SAMPLE AND BUY 🖵

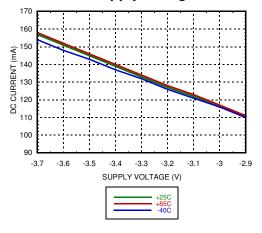
Visit the product page to see pricing options.

TECHNICAL SUPPORT

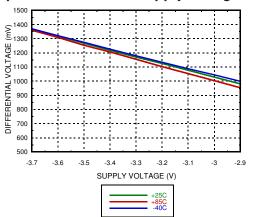
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK \Box

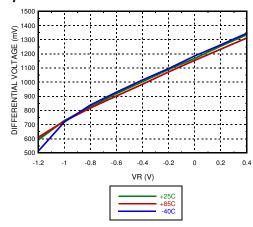
Submit feedback for this data sheet.

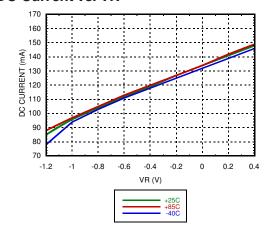

13 Gbps, 1:4 FANOUT BUFFER w/ PROGRAMMABLE OUTPUT VOLTAGE

Electrical Specifications (continued)


Parameter	Conditions	Min.	Тур.	Max	Units
Output Return Loss	Frequency <13 GHz		10		dB
Small Signal Gain			20		dB
Random Jitter J _R	rms			0.2	ps rms
Deterministic Jitter, J _D	δ - δ , 2 ¹⁵ -1 PRBS input ^[1]		4	6	ps
Propagation Delay, td			101		ps
D1 to D2 Data Skew, t _{SKEW}			±3		ps

^[1] Deterministic jitter measured at 13 Gbps with a 300 mVp-p, 2¹⁵-1 PRBS input sequence.


DC Current vs. Supply Voltage [1] [2]

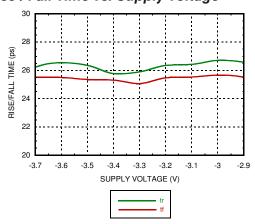

Output Differential vs. Supply Voltage [1] [2]

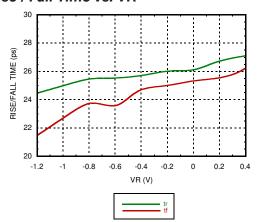
Output Differential vs. VR [2][3]

DC Current vs. VR [2][3]

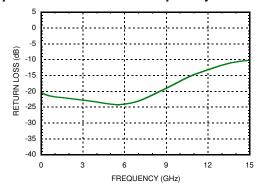
[1] VR = 0.0V

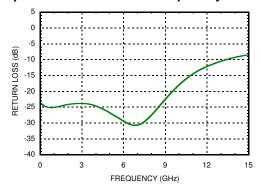
[2] Frequency = 13 GHz

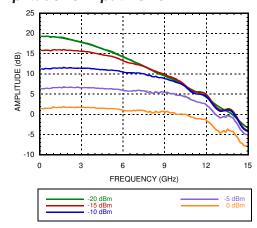

[3] Vee = -3.3V



13 Gbps, 1:4 FANOUT BUFFER w/ PROGRAMMABLE OUTPUT VOLTAGE


Rise / Fall Time vs. Supply Voltage [1][2]


Rise / Fall Time vs. VR [2][5]


Input Return Loss vs. Frequency [1][3][5]

Output Return Loss vs. Frequency [1][3][5]

Amplitude vs. Input Power [1][4][5]

Truth Table

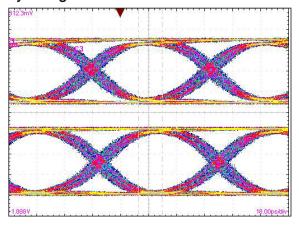
Input	Outputs
IN	Ox
L	L
Н	Н
Notes: IN = INP - INN Ox = OxP - OxN	H - Positive differential voltage L - Negative differential voltage

[1] VR = 0.0V

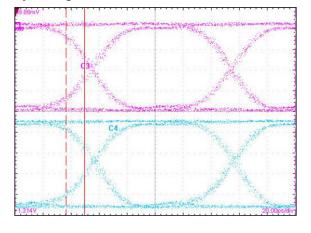
[2] Frequency = 13 GHz

[3] Device measured on evaluation board with gating after connector

[4] Device measured on evaluation board with port extensions

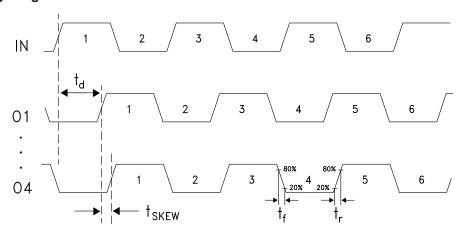

[5] Vee = -3.3V

13 Gbps, 1:4 FANOUT BUFFER w/ PROGRAMMABLE OUTPUT VOLTAGE


Eye Diagram

[1] Test Conditions:

Pattern generated with an Agilent N4903A Serial BERT. Eye Diagram presented on a Tektronix CSA 8000. Device input = 13 Gbps PN code, Vin = 300 mVp-p differential. Both output channels shown.

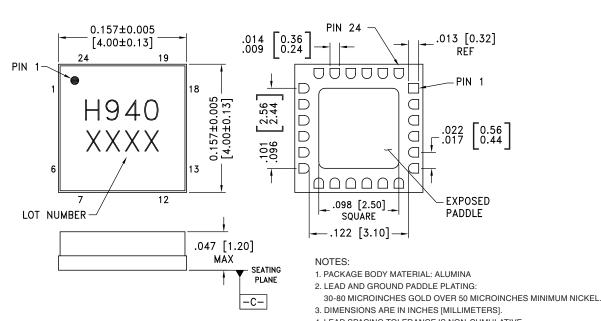

Eye Diagram

[2] Test Conditions:

Pattern generated with an Agilent N4903A Serial BERT.
Eye Diagram presented on a Tektronix CSA 8000.
Device input = 10 Gbps PN code, Vin = 300 mVp-p differential.
Both output channels shown.

Timing Diagram

13 Gbps, 1:4 FANOUT BUFFER w/ PROGRAMMABLE OUTPUT VOLTAGE


Absolute Maximum Ratings

Power Supply Voltage (Vee)	-3.75 V to +0.5 V	
Input Signals	-2 V to +0.5 V	
Output Signals	-1.5 V to +1 V	
Junction Temperature	125 °C	
Continuous Pdiss (T=85 °C) (derate 30 mW/°C above 85 °C	1.22 W	
Thermal Resistance (R _{th j-p}) Worse case junction to package paddle	32.8 °C/W	
Storage Temperature	-65 °C to +150 °C	
Operating Temperature	-40 °C to +85 °C	
ESD Sensitivity (HBM)	Class 1C	

Outline Drawing

BOTTOM VIEW

4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE. 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-

6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

7. EXPOSED PADDLE MUST BE SOLDERED TO VEE

Package Information

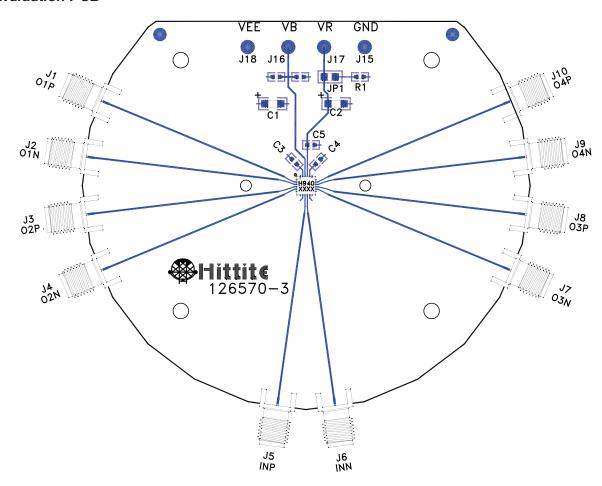
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC940LC4B	Alumina, White	Gold over Nickel	MSL3 ^[1]	H940 XXXX

^[1] Max peak reflow temperature of 260 $^{\circ}\text{C}$

^{[2] 4-}Digit lot number XXXX

13 Gbps, 1:4 FANOUT BUFFER w/ PROGRAMMABLE OUTPUT VOLTAGE

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 6, 8, 11, 13, 18, 19, 24	GND	These pins must be connected to a high quality RF/DC ground.	GND =
2, 3, 4, 5, 14, 15, 16, 17	O1P, O1N, O2P, O2N, O3N, O3P, O4N, O4P	Differential Outputs: Current Mode Logic (CML) referenced to positive supply.	50Ω 50Ω 50Ω 0xP 0 0xN
7, 12, 22	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
9, 10	INP, INN	Differential Inputs: Current Mode Logic (CML) referenced to positive supply	INP O INN
20, 23 Package Base	Vee	These pins and the exposed paddle must be connected to the negative voltage supply.	
21	VR	Output level control. Output level may be increased or decreased by applying a voltage to VR per "Output Differential vs. VR" plot.	VR 0

13 Gbps, 1:4 FANOUT BUFFER w/ PROGRAMMABLE OUTPUT VOLTAGE

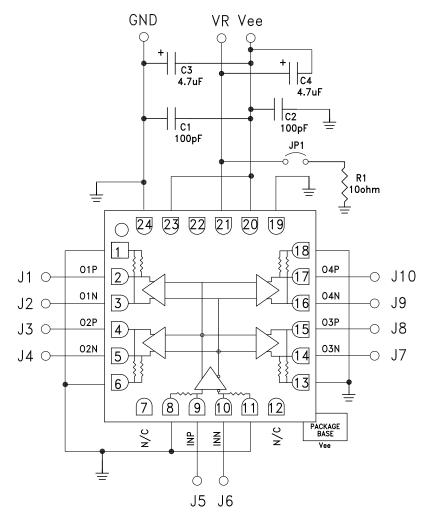
Evaluation PCB

List of Materials for Evaluation PCB 126572 [1]

Item	Description
J1 - J10	PCB Mount SMA RF Connectors
J15 - J18	DC Pin
JP1	0.1" Header with Shorting Jumper
C1, C2	4.7 μF Capacitor, Tantalum
C3 - C5	100 pF, Capacitor, 0603 Pkg
R1	10 Ohm Resistor, 0603 Pkg.
U1	HMC940LC4B High Speed Logic, Fanout Buffer
PCB [2]	126570 Evaluation Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR or Rogers 4350


The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed packaged base should be connected to Vee. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. Install jumper on JP1 to short VR to GND for normal operation.

13 Gbps, 1:4 FANOUT BUFFER w/ PROGRAMMABLE OUTPUT VOLTAGE

Application Circuit

