

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

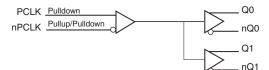
3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

Low Skew, 1-to-2, Differential-to-2.5V, 3.3V LVPECL/ECL Fanout Buffer

ICS853S011CI

DATA SHEET


General Description

The ICS853S011CI is a low skew, high performance 1-to-2 Differential-to-2.5V/3.3V LVPECL/ECL Fanout Buffer. The ICS853S011CI is characterized to operate from either a 2.5V or a 3.3V power supply. Guaranteed output and part-to-part skew characteristics make the ICS853S011CI ideal for those clock distribution applications demanding well defined performance and repeatability.

Features

- Two differential 2.5V, 3.3V LVPECL/ECL outputs
- One differential PCLK, nPCLK input pair
- PCLK, nPCLK pairs can accept the following differential input levels: LVPECL, LVDS, CML, SSTL
- Maximum output frequency: >2.5GHz
- Translates any single-ended input signal to 3.3V LVPECL levels with resistor bias on nPCLK input
- Output skew: 20ps (maximum)
- Part-to-part skew: 150ps (maximum)
- Propagation delay: 330ps (maximum)
- LVPECL mode operating voltage supply range: $V_{CC} = 2.375V$ to 3.8V, $V_{EE} = 0V$
- ECL mode operating voltage supply range: V_{CC} = 0V, V_{EE} = -3.8V to -2.375V
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) packaging

Block Diagram

Pin Assignment

Q0 🗖 1	8 🗆 Vcc
nQ0 🗖 2	7 🗖 PCLK
Q1 🗖 3	6 🗖 nPCLK
nQ1 🛛 4	5 🗖 Vee

ICS853S011CI

8-Lead SOIC, 150MIL 3.90mm x 4.90mm x 1.37mm package body M Package Top View

8-Lead TSSOP, 118MIL 3.0mm x 3.0mm x 0.97mm package body G Package Top View

Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

Number	Name	Т	уре	Description
1, 2	Q0, nQ0	Output		Differential output pair. LVPECL/ECL interface levels.
3, 4	Q1, nQ1	Output		Differential output pair. LVPECL/ECL interface levels.
5	V _{EE}	Power		Negative supply pin.
6	nPCLK	Input	Pullup/ Pulldown	Inverting differential LVPECL clock input. When left floating, defaults to 2 / $_{3}$ V _{CC} .
7	PCLK	Input	Pulldown	Non-inverting differential LVPECL clock input.
8	V _{CC}	Power		Positive supply pin.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
R _{PULLDOWN}	Input Pulldown Resistor			75		kΩ
R _{PULLUP}	Pullup Resistors			37		kΩ

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	4.6V (LVPECL mode, V _{EE} = 0V)
Negative Supply Voltage, V _{EE}	-4.6V (ECL mode, V _{CC} = 0V)
Inputs, V _I (LVPECL mode)	-0.5V to V _{CC} + 0.5V
Inputs, V _I (ECL mode)	0.5V to V _{EE} – 0.5V
Outputs, I _O Continuos Current Surge Current	50mA 100mA
Operating Temperature Range, T _A	-40°C to +85°C
Package Thermal Impedance, θ _{JA} (Junction-to-Ambient) for 8 Lead SOIC	102°C/W (0 mps)
Package Thermal Impedance, θ _{JA} (Junction-to-Ambient) for 8 Lead TSSOP	145.4°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, $V_{CC} = 2.375V$ to 3.8V; $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Positive Supply Voltage		2.375	3.3	3.8	V
I _{EE}	Power Supply Current				24	mA

Table 3B. LVPECL DC Characteristics, $V_{CC} = 3.3V$; $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

			-40°C		25°C		85°C					
Symbol	Parameter		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
V _{OH}	Output High Voltage; NOTE 1		2.2575	2.36	2.4625	2.2275	2.33	2.4325	2.2075	2.31	2.4125	V
V _{OL}	Output Low Voltage; NOTE 1		1.405	1.54	1.6775	1.3725	1.51	1.6475	1.3625	1.50	1.6375	V
V _{PP}	Peak-to-Peak NOTE 2	Input Voltage;	150	800	1200	150	800	1200	150	800	1200	mV
V _{CMR}	Input High Vol Mode Range;		1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input High Current	PCLK, nPCLK			200			200			200	μA
	Input	PCLK	-10			-10			-10			μA
IIL	Low Current	nPCLK	-200			-200			-200			μA

NOTE: Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.925V to -0.5V.

NOTE 1: Outputs terminated with 50 Ω to V_{CC} – 2V.

NOTE 2: V_{IL} should not be less than -0.3V.

NOTE 3: Common mode voltage is defined as V_{IH}.

	Parameter			-40°C			25°C			85°C		Units
Symbol			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
V _{OH}	Output High Voltage; NOTE 1		1.4675	1.57	1.6725	1.4475	1.55	1.6525	1.4375	1.54	1.6425	V
V _{OL}	Output Low Vo	oltage; NOTE 1	0.6265	0.76	0.9015	0.6125	0.75	0.8875	0.6025	0.74	0.8775	V
V _{PP}	Peak-to-Peak NOTE 2	Input Voltage;	150	800	1200	150	800	1200	150	800	1200	mV
V _{CMR}	Input High Vol Mode Range;		1.2		2.5	1.2		2.5	1.2		2.5	V
IIH	Input High Current	PCLK, nPCLK			200			200			200	μΑ
	Input	PCLK	-10			-10			-10			μA
I	Low Current	nPCLK	-200			-200			-200			μA

Table 3C. LVPECL DC Characteristics, V_{CC} = 2.5V; V_{EE} = 0V, T_{A} = -40°C to 85°C

NOTE: Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.925V to -0.5V.

NOTE 1: Outputs terminated with 50 Ω to V_{CC} – 2V.

NOTE 2: V_{IL} should not be less than -0.3V.

NOTE 3: Common mode voltage is defined as V_{IH}.

Table 3D. ECL DC Characteristics, V_{CC} = 0V; V_{EE} = -3.8V to -2.375V, T_A = -40°C to 85° C

				-40°C			25°C			85°C		
Symbol	Parameter		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
V _{OH}	Output High V	oltage; NOTE 1	-1.0425	-0.94	-0.8375	-1.0725	-0.8675	-0.97	-1.0925	-0.8875	-0.99	V
V _{OL}	Output Low Vo	oltage; NOTE 1	-1.8975	-1.76	-1.6225	-1.9275	-1.79	-1.6525	-1.9375	-1.80	-1.6625	V
V _{PP}	Peak-to-Peak NOTE 2	Input Voltage;	150	800	1200	150	800	1200	150	800	1200	mV
V _{CMR}	Input High Vol Mode Range;	tage Common NOTE 2, 3	V _{EE} +1.2		0	V _{EE} +1.2		0	V _{EE} +1.2		0	V
I _{IH}	Input High Current	PCLK, nPCLK			200			200			200	μA
	Input	PCLK	-10			-10			-10			μA
۱L	Low Current	nPCLK	-200			-200			-200			μA

NOTE: Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.925V to -0.5V.

NOTE 1: Outputs terminated with 50Ω to V_{CC} – 2V.

NOTE 2: VIL should not be less than -0.3V.

NOTE 3: Common mode voltage is defined as $\ensuremath{\mathsf{V}_{\mathsf{IH}}}$.

AC Electrical Characteristics

Table 4. AC Characteristics, V_{CC} = -3.8V to -2.375V or , V_{CC} = 2.375V to 3.8V; V_{EE} = 0V, T_A = -40°C to 85°C

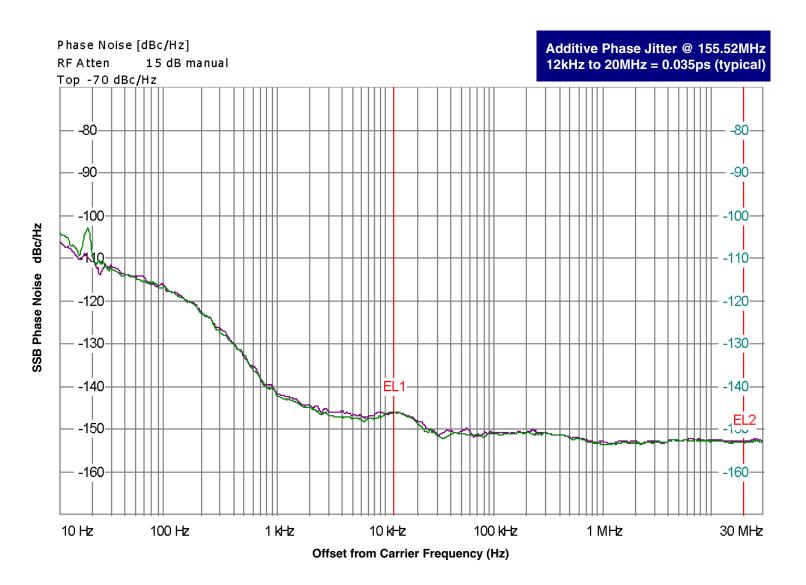
				-40°C			25°C		85°C			
Symbol	Parameter		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
f _{MAX}	Output Frequence	су			>2.5			>2.5			>2.5	GHz
t _{PD}	Propagation Del	ay; NOTE 1	170		320	180		330	190		345	ps
<i>t</i> sk(o)	Output Skew; No	OTE 2, 4			20			20			20	ps
<i>t</i> sk(pp)	Part-to-Part Ske	w; NOTE 3, 4			150			150			150	ps
<i>t</i> jit	Buffer Additive F RMS; refer to Ac Jitter Section	,		0.035			0.035			0.035		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	50		200	50		200	50		200	ps
odc	Output Duty Cyc	le	48		52	48		52	48		52	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters are measured at $f \leq 1.4 GHz,$ unless otherwise noted.

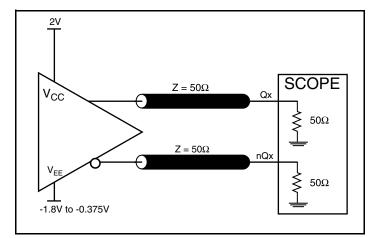
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.

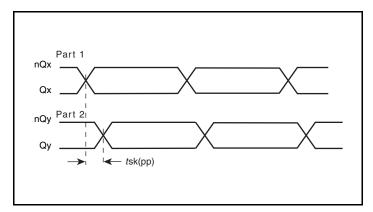

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

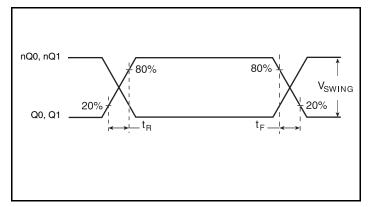
Additive Phase Jitter

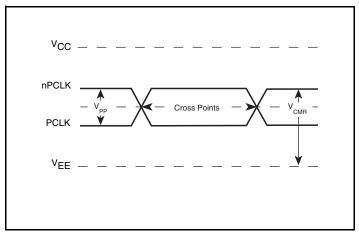

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio

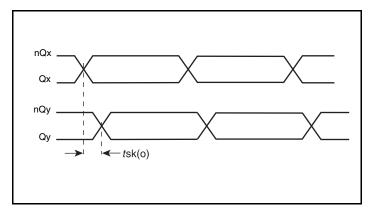
of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

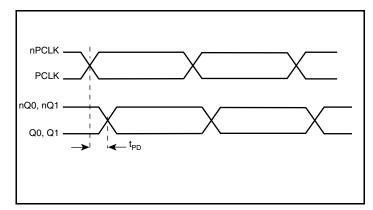


As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

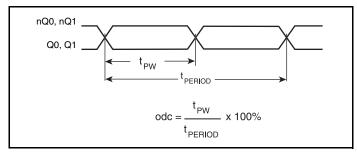

Parameter Measurement Information


LVPECL Output Load Test Circuit


Part-to-Part Skew


Output Rise/Fall Time

Differential Input Level



Output Skew

Parameter Measurement Information, continued

Output Duty Cycle/Pulse Width/Period

Application Information

Recommendations for Unused Output Pins

Outputs:

LVPECL Outputs

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

Wiring the Differential Input to Accept Single-Ended Levels

Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage $V_1 = V_{CC}/2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V_1 in the center of the input voltage swing. For example, if the input clock swing is 2.5V and $V_{CC} = 3.3V$, R1 and R2 value should be adjusted to set V_1 at 1.25V. The values below are for when both the single ended swing and V_{CC} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50Ω applications, R3 and R4 can be 100Ω. The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however V_{IL} cannot be less than -0.3V and V_{IH} cannot be more than V_{CC} + 0.3V. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

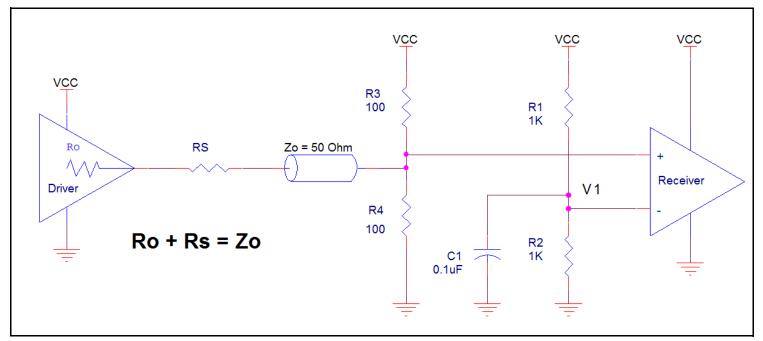


Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels

LVPECL Clock Input Interface

The PCLK /nPCLK accepts LVPECL, LVDS, CML, SSTL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 2A to 2E* show interface examples for the PCLK/nPCLK input driven by the most common driver types.

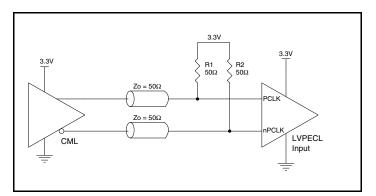


Figure 2A. PCLK/nPCLK Input Driven by a CML Driver

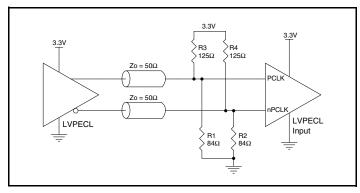


Figure 2C. PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver

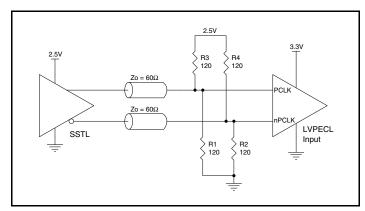
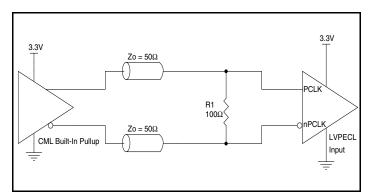



Figure 2E.PCLK/nPCLK Input Driven by an SSTL Driver

The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

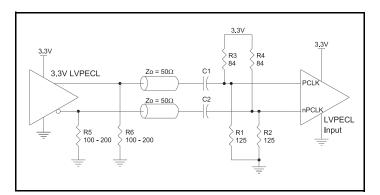


Figure 2D. PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver with AC Couple

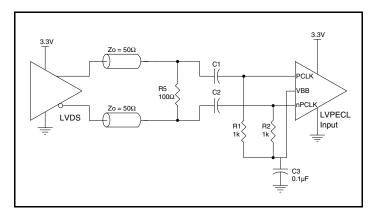


Figure 2F. PCLK/nPCLK Input Driven by a 3.3V LVDS Driver

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

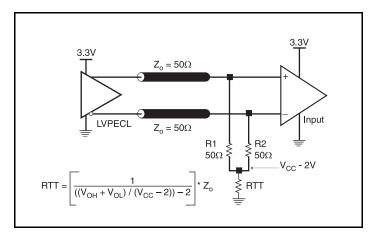


Figure 3A. 3.3V LVPECL Output Termination

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 3A and 3B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

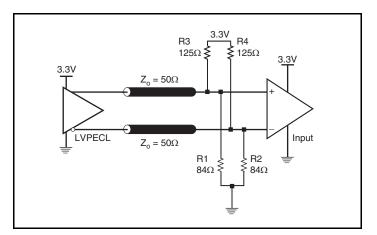


Figure 3B. 3.3V LVPECL Output Termination

Termination for 2.5V LVPECL Outputs

Figure 4A and *Figure 4B* show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to V_{CC} – 2V. For V_{CC} = 2.5V, the V_{CC} – 2V is very close to ground

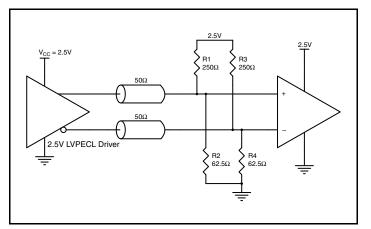


Figure 4A. 2.5V LVPECL Driver Termination Example

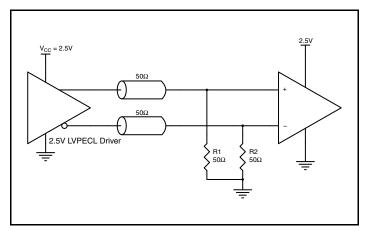


Figure 4C. 2.5V LVPECL Driver Termination Example

level. The R3 in Figure 4B can be eliminated and the termination is shown in *Figure 4C*.

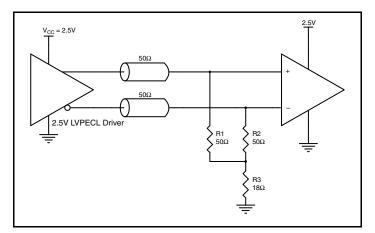


Figure 4B. 2.5V LVPECL Driver Termination Example

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS853S011CI. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS853S011Cl is the sum of the core power plus the power dissipation due to loading. The following is the power dissipation for $V_{CC} = 3.8V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipation due to loading.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.8V * 24mA = 91.2mW
- Power (outputs)_{MAX} = 31.22mW/Loaded Output pair If all outputs are loaded, the total power is 2 * 31.22mW = 62.44mW

Total Power_MAX (3.8V, with all outputs switching) = 91.2mW + 62.44mW = 153.64mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

 T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 145.4°C/W per Table 5A below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}C + 0.154W * 145.4^{\circ}C/W = 107.4^{\circ}C$. This is below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 5A. Thermal Resistance θ_{JA} for 8 Lead TSSOP, Forced Convection

θ _{JA} by Velocity								
Meters per Second	0	1	2.5					
Multi-Layer PCB, JEDEC Standard Test Boards	145.4°C/W	141.3°C/W	139.3°C/W					

Table 5B. Thermal Resistance θ_{JA} for 8 Lead SOIC, Forced Convection

θ_{JA} by Velocity								
Meters per Second	0	1	2.5					
Multi-Layer PCB, JEDEC Standard Test Boards	102.0°C/W	95.0°C/W	90.6°C/W					

3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pair.

The LVPECL output driver circuit and termination are shown in Figure 5.

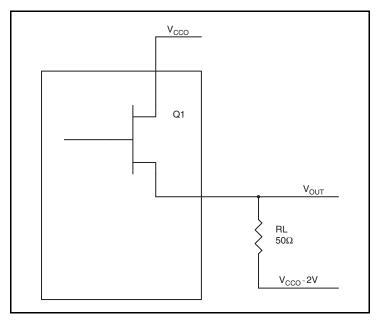


Figure 5. LVPECL Driver Circuit and Termination

To calculate power dissipation due to loading, use the following equations which assume a 50 Ω load, and a termination voltage of V_{CC} – 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.99V$ ($V_{CC_MAX} - V_{OH_MAX}$) = 0.99V
- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.6625V$ ($V_{CC_MAX} - V_{OL_MAX}$) = 1.6625V

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

 $\begin{array}{l} {\sf Pd}_{-}{\sf H} = [({\sf V}_{{\sf OH}_{\sf MAX}} - ({\sf V}_{{\sf CC}_{\sf MAX}} - 2{\sf V}))/{\sf R}_{L}] \ ^{*} \ ({\sf V}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}) = [(2{\sf V} - ({\sf V}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}))/{\sf R}_{L}] \ ^{*} \ ({\sf V}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}) = [(2{\sf V} - ({\sf V}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}))/{\sf R}_{L}] \ ^{*} \ ({\sf V}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}) = [(2{\sf V} - ({\sf V}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}))/{\sf R}_{L}] \ ^{*} \ ({\sf V}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}) = [(2{\sf V} - ({\sf O}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}))/{\sf R}_{L}] \ ^{*} \ ({\sf V}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}) = [(2{\sf V} - ({\sf O}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}))/{\sf R}_{L}] \ ^{*} \ ({\sf V}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}) = [(2{\sf V} - ({\sf O}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}))/{\sf R}_{L}] \ ^{*} \ ({\sf V}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}) = [(2{\sf V} - ({\sf O}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}))/{\sf R}_{L}] \ ^{*} \ ({\sf V}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}) = [(2{\sf V} - ({\sf O}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}))/{\sf R}_{L}] \ ^{*} \ ({\sf V}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}) = [(2{\sf V} - ({\sf O}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}))/{\sf R}_{L}] \ ^{*} \ ({\sf V}_{{\sf CC}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}) = [(2{\sf V} - ({\sf O}_{{\sf C}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}))/{\sf R}_{{\sf C}_{\sf MAX}}) \ ^{*} \ ({\sf O}_{{\sf C}_{\sf MAX}} - {\sf V}_{{\sf OH}_{\sf MAX}}) \ ^{*} \ ({\sf O}_{{\sf C}_{\sf MAX}} - {\sf V}_{{\sf O}_{\sf MAX}}))/{\sf R}_{{\sf C}_{\sf MAX}}) \ ^{*} \ ({\sf O}_{{\sf C}_{\sf MAX}} - {\sf V}_{{\sf O}_{\sf MAX}}) \ ^{*} \ ({\sf O}_{{\sf C}_{\sf MAX}} - {\sf V}_{{\sf O}_{\sf MAX}}))/{\sf C}_{{\sf C}_{\sf MAX}}) \ ^{*} \ ({\sf O}_{{\sf MAX}} - {\sf O}_{{\sf MAX}}) \ ^{*} \ ({\sf O}_{{\sf MAX}} - {\sf O}_{{\sf MAX}}))/{\sf C}_{{\sf MAX}}) \ ^{*} \ ({\sf O}_{{\sf MAX}} - {\sf O}_{{\sf MAX}}) \ ^{*} \ ({\sf O}_{{\sf MAX}} - {\sf O}_{{\sf MAX}}) \ ^{*} \ ({\sf O}_{{\sf MAX}} - {\sf O}_{{\sf MAX}}))/{\sf C}_{{\sf MAX}}) \ ^{*} \ ({\sf O}_{{\sf MAX}} - {\sf O}_{{\sf MAX}}) \ ^{*} \ ({\sf$

 $\begin{array}{l} \mathsf{Pd}_{\mathsf{L}} = [(\mathsf{V}_{\mathsf{OL}_\mathsf{MAX}} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - 2\mathsf{V}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - 1.6625\mathsf{V})/50\Omega] * 1.6625\mathsf{V} = 11.22\mathsf{mW} \end{array}$

Total Power Dissipation per output pair = Pd_H + Pd_L = **31.22mW**

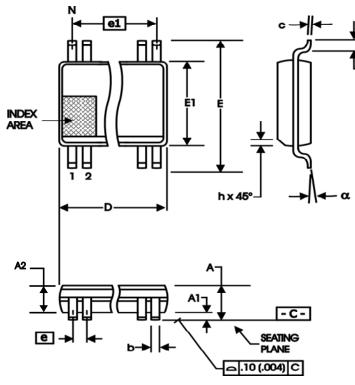
Reliability Information

Table 6A. θ_{JA} vs. Air Flow Table for a 8 Lead SOIC

θ_{JA} vs. Air Flow								
Meters per Second	0	1	2.5					
Multi-Layer PCB, JEDEC Standard Test Boards	102.0°C/W	95.0°C/W	90.6°C/W					

Table 6B. θ_{JA} vs. Air Flow Table for a 8 Lead TSSOP

$ heta_{JA}$ vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	145.4°C/W	141.3°C/W	139.3°C/W

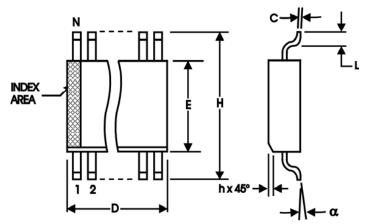

Transistor Count

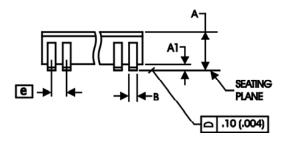
The transistor count for ICS853S011CI is: 208

This device is pin compatible with and is the suggested replacement for the ICS853011B and ICS853011C.

Package Outlines and Package Dimensions

Package Outline - G Suffix for 8 Lead TSSOP


Table 7A. Package Dimensions


All Dimensions in Millimeters			
Symbol	Minimum Maximum		
N	8		
Α		1.10	
A1	0	0.15	
A2	0.79	0.97	
b	0.22	0.38	
С	0.08	0.23	
D	3.00 Basic		
E	4.90 Basic		
E1	3.00 Basic		
е	0.65 Basic		
e1	1.95 Basic		
L	0.40	0.80	
α	0°	8°	
aaa		0.10	

Reference Document: JEDEC Publication 95, MO-187

Package Outline - M Suffix for 8 Lead SOIC

ı.

Table 7B. Package Dimensions

All Dimensions in Millimeters				
Symbol	Minimum	Maximum		
Ν		8		
Α	1.35	1.75		
A1	0.10	0.25		
В	0.33	0.51		
С	0.19	0.25		
D	4.80	5.00		
E	3.80	4.00		
e	1.27 Basic			
Н	5.80	6.20		
h	0.25	0.50		
L	0.40	1.27		
α	0°	8°		

Reference Document: JEDEC Publication 95, MS-012

Ordering Information

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
853S011CMILF	3S011CIL	"Lead Free" 8 Lead SOIC	Tube	-40°C to 85°C
853S011CMILFT	3S011CIL	"Lead Free" 8 Lead SOIC	Tape & Reel	-40°C to 85°C
853S011CGILF	1CIL	"Lead Free" 8 Lead TSSOP	Tube	-40°C to 85°C
853S011CGILFT	1CIL	"Lead Free" 8 Lead TSSOP	Tape & Reel	-40°C to 85°C

Rev	Table	Page	Description of Change	Date
A		9 10	Updated Wiring the Differential Input to Accept Single-ended Levels section. Updated LVPECL Clock Input Interface section.	6/7/10
A	T3B - T3C T3D T4	4 5 5	LVPECL DC Characteristics Tables - corrected heading from 80°C to 85°C. ECL DC Characteristics Table - corrected heading from 80°C to 85°C. AC Characteristics Tables - corrected heading from 80°C to 85°C.	10/12/10
A	T3B:T3B T3C	3 4 9 17	LVPECL DC Characteristics Tables - corrected Vpp unit from "V" to "mV".ECL DC Characteristics Table - corrected Vpp unit from "V" to "mV".Updated application note Wiring the Differential Levels to Accept Singe-ended Levels.Ordering Information Table - deleted tape & reel count.	7/16/13

Revision History Sheet

We've Got Your Timing Solution

6024 Silver Creek Valley Road San Jose, California 95138

d Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contact IDT

Technical Support Sales

netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.