阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

3.3 V Differential Multipoint Low Voltage M-LVDS Driver Receiver

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

NB20x	$=$ Specific Device Code
x	$=0,2,4,5$
A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
G or \quad	$=$ Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet.

- Low-Voltage Differential 30Ω to 55Ω Line Drivers and Receivers for Signaling Rates Up to 200 Mbps
- Type-1 Receivers Incorporate 25 mV of Hysteresis
- Meets or Exceeds the M-LVDS Standard TIA/EIA-899 for Multipoint Data Interchange
- Controlled Driver Output Voltage Transition Times for Improved Signal Quality
- -1 V to 3.4 V Common-Mode Voltage Range Allows Data Transfer With up to 2 V of Ground Noise
- Bus Pins High Impedance When Disabled or $\mathrm{V}_{\mathrm{CC}} \leq$ 1.5 V
- M-LVDS Bus Power Up/Down Glitch Free
- Operating range: $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 10 \% \mathrm{~V}(3.0$ to 3.6 V$)$
- Operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
- Pb-Free SOIC 8 Package
- These are $\mathrm{Pb}-$ Free Devices

Applications

- Low-Power High-Speed Short-Reach Alternative to TIA/EIA-485
- Backplane or Cabled Multipoint Data and Clock Transmission
- Cellular Base Stations
- Central-Office Switches
- Network Switches and Routers

Figure 1. Logic Diagrams

Figure 2. Pinout Diagrams (Top View)

Table 1. PIN DESCRIPTION SOIC-8

Number	Name	I/O Type	Open Default	Description
1	R	LVCMOS Output		Receiver Output Pin
2	RE	LVCMOS Input	High	Receiver Enable Input Pin (LOW = Active, HIGH = High Z Output)
3	DE	LVCMOS Input	Low	Driver Enable Input Pin (LOW = High Z Output, HIGH = Active)
4	D	LVCMOS Input		Driver Output Pin
5	GND			Ground Supply pin. Pin must be externally connected to power supply to guarantee proper operation.
6	A	M-LVDS Input / Output		Transceiver Invert Input / Output Pin
7	B	M-LVDS Input / Output		Transceiver True Input / Output Pin
8	VCC		Power Supply pin. Pin must be externally connected to power supply to guarantee proper operation.	

Table 2. DEVICE FUNCTION TABLE

TYPE 1 Receiver (NB3N200)	Inputs		Output	
	$\mathrm{V}_{\text {ID }}=\mathrm{V}_{\text {A }}-\mathrm{V}_{\mathrm{B}}$	RE	R	
	$\mathrm{V}_{\text {ID }} \geq 50 \mathrm{mV}$	L	H	
	$-50 \mathrm{mV}<\mathrm{V}_{\text {ID }}<50 \mathrm{mV}$	L	?	
	$\mathrm{V}_{\text {ID }} \leq-50 \mathrm{mV}$	L	L	
	X	H	Z	
	X	Open	Z	
	Open	L	?	
DRIVER	Input	Enable	Output	
	D	DE	A / Y	B / Z
	L	H	L	H
	H	H	H	L
	Open	H	L	H
	X	Open	Z	Z
	X	L	Z	Z

$\mathrm{H}=$ High, $\mathrm{L}=$ Low, $\mathrm{Z}=$ High Impedance, $\mathrm{X}=$ Don't Care, ? = Indeterminate

NB3N200S

Table 3. ATTRIBUTES (Note 1)

Characteristics			Value
Internal Input Pullup Resistor			$50 \mathrm{k} \Omega$
Internal Input Pulldown Resistor			$50 \mathrm{k} \Omega$
ESD Protection	Human Body Model (JEDEC Standard 22, Method A114-A)	A, B, Y, Z All Pins	$\begin{aligned} & \pm 6 \mathrm{kV} \\ & \pm 2 \mathrm{kV} \end{aligned}$
	Machine Model	All Pins	$\pm 200 \mathrm{~V}$
	Charged -Device Model (JEDEC Standard 22, Method C101)	All Pins	$\pm 1500 \mathrm{~V}$
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)			Level 1
Flammability Rating Oxygen Index			$\begin{gathered} \text { UL-94 V-0 @ } 0.125 \text { in } \\ 28 \text { to } 34 \end{gathered}$
Transistor Count			917 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test			

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
$\mathrm{V}_{\text {CC }}$	Supply Voltage			$-0.5 \leq \mathrm{V}_{\mathrm{CC}} \leq 4.0$	V
$\mathrm{V}_{\text {IN }}$	Input Voltage	D, DE, RE		$-0.5 \leq \mathrm{V}_{\text {IN }} \leq 4.0$	V
		A, B (200, 204)		$-1.8 \leq \mathrm{V}_{\text {IN }} \leq 4.0$	
		A, B (202, 205)		$-4.0 \leq \mathrm{V}_{\text {IN }} \leq 6.0$	
lout	Output Voltage	$\frac{\mathrm{R}}{\mathrm{Y}, \mathrm{Z}, \mathrm{~A}, \mathrm{~B}}$		$\begin{aligned} & -0.3 \leq \mathrm{l}_{\text {OUT }} \leq 4.0 \\ & -1.8 \leq \mathrm{l}_{\text {OUT }} \leq 4.0 \end{aligned}$	V
$\mathrm{T}_{\text {A }}$	Operating Temperature Range, Industrial			-40 to $\leq+85$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	$\begin{gathered} 0 \text { lfpm } \\ 500 \text { lfpm } \end{gathered}$	SOIC-8	$\begin{aligned} & 190 \\ & 130 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
θ_{Jc}	Thermal Resistance (Junction-to-Case)	(Note 3)	SOIC-8	41 to 44	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder			265	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation (Continuous)	SOIC-8	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{gathered}$	$\begin{array}{r} \hline 725 \\ 5.8 \\ 377 \end{array}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~m}}$ mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power).

Table 5. DC CHARACTERISTICS $\mathrm{VCC}=3.3 \pm 10 \% \mathrm{~V}\left(3.0\right.$ to 3.6 V), $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (See Notes 4, 5)

Symbol	Characteristic	Min	Typ	Max	Unit	
ICC	Power Supply Current Receiver Disabled Driver Enabled $\overline{R E}$ and $D E$ at $V_{C C}, R_{L}=50 \Omega$, All others open Driver and Receiver Disabled RE at VCC, DE at $0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ No Load, All others open Driver and Receiver Enabled RE at 0 V , DE at $\mathrm{V}_{\mathrm{CC}}, R_{\mathrm{L}}=50 \Omega$, All others open Receiver Enabled Driver Disabled RE at 0 V , DE at $0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, All others open		$\begin{gathered} 13 \\ 1 \\ 16 \end{gathered}$	$\begin{gathered} 22 \\ 4 \\ 24 \\ 13 \end{gathered}$	mA	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2		V_{CC}	V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	GND		0.8	V	
VBUS	Voltage at any bus terminal VA, VB, VY or VZ	-1.4		3.8	V	
\|VID		Magnitude of differential input voltage	0.05		V_{CC}	

[^0]Table 5. DC CHARACTERISTICS VCC $=3.3 \pm 10 \% \mathrm{~V}\left(3.0\right.$ to 3.6 V), $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (See Notes 4, 5)

Symbol	Characteristic	Min	Typ	Max	Unit

DRIVER

$\begin{aligned} & \left\|\mathrm{V}_{\mathrm{AB}}\right\|^{\prime} \mid \\ & \left\|\mathrm{V}_{\mathrm{YZ}}\right\| \end{aligned}$	Differential output voltage magnitude (see Figure 4)	480		650	mV
$\begin{gathered} \Delta\left\|\mathrm{V}_{\mathrm{AB}}\right\| / \\ \Delta\left\|\mathrm{V}_{\mathrm{YZ}}\right\| \end{gathered}$	Change in Differential output voltage magnitude between logic states (see Figure 4)	-50		50	mV
$\mathrm{V}_{\mathrm{OS} \text { (SS) }}$	Steady state common mode output voltage (see Figure 5)	0.8		1.2	V
$\Delta \mathrm{V}_{\text {OS(SS }}$	Change in Steady state common mode output voltage between logic states (see Figure 5)	-50		50	mV
$\mathrm{V}_{\mathrm{OS}(\mathrm{PP})}$	Peak-to-peak common-mode output voltage (see Figure 5)			150	mV
$\begin{aligned} & \mathrm{V}_{\mathrm{YOC}} / \\ & \mathrm{V}_{\mathrm{AOC}} \end{aligned}$	Maximum steady-state open-circuit output voltage (see Figure 9)	0		2.4	V
$\begin{aligned} & \mathrm{V}_{\mathrm{zOC}} / \\ & \mathrm{V}_{\mathrm{BOC}} \end{aligned}$	Maximum steady-state open-circuit output voltage (see Figure 9)	0		2.4	V
$\mathrm{V}_{\mathrm{P}(\mathrm{H})}$	Voltage overshoot, low-to-high level output (see Figure 7)			1.2 V ${ }_{\text {SS }}$	V
$\mathrm{V}_{\mathrm{P}(\mathrm{L})}$	Voltage overshoot, high-to-low level output (see Figure 7)	$-0.2 \mathrm{~V}_{\text {SS }}$			V
I_{IH}	High-level input current (D, DE) $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$	0		10	uA
IIL	Low-level input current (D, DE) $\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$	0		10	uA
Jlos	Differential short-circuit output current magnitude (see Figure 6)			24	mA
loz	High-impedance state output current (driver only) $-1.4 \mathrm{~V} \leq(\mathrm{VY}$ or VZ$) \leq 3.8 \mathrm{~V}$, other output at 1.2 V	-15		10	uA
$\mathrm{l}_{\text {(OFF) }}$	$\begin{array}{r} \text { Power-off output current }(0 \mathrm{~V} \leq \mathrm{V} \mathrm{CC} \leq 1.5 \mathrm{~V}) \\ -1.4 \mathrm{~V} \leq(\mathrm{VY} \text { or } \mathrm{VZ}) \leq 3.8 \mathrm{~V} \text {, other output at } 1.2 \mathrm{~V} \end{array}$	-10		10	uA
$\mathrm{Cr}_{Y} / \mathrm{C}_{Z}$	Output Capacitance $\mathrm{VI}=0.4 \sin \left(30 \mathrm{E}^{6} \pi \mathrm{t}\right)+0.5 \mathrm{~V}$, other outputs at 1.2 V using HP4194A impedance analyzer (or equivalent)		3		pF
$\mathrm{C}_{Y Z}$	Differential Output Capacitance $\operatorname{VAB}=0.4 \sin \left(30 E^{6} \pi t\right) V$, other outputs at 1.2 V using HP4194A impedance analyzer (or equivalent)			2.5	pF
$\mathrm{C}_{Y / Z}$	Output Capacitance Balance, (Cy/Cz)	99		101	\%

RECEIVER

$\mathrm{V}_{\text {IT }+}$	Positive-going Differential Input voltage Threshold (See Figure 11 \& Table 8)				mV
	Type 1 Type 2			$\begin{gathered} 50 \\ 150 \end{gathered}$	
$V_{\text {IT- }}$	$\begin{array}{ll}\text { Negative-going Differential Input voltage Threshold (See Figure 11 \& Table 8) } & \\ & \text { Type } 1 \\ & \text { Type } 2\end{array}$	$\begin{gathered} -50 \\ 50 \end{gathered}$			mV
$\mathrm{V}_{\mathrm{HYS}}$	$\begin{array}{ll}\text { Differential Input Voltage Hysteresis (See Figure } 11 \text { and Table 2) } & \\ & \text { Type 1 } \\ \text { Type 2 }\end{array}$		$\begin{gathered} 25 \\ 0 \end{gathered}$		mV
VOH	High-level output voltage ($1 \mathrm{OH}=-8 \mathrm{~mA}$	2.4			V
VOL	Low-level output voltage ($1 \mathrm{OL}=8 \mathrm{~mA}$)			0.4	V
IIH	RE High-level input current (VIH = 2 V)	-10		0	$\mu \mathrm{A}$
IIL	RE Low-level input current (VIL = 0.8 V)	-10		0	$\mu \mathrm{A}$
loz	High-impedance state output current (VO = 0 V of 3.6 V)	-10		15	$\mu \mathrm{A}$
$\mathrm{C}_{\mathrm{A}} / \mathrm{C}_{\mathrm{B}}$	Input Capacitance $\mathrm{VI}=0.4 \sin \left(30 \mathrm{E}^{6} \pi \mathrm{t}\right)+0.5 \mathrm{~V}$, other outputs at 1.2 V using HP4194A impedance analyzer (or equivalent)		3		pF
$\mathrm{C}_{\text {AB }}$	Differential Input Capacitance $\mathrm{V}_{\mathrm{AB}}=0.4 \sin \left(30 \mathrm{E}^{6} \pi \mathrm{t}\right) \mathrm{V}$, other outputs at 1.2 V using HP4194A impedance analyzer (or equivalent)			2.5	pF
$\mathrm{C}_{\text {A } / B}$	Input Capacitance Balance, (CA/CB)	99		101	\%

Table 5. DC CHARACTERISTICS VCC $=3.3 \pm 10 \% \mathrm{~V}(3.0$ to 3.6 V$)$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (See Notes 4,5)

Symbol	Characteristic		Typ (Note $5)$	Max	Unit

BUS INPUT AND OUTPUT

I_{A}	Input Current Receiver or Transceiver with Driver Disabled $\begin{array}{r} \mathrm{V}_{\mathrm{A}}=3.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=1.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{A}}=0.0 \mathrm{~V} \text { or } 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=1.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{A}}=-1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=1.2 \mathrm{~V} \end{array}$	$\begin{gathered} 0 \\ -20 \\ -32 \end{gathered}$		$\begin{gathered} 32 \\ 20 \\ 0 \end{gathered}$	uA
I_{B}	Input Current Receiver or Transceiver with Driver Disabled $\begin{array}{r} \mathrm{V}_{\mathrm{B}}=3.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=1.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{B}}=0.0 \mathrm{~V} \text { or } 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=1.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{B}}=-1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=1.2 \mathrm{~V} \end{array}$	$\begin{gathered} 0 \\ -20 \\ -32 \end{gathered}$		$\begin{gathered} 32 \\ 20 \\ 0 \end{gathered}$	uA
${ }_{\text {AB }}$	Differential Input Current Receiver or Transceiver with driver disabled ($\mathrm{I}_{\mathrm{A}}-\mathrm{I}_{\mathrm{B}}$) $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}},-1.4 \leq \mathrm{V}_{\mathrm{A}} \leq 3.8 \mathrm{~V}$	-4		4	uA
$\mathrm{I}_{\mathrm{A}(\mathrm{OFF})}$	Input Current Receiver or Transceiver Power Off $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 1.5$ and: $\begin{array}{r} \mathrm{V}_{\mathrm{A}}=3.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=1.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{A}}=0.0 \mathrm{~V} \text { or } 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=1.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{A}}=-1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=1.2 \mathrm{~V} \end{array}$	$\begin{gathered} 0 \\ -20 \\ -32 \end{gathered}$		$\begin{gathered} 32 \\ 20 \\ 0 \end{gathered}$	uA
$\mathrm{I}_{\mathrm{B} \text { (OFF) }}$	Input Current Receiver or Transceiver Power Off $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 1.5$ and: $\begin{array}{r} \mathrm{V}_{\mathrm{B}}=3.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=1.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{B}}=0.0 \mathrm{~V} \text { or } 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=1.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{B}}=-1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=1.2 \mathrm{~V} \end{array}$	$\begin{gathered} 0 \\ -20 \\ -32 \end{gathered}$		$\begin{gathered} 32 \\ 20 \\ 0 \end{gathered}$	uA
$\mathrm{I}_{\mathrm{AB}(\mathrm{OFF})}$	Receiver Input or Transceiver Input/Output Power Off Differential Input Current; $\left(\mathrm{I}_{\mathrm{A}}-\mathrm{I}_{\mathrm{B}}\right)$ $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}, 0 \leq \mathrm{V}_{\mathrm{CC}} \leq 1.5 \mathrm{~V},-1.4 \leq \mathrm{V}_{\mathrm{A}} \leq 3.8 \mathrm{~V}$	-4		4	uA
C_{A}	Transceiver Input Capacitance with Driver Disabled $V_{A}=0.4 \sin \left(30 E^{6} \pi t\right)+0.5 \mathrm{~V}$ using HP4194A impedance analyzer (or equivalent); $\mathrm{V}_{\mathrm{B}}=1.2 \mathrm{~V}$		5		pF
C_{B}	Transceiver Input Capacitance with Driver Disabled VB $=0.4 \sin \left(30 \mathrm{E}^{6} \pi \mathrm{t}\right)+0.5 \mathrm{~V}$ using HP4194A impedance analyzer (or equivalent); $\mathrm{V}_{\mathrm{A}}=1.2 \mathrm{~V}$		5		pF
C_{AB}	Transceiver Differential Input Capacitance with Driver Disabled $V_{A}=0.4 \sin \left(30 E^{6} \pi t\right)+$ 0.5 V using HP4194A impedance analyzer (or equivalent); $\mathrm{V}_{\mathrm{B}}=1.2 \mathrm{~V}$			3.0	pF
$\mathrm{C}_{\text {A/B }}$	Transceiver Input Capacitance Balance with Driver Disabled, (CA/CB)	99		101	\%

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
4. See Figure 3. DC Measurements reference.
5. Typ value at $25^{\circ} \mathrm{C}$ and 3.3 VCC supply voltage.

Table 6. DRIVER AC CHARACTERISTICS VCC $=3.3 \pm 10 \% \mathrm{~V}\left(3.0\right.$ to 3.6 V), $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 6)

Symbol	Characteristic	Min	Typ	Max	Unit
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	Propagation Delay (See Figure 7)	1.0		2.4	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	Disable Time HIGH or LOW state to High Impedance (See Figure 8)			7	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	Enable Time High Impedance to HIGH or LOW state (See Figure 8)			7	ns
$\mathrm{t}_{\text {SK(P) }}$	Pulse Skew (\|t ${ }_{\text {PLH }}$ - t ${ }_{\text {PHL }} \mid$) (See Figure 7)		0	150	ps
${ }^{\text {tSK(PP) }}$	Device to Device Skew similar path and conditions (See Figure 7)			0.9	ns
$\mathrm{t}_{\text {JIT(PER) }}$	Period Jitter RMS, 100 MHz (Source tr/tf $0.5 \mathrm{~ns}, 10$ and 90% points, 30k samples. Source jitter de-embedded from Output values) (See Figure 10)			3	ps
$t_{\text {JIT(PP) }}$	Peak-to-peak Jitter, 200 Mbps 2^{15} _1 PRBS (Source tr/tf $0.5 \mathrm{~ns}, 10$ and 90% points, 100k samples. Source jitter de-embedded from Output values) (See Figure 10)			150	ps
tr / tf	Differential Output rise and fall times (See Figure 7)	1		1.6	ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
6. Typ value at $25^{\circ} \mathrm{C}$ and $3.3 \mathrm{~V}_{\mathrm{CC}}$ supply voltage.

Table 7. RECEIVER AC CHARACTERISTICS VCC $=3.3 \pm 10 \% \mathrm{~V}\left(3.0\right.$ to 3.6 V), $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 7)

Symbol	Characteristic	Min	Typ	Max	Unit
tPLH / tpHL	Propagation Delay (See Figure 12)	2	4	6	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	Disable Time HIGH or LOW state to High Impedance (See Figure 13)			10	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	Enable Time High Impedance to HIGH or LOW state (See Figure 13)			15	ns
$\mathrm{t}_{\text {SK(P) }}$	Pulse Skew (\|tpLH - tpHLI) (See Figure 12) $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ Type 1 Type 2		$\begin{aligned} & 100 \\ & 300 \end{aligned}$	$\begin{aligned} & 300 \\ & 500 \end{aligned}$	ps
$\mathrm{t}_{\text {SK(PP) }}$	Device to Device Skew similar path and conditions (See Figure 12) $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$			1	ns
$\mathrm{t}_{\text {JIT(PER) }}$	Period Jitter RMS, 100 MHz (Source: VID $=200 \mathrm{mV}_{\text {pp }}$ for 201 and 203, VID = $400 \mathrm{mV}_{\text {pp }}$ for 206 and 207, $\mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$, tr/ff $0.5 \mathrm{~ns}, 10$ and 90% points, 30 k samples. Source jitter de-embedded from Output values) (See Figure 14)		4	7	ps
$\mathrm{t}_{\text {JIT(PP) }}$	Peak-to-peak Jitter, 200 Mbps 2^{15}-1 PRBS (Source tr/tf $0.5 \mathrm{~ns}, 10 \%$ and 90% points, 100k samples. Source jitter de-embedded from Output values) (See Figure 14) Type 1 Type 2		$\begin{aligned} & 300 \\ & 450 \end{aligned}$	$\begin{aligned} & 700 \\ & 800 \end{aligned}$	ps
tr / tf	Differential Output rise and fall times (See Figure 12) $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	1		2.3	ns

7. Typ value at $25^{\circ} \mathrm{C}$ and 3.3 VCC supply voltage. .

Figure 3. Driver Voltage and Current Definitions

Figure 4. Differential Output Voltage Test Circuit

A. All input pulses are supplied by a generator having the following characteristics: tr or $\mathrm{tt} \leq 1 \mathrm{~ns}$, pulse frequency $=500 \mathrm{kHz}$, duty cycle $=50 \pm 5 \%$.
B. C1, C2 and C3 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are 20% tolerance.
C. R1 and R2 are metal film, surface mount, 1% tolerance, and located within 2 cm of the D.U.T.
D. The measurement of $\operatorname{Vos(PP)}$ is made on test equipment with a -3 dB bandwidth of at least 1 GHz .

Figure 5. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

Figure 6. Driver Short-Circuit Test Circuit

A. All input pulses are supplied by a generator having the following characteristics: tr or $\mathrm{t} \leq 1 \mathrm{~ns}$, frequency $=500 \mathrm{kHz}$, duty cycle $=50 \pm 5 \%$.
B. C1, C2, and C3 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are 20\%.
C. R1 is a metal film, surface mount, and 1% tolerance and located within 2 cm of the D.U.T.
D. The measurement is made on test equipment with a -3 dB bandwidth of at least 1 GHz .

Figure 7. Driver Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal

A. All input pulses are supplied by a generator having the following characteristics: tr or $\mathrm{tf} \leq 1 \mathrm{~ns}$, frequency $=500 \mathrm{kHz}$, duty cycle $=50 \pm 5 \%$.
B. C1, C2, C3, and C4 includes instrumentation and fixture capacitance within 2 cm of the D.U.T. and are 20%.
C. R1 and R2 are metal film, surface mount, and 1% tolerance and located within 2 cm of the D.U.T.
D. The measurement is made on test equipment with $\mathrm{a}-3 \mathrm{~dB}$ bandwidth of at least 1 GHz .

Figure 8. Driver Enable and Disable Time Circuit and Definitions

Figure 9. Maximum Steady State Output Voltage

Period Jitter

A. All input pulses are supplied by an Agilent 8304A Stimulus System.
B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software
C. Period jitter is measured using a $100 \mathrm{MHz} 50 \pm 1 \%$ duty cycle clock input.
D. Peak-to-peak jitter is measured using a 200 Mbps $2^{15}-1$ PRBS input.

Figure 10. Driver Jitter Measurement Waveforms

Figure 11. Receiver Voltage and Current Definitions

A. All input pulses are supplied by a generator having the following characteristics: tr or $\mathrm{tf} \leq 1 \mathrm{~ns}$, frequency $=50 \mathrm{MHz}$, duty cycle $=50$ $\pm 5 \%$. CL is a combination of a 20%-tolerance, low-loss ceramic, surface-mount capacitor and fixture capacitance within 2 cm of the D.U.T.
B. The measurement is made on test equipment with a -3 dB bandwidth of at least 1 GHz .

Figure 12. Receiver Timing Test Circuit and Waveforms

NB3N200S

A. All input pulses are supplied by a generator having the following characteristics: tr or $\mathrm{tf} \leq 1 \mathrm{~ns}$, frequency $=500 \mathrm{kHz}$, duty cycle $=50$ $\pm 5 \%$.
B. RL is 1% tolerance, metal film, surface mount, and located within 2 cm of the D.U.T.
C. CL is the instrumentation and fixture capacitance within 2 cm of the DUT and 20%.

Figure 13. Receiver Enable/Disable Time Test Circuit and Waveforms

Period Jitter

A. All input pulses are supplied by an Agilent 8304A Stimulus System.
B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software
C. Period jitter is measured using a $100 \mathrm{MHz} 50 \pm 1 \%$ duty cycle clock input.
D. Peak-to-peak jitter is measured using a $200 \mathrm{Mbps} 2^{15}-1$ PRBS input.

Figure 14. Receiver Jitter Measurement Waveforms

Table 8. TYPE-1 RECEIVER INPUT THRESHOLD TEST VOLTAGES

Applied Voltages		Resulting Differential Input Voltage	Resulting Common- Mode Input Voltage	Receiver Output
VIA	VIB	VID	VIC	
2.400	0.000	2.400	1.200	L
0.000	2.400	-2.400	1.200	H
3.800	3.750	0.050	3.775	L
3.750	3.800	-0.050	3.775	H
-1.350	-1.400	0.050	-1.375	L
-1.400	-1.350	-0.050	-1.375	

$H=$ high level, $L=$ low level, output state assumes receiver is enabled $(R E=L)$

Figure 15. Equivalent Input and Output Schematic Diagrams

APPLICATION INFORMATION

Receiver Input Threshold (Failsafe)

The MLVD standard defines a type 1 and type 2 receiver. Type 1 receivers include no provisions for failsafe and have their differential input voltage thresholds near zero volts.

Type 2 receivers have their differential input voltage thresholds offset from zero volts to detect the absence of a voltage difference. The impact to receiver output by the offset input can be seen in Table 9 and Figure 16.

Table 9. RECEIVER INPUT VOLTAGE THRESHOLD REQUIREMENTS

Receiver Type	Output Low	Output High
Type 1	$-2.4 \mathrm{~V} \leq$ VID $\leq-0.05 \mathrm{~V}$	$0.05 \mathrm{~V} \leq \mathrm{VID} \leq 2.4 \mathrm{~V}$

Figure 16. Receiver Differential Input Voltage Showing Transition Regions by Type

Live Insertion/Glitch-Free Power Up/Down

The NB3N200 family of products provides a glitch-free power up/down feature that prevents the M-LVDS outputs of the device from turning on during a power up or power down event. This is especially important in live insertion applications, when a device is physically connected to an M -LVDS multipoint bus and V_{CC} is ramping.

While the M-LVDS interface for these devices is glitch free on power up/down, the receiver output structure is not.

Figure 17 shows the performance of the receiver output pin, R (CHANNEL 2), as V_{CC} (CHANNEL 1) is ramped. The glitch on the R pin is independent of the RE voltage. Any complications or issues from this glitch are easily resolved in power sequencing or system requirements that suspend operation until V_{CC} has reached a steady state value.

Figure 17. M-LVDS Receiver Output: VCC (CHANNEL 1), R Pin (CHANNEL 2)

Simplex Theory Configurations: Data flow is unidirectional and Point-to-Point from one Driver to one Receiver. NB3N200SDG, NB3N202SDG, NB3N204SDG, and NB3N205SDG devices provide a high signal current allowing long drive runs and high noise immunity. Single

Figure 18. Point-to-Point Simplex Single Termination

Simplex Multidrop Theory Configurations: Data flow is unidirectional from one Driver with one or more Receivers and Multiple boards are required. Single terminated interconnects yield high amplitude levels. Parallel terminated interconnects yield typical MLVDS amplitude levels and minimizes reflections. On the Evaluation Test
terminated interconnects yield high amplitude levels. Parallel terminated interconnects yield typical MLVDS amplitude levels and minimizes reflections. See Figures 18 and 19. A NB3N200SDG, NB3N202SDG, NB3N204SDG, and NB3N205SDG can be used as the driver or as a receiver.

Figure 19. Parallel-Terminated Simplex

Board, Headers P1, P2, and P3 may be used as need to interconnect transceivers to a each other or a bus. See Figures 20 and 21. A NB3N200SDG, NB3N202SDG, NB3N204SDG, and NB3N205SDG can be used as the driver or as a receiver.

Figure 20. Multidrop or Distributed Simplex with Single Termination

Figure 21. Multidrop or Distributed Simplex with Double Termination

Half Duplex Multinode Multipoint Theory Configurations: Data flow is unidirectional and selected from one of multiple possible Drivers to multiple Receives. One "Two Node" multipoint connection can be accomplished with a single evaluation board. More than Two Nodes requires multiple evaluation test boards. Parallel terminated interconnects yield typical MLVDS amplitude levels and minimizes reflections. Parallel terminated
interconnects yield typical LMVDS amplitude levels and minimizes reflections. On the Test Board, Headers P1, P2, and P3 may be used as need to interconnect transceivers to each other or a bus. See Figure 22. A NB3N202SDG, NB3N204SDG, and NB3N205SDG can be used as the driver or as a receiver. Full duplex bus interconnect configurations are possibe using NB3N202SDG or NB3N205SDG.

Figure 22. Multinode Multipoint Half Duplex (requires Double Termination)

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Figure 23.

ORDERING INFORMATION

Device	Receiver	Pin 1 Quadrant	Package	Shipping †
NB3N200SDG	Type 1	Q1	SOIC-8 (Pb-Free)	98 Units / Rail
NB3N200SDR2G	Type 1	Q1	SOIC-8 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOIC-8 NB
CASE 751-07
ISSUE AK

 details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^1]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: DRIVER

[^1]: ON Semiconductor and 010 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

