阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

3.3V Differential In 1:10 Differential Fanout Clock Driver with HCSL Level Output

Description

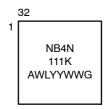
The NB4N111K is a differential input clock 1 to 10 HCSL fanout buffer, optimized for ultra low propagation delay variation. The NB4N111K is designed with HCSL clock distribution for FBDIMM applications in mind.

Inputs can accept differential LVPECL, CML, or LVDS levels. Single–ended LVPECL, CML, LVCMOS or LVTTL levels are accepted with the proper V_{REFAC} supply (see Figures 5, 10, 11, 12, and 13). Clock input pins incorporate an internal 50 Ω on die termination resistors. Outputs can interface with LVDS with proper termination (See Figure 15).

The NB4N111K specifically guarantees low output-to-output skews. Optimal design, layout, and processing minimize skew within a device and from device to device. System designers can take advantage of the NB4N111K's performance to distribute low skew clocks across the backplane or the motherboard.

Features

- Typical Input Clock Frequencies: 100, 133, 166, 200, 266, 333, and 400 MHz
- 340 ps Typical Rise and Fall Times
- 800 ps Typical Propagation Delay
- Δtpd 100 ps Maximum Propagation Delay Variation Per Each Differential Pair
- <1 ps RMS Additive Clock jitter
- Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.6 V with $V_{EE} = 0 \text{ V}$
- Differential HCSL Output Level or LVDS with Proper Termination
- These are Pb-Free Devices


ON Semiconductor®

http://onsemi.com

QFN32 MN SUFFIX CASE 488AM

MARKING DIAGRAM*

A = Assembly Site

WL = Wafer Lot

YY = Year

WW = Work Week

G = Pb-Free Package

^{*}For additional marking information, refer to Application Note AND8002/D.

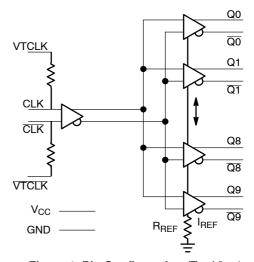


Figure 1. Pin Configuration (Top View)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

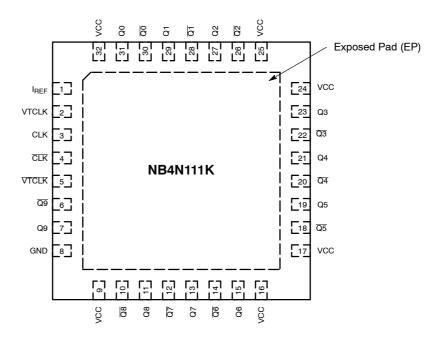


Figure 2. Pinout Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description	
1	I _{REF}	Output	Output current programming pin. Connect to GND. (See Figure 9).	
2, 5	VTCLK, VTCLK	-	Internal 50 Ω Termination Resistor connection Pins. In the differential configuration when the input termination pins are connected to the common termination voltage and if no signal is applied then the device may be susceptible to self–oscillation.	
3	CLK	LVPECL Input	CLOCK Input (TRUE)	
4	CLK	LVPECL Input	CLOCK Input (INVERT)	
8	GND	-	Supply Ground. GND pin must be externally connected to power supply to guarantee proper operation.	
9, 16, 17, 24, 25, 32	V _{CC}	-	Positive Supply pins. V_{CC} pins must be externally connected to a power supply to guarantee proper operation.	
6, 10, 12, 14, 18, 20, 22, 26, 28, 30	Q[09-0]	HCSL or LVDS Output	Noninverted Clock Output. (For LVDS levels see Figure 15)	
7, 11, 13, 15, 19, 21, 23, 27, 29, 31	Q[09-0]	HCSL or LVDS Output	Inverted Clock Output. (For LVDS levels see Figure 15)	
Exposed Pad	EP	GND	Exposed Pad. The thermally exposed pad (EP) on package bottom (see case drawing) must be attached to a sufficient heat-sinking conduit for proper thermal operation. (Note 1)	

^{1.} The exposed pad must be connected to the circuit board ground.

Table 2. ATTRIBUTES

Characteristic	Value	
Input Default State Resistors	None	
ESD Protection Human Body Model		>2 kV
Moisture Sensitivity (Note 2)	Level 1	
Flammability Rating Oxygen Index: 28 to	UL 94 V-0 @ 0.125 in	
Transistor Count	622	
Meets or exceeds JEDEC Spec EIA/JES		

^{2.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS (Note 3)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		4.6	V
VI	Positive Input	GND = 0 V		$GND - 0.3 \le V_I \le V_{CC}$	V
V _{INPP}	Differential Input Voltage CLK - CLK			V _{CC}	V
I _{OUT}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range	QFN32		-40 to +70	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 lfpm 500 lfpm	QFN32 QFN32	31 27	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	2S2P (Note 4)	QFN32	12	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

3. JEDEC standard 51–6, multilayer board – 2S2P (2 signal, 2 power).

4. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS ($V_{CC} = 3.0 \text{ V}$ to 3.6 V, $T_A = -40 ^{\circ}\text{C}$ to $+70 ^{\circ}\text{C}$ Note 5)

Symbol	Characteristic	Min	Тур	Max	Unit
I _{GND}	GND Supply Current (All Outputs Loaded)	70	98	120	mA
I _{CC}	Power Supply Current (All Outputs Loaded)			300	mA
I _{IH}	Input HIGH Current CLKx, CLKx		2.0	150	μΑ
I _{IL}	Input LOW Current CLKx, CLKx	-150	-2.0		μΑ
DIFFERE	NTIAL INPUT DRIVEN SINGLE-ENDED (Figures 5 and 7)				
V _{th}	Input Threshold Reference Voltage Range (Note 6)	1050		V _{CC} – 150	mV
V _{IH}	Single-Ended Input HIGH Voltage	V _{th} + 150		V _{CC}	mV
V _{IL}	Single-Ended Input LOW Voltage	GND		V _{th} – 150	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 6 and 8)		-		
V _{IHD}	Differential Input HIGH Voltage	1200		V_{CC}	mV
V _{ILD}	Differential Input LOW Voltage			V _{CC} - 75	mV
V _{ID}	Differential Input Voltage (V _{IHD} - V _{ILD})	75		2400	mV
V _{CMR}	Input Common Mode Range	1163		V _{CC} - 75	
HCSL O	JTPUTS (Figure 4)	•	-		
V _{OH}	Output HIGH Voltage	600	740	900	mV
V _{OL}	Output LOW Voltage	-150	0	150	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{5.} Input parameters vary 1:1 with V_{CC} . Measurements taken with all outputs loaded 50 Ω to GND, see Figure 9.

^{6.} V_{th} is applied to the complementary input when operating in single ended mode.

Table 5. AC CHARACTERISTICS $V_{CC} = 3.0 \text{ V}$ to 3.6 V, GND = 0 V; -40° C to $+70^{\circ}$ C (Note 7)

Symbol	Characteristic	Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude (@ V _{INPPmin}) f _{in} = 400 N	Hz	725	1000	mV
t _{PLH} , t _{PHL}	Propagation Delay to (See Figure 3) CLK/CLK to Qx/	Qx 550	800	1100	ps
Δt _{PLH} , Δt _{PHL}	Propagation Delay Variations Variation Per Each Diff Pair CLK/CLK to Qx/Qx (Note (See Figure 3)	8)		100	ps
t _{SKEW}	Duty Cycle Skew (Note 9) Within-Device Skew Device-to-Device Skew (Note 10)			20 100 150	ps ps ps
t _{JITTER}	RMS Random Clock Jitter (Note 11) f _{in} = 400 M	Hz		1	ps
V _{cross}	Absolute Crossing Magnitude Voltage	250		550	mV
ΔV_{cross}	Variation in Magnitude of V _{cross}			150	mV
t _r , t _f	Absolute Magnitude in Output Risetime and Falltime Qx, (From 175 mV to 525 mV)	Qx 175	340	700	ps
$\Delta t_{r,} \Delta t_{f}$	Variation in Magnitude of Risetime and Falltime (Single-Ended) Qx, (See Figure 4)	Qx		125	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- Measured by forcing V_{INPP} (MIN) from a 50% duty cycle clock source. Measurements taken with all outputs loaded 50 Ω to GND, see Figure 9. Typical gain is 20 dB.
- 8. Measured from the input pair crosspoint to each single output pair crosspoint across temp and voltage ranges.
- 9. Duty cycle skew is measured between differential outputs using the deviations of the sum of Tpw- and Tpw+.
- 10. Skew is measured between outputs under identical transition @ 400 MHz.
- 11. Additive RMS jitter with 50% duty cycle clock signal using phase noise integrated from 12 KHz to 33 MHz

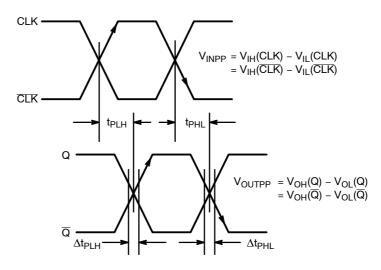


Figure 3. AC Reference Measurement

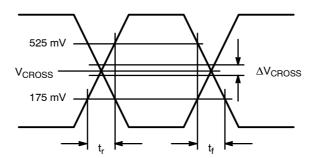


Figure 4. HCSL Output Parameter Characteristics

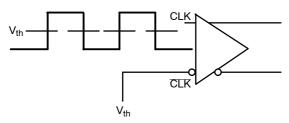


Figure 5. Differential Input Driven Single-Ended ($V_{th} = V_{REFAC}$)

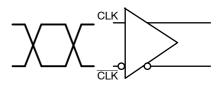


Figure 6. Differential Inputs Driven Differentially

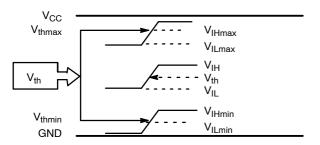


Figure 7. V_{th} Diagram

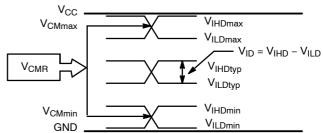
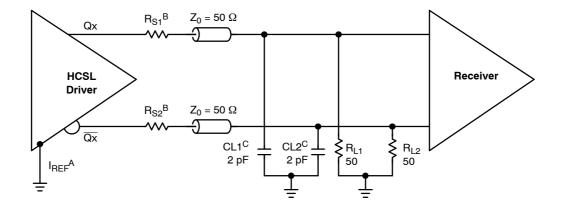
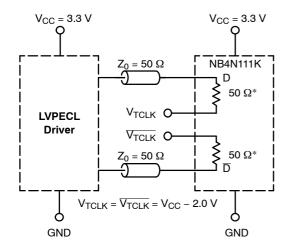




Figure 8. V_{CMR} Diagram

 $\begin{array}{l} \textbf{A. Connect} \ _{|REF} \ \text{pin to GND.} \\ \textbf{B. RS1, RS2: 0} \ \Omega \ \text{for Test and} \\ \textbf{Evaluation. Select to Minimizing Ringing.} \\ \textbf{C. CL1, CL2: Receiver Input Simulation} \\ \textbf{Load Capacitance Only.} \\ \end{array}$

Figure 9. Typical Termination Configuration for Output Driver and Device Evaluation C_{Lx} for Test Only (Representing Receiver Input Loading); Not Added to Application

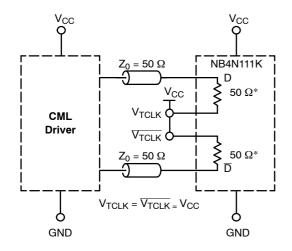
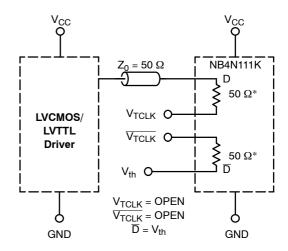

*RTIN, Internal Input Termination Resistor

Figure 10. LVPECL Interface



*RTIN, Internal Input Termination Resistor

Figure 11. LVDS Interface

*RTIN, Internal Input Termination Resistor

Figure 12. Standard 50 Ω Load CML Interface

Figure 13. LVCMOS/LVTTL Interface

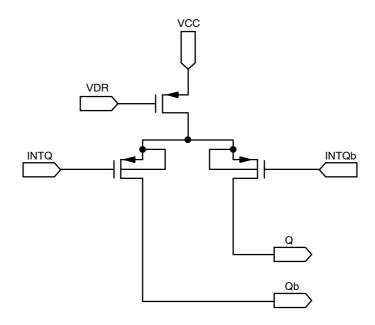


Figure 14. HCSL Output Structure

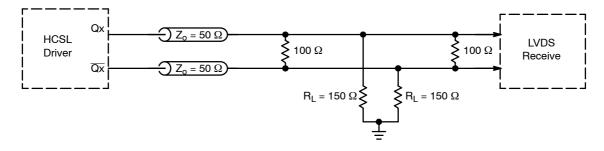
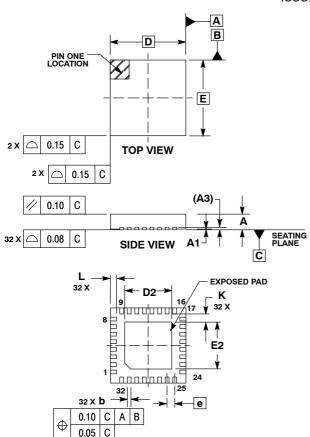


Figure 15. HCSL Interface Termination to LVDS

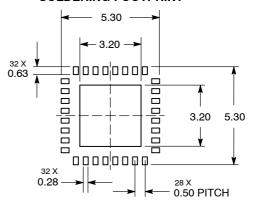

ORDERING INFORMATION

Device	Package	Shipping [†]	
NB4N111KMNG	QFN32 (Pb-Free)	79 Units / Rail	
NB4N111KMNR4G	QFN32 (Pb-Free)	1000 / Tape & Reel	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

QFN32 5x5, 0.5P CASE 488AM-01 ISSUE O


BOTTOM VIEW

NOTES:

- DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED
- TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM TERMINAL
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS					
DIM	MIN	MOM	MAX			
Α	0.800	0.900	1.000			
A1	0.000	0.025	0.050			
АЗ	0.	0.200 REF				
b	0.180 0.250 0.3					
D	5.	.00 BSC				
D2	2.950 3.100 3.25					
E	5.00 BSC					
E2	2.950	3.100	3.250			
е	0.500 BSC					
K	0.200					
L	0.300	0.400	0.500			

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative