阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

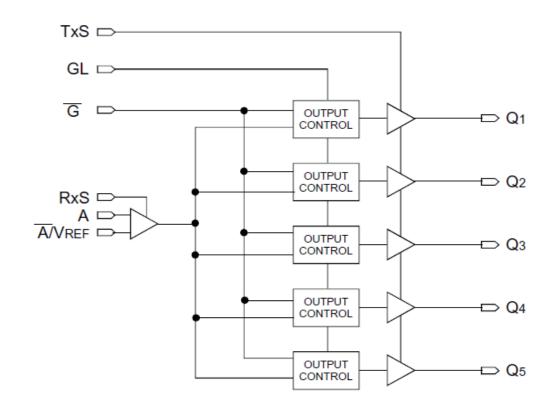
- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

2.5V Single Data Rate1:5 Clock Buffer Terabuffer™

DATA SHEET

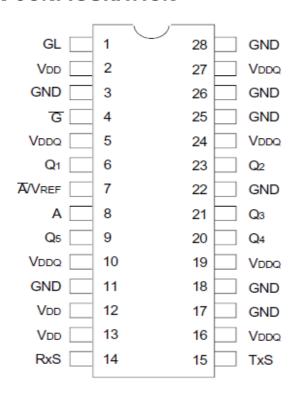
FEATURES:

- Guaranteed Low Skew < 60ps (max)
- · Very low duty cycle distortion
- High speed propagation delay < 2.5ns. (max)
- · Up to 250MHz operation
- · Very low CMOS power levels
- 1.5V VDDQ for HSTL interface
- · Hot insertable and over-voltage tolerant inputs
- · 3-level inputs for selectable interface
- · Selectable HSTL, eHSTL, 1.8V / 2.5V LVTTL, or LVEPECL input
- · Selectable differential or single-ended inputs and five single-ended outputs
- 2.5V VDD
- Available in TSSOP package
- For new designs use functional replacement 8L30110


APPLICATIONS:

· Clock and signal distribution

DESCRIPTION:


The 5T905 2.5V single data rate (SDR) clock buffer is a user-selectable single-ended or differential input to five single-ended outputs buffer built on advanced metal CMOS technology. The SDR clock buffer fanout from a single or differential input to five single-ended outputs reduces the loading on the preceding driver and provides an efficient clock distribution network. The IDT5T905 can act as a translator from a differential HSTL, eHSTL, 1.8V/2.5V LVTTL, LVEPECL, or single-ended 1.8V/2.5V LVTTL input to HSTL, eHSTL, 1.8V/2.5V LVTTL outputs. Selectable interface is controlled by 3-level input signals that may be hard-wired to appropriate high-mid-low levels. Multiple power and grounds reduce noise.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VDD	Power Supply Voltage®	-0.5 to +3.6	V
VDDQ	Output Power Supply ⁽²⁾	-0.5 to +3.6	V
Vı	Input Voltage	-0.5 to +3.6	V
Vo	Output Voltage®	-0.5 to VDDO +0.5	V
VREF	Reference Voltage®	-0.5 to +3.6	V
Tstg	Storage Temperature	-65 to +165	°C
TJ	Junction Temperature	150	°C

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VDDO and VDD internally operate independently. No power sequencing requirements need to be met.
- 3. Not to exceed 3.6V.

CAPACITANCE(1,2) (TA = +25°C, F = 1.0MHz)

Symbol	Parameter	Min	Тур.	Max.	Unit
CIN	Input Capacitance	_	3.5	-	pF

NOTES:

- 1. This parameter is measured at characterization but not tested.
- 2. Capacitance applies to all inputs except RxS and TxS.

RECOMMENDED OPERATING RANGE

Symbol	Description	Min.	Tvp.	Max.	Unit
TA	Ambient Operating Temperature	-40	+25	+85	°C
V _{DD} ⁽¹⁾	Internal Power Supply Voltage	2.4	2.5	2.6	V
	HSTI Output Power Supply Voltage	1.4	1.5	16	V
VDDQ ⁽¹⁾	Extended HSTL and 1.8V LVTTL Output Power Supply Voltage	1.65	1.8	1.95	V
	2.5V LVTTL Output Power Supply Voltage		Vdd		V
VT	Termination Voltage		VDDQ/2		V

NOTE

1. All power supplies should operate in tandem. If VDD or VDDQ is at maximum, then VDDQ or VDD (respectively) should be at maximum, and vice-versa.

PIN DESCRIPTION

Symbol	I/O	Type	Description			
A		Adjustable ⁽¹⁾	Clock input. A is the "true" side of the differential clock input. If operating in single-ended mode, A is the clock input.			
Ā/Vref	I	Adjustable ⁽¹⁾	Complementary clock input. \overline{A}/V_{REF} is the "complementary" side of A if the input is in differential mode. If operating in sin- ple-ended mode, \overline{A}/V_{REF} is connected to GND. For single-ended operation in differential mode, \overline{A}/V_{REF} should be set to the desired toggle voltage for A:			
			2.5V LVTTL VREF = 1250mV			
			1.8V LVTTL, eHSTL VREF = 900mV			
			HSTL VREF = 750mV			
			LVEPECL VREF = 1082mV			
G	Ι	LVTTL ⁽⁵⁾	Gate control for Qn outputs. When \overline{G} is LOW, these outputs are enabled. When \overline{G} is HIGH, these outputs are asynchronously disabled to the level designated by $GL^{(4)}$.			
GL		LVTTL ⁽⁵⁾	Specifies output disable level. If HIGH, the outputs disable HIGH. If LOW, the outputs disable LOW.			
Qn	0	Adiustable ⁽²⁾	Clock outputs			
RxS	_	3 Level ⁽³⁾	Selects single-ended 2.5V LVTTL (HIGH), 1.8V LVTTL (MID) clock input or differential (LOW) clock input			
TxS	Ι	3 Level ⁽³⁾	Sets the drive strength of the output drivers to be 2.5V LVTTL (HIGH), 1.8V LVTTL (MID) or HSTL (LOW) compatible. Used in conjunction with VDDO to set the interface levels.			
Vdd		PWR	Power supply for the device core and inputs			
VDDO		PWR	Power supply for the device outputs. When utilizing 2.5V LVTTL outputs, VDDO should be connected to VDD.			
GND		PWR	Power supply return for all power			

NOTES:

1. Inputs are capable of translating the following interface standards. User can select between:

Single-ended 2.5V LVTTL levels

Single-ended 1.8V LVTTL levels

or

Differential 2.5V/1.8V LVTTL levels

Differential HSTL and eHSTL levels

Differential LVEPECL levels

- 2. Outputs are user selectable to drive 2.5V, 1.8V LVTTL, eHSTL, or HSTL interface levels when used with the appropriate VDDQ voltage.
- 3. 3 level inputs are static inputs and must be tied to Vod or GND or left floating. These inputs are not hot-insertable or over-voltage tolerant.
- 4. Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control signals to minimize the possibility of runt pulses or be able to tolerate them in down stream circuitry.
- 5. Pins listed as LVTTL inputs will accept 2.5V signals when RxS = HIGH or 1.8V signals when RxS = LOW or MID.

INPUT/OUTPUT SELECTION(1)

IN OTTOOTI OT SELECTION						
Input	Output					
2.5V LVTTL SE	2.5V LVTTL					
1.8V LVTTL SE						
2.5V LVTTL DSE						
1.8V LVTTL DSE						
LVEPECL DSE						
eHSTL DSE						
HSTL DSE						
2.5V LVTTL DIF						
1.8V LVTTL DIF						
LVEPECL DIF						
eHSTL DIF						
HSTL DIF						
2.5V LVTTL SE	1.8V LVTTL					
1.8V LVTTL SE						
2.5V LVTTL DSE						
1.8V LVTTL DSE						
LVEPECL DSE						
eHSTL DSE						
HSTL DSE						
2.5V LVTTL DIF						
1.8V LVTTL DIF						
LVEPECL DIF	_					
eHSTL DIF	_					
HSTL DIF						

Input	Output
2.5V LVTTL SE	eHSTL
1.8V LVTTL SE	
2.5V LVTTL DSE	
1.8V LVTTL DSE	
LVEPECL DSE	
eHSTL DSE	
HSTL DSE	
2.5V LVTTL DIF	
1.8V LVTTL DIF	
LVEPECL DIF	
eHSTL DIF	
HSTL DIF	
2.5V LVTTL SE	HSTL
1.8V LVTTL SE	
2.5V LVTTL DSE	
1.8V LVTTL DSE	
LVEPECL DSE	
eHSTL DSE	
HSTL DSE	
2.5V LVTTL DIF	
1.8V LVTTL DIF	
LVEPECL DIF	
eHSTL DIF	
HSTL DIF	

NOTE:

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	-	Min.	Max	Unit	
VIHH	Input HIGH Voltage Level ⁽¹⁾	3-Level Inputs Only		VDD - 0.4		V
Vimm	Input MID Voltage Level ⁽¹⁾	3-Level Inputs Only		Vpp/2 - 0.2	V _{DD} /2 + 0.2	V
VILL	Input LOW Voltage Level ⁽¹⁾	3-Level Inputs Only		_	0.4	V
	l3 3-Level Input DC Current (RxS, TxS)	VIN = VDD	HIGH Level	_	200	
l ₃		VIN = VDD/2	MID Level	-50	+50	μA
		Vin = GND	LOW Level	-200		·

NOTE:

1. These inputs are normally wired to VDD, GND, or left floating. Internal termination resistors bias unconnected unputs to VDD/2.

^{1.} The INPUT/OUTPUT SELECTION Table describes the total possible combinations of input and output interfaces. Single-Ended (SE) inputs in a single-ended mode require the AVREF pin to be connected to GND. Differential Single-Ended (DSE) is for single-ended operation in differential mode, requiring a VREF. Differential (DIF) inputs are used only in differential mode.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR HSTL(1)

Symbol	Parameter	Test Cor	ditions	Min.	Typ. ⁽⁷⁾	Max	Unit
Input Chara	acteristics						
Iн	Input HIGH Current ⁽⁹⁾	VDD = 2.6V	VI = VDDO/GND	_		±5	μА
lıL	Input LOW Current ⁽⁹⁾	VDD = 2.6V	Vi = GND/Vdda			±5	
Vik	Clamp Diode Voltage	VDD = 2.4V, IIN = -	18mA		- 0.7	- 1.2	V
Vin	DC Input Voltage			- 0.3		+3.6	V
Vdif	DC Differential Voltage ^(2,8)			0.2		_	V
Vсм	DC Common Mode Input Voltage ^(3,8)			680	750	900	mV
ViH	DC Input HIGH ^(4,5,8)			VREF + 100		_	mV
VIL	DC Input LOW ^(4,6,8)					Vref - 100	mV
Vref	Single-Ended Reference Voltage ^(4,8)			_	750	_	mV
Output Cha	racteristics						
Vон	Output HIGH Voltage	Іон = -8mA		VDDQ - 0.4		_	V
		Іон = -100μΑ		VDDQ - 0.1		_	V
Vol	Output LOW Voltage	lol = 8mA				0.4	V
		IoL = 100μA				0.1	V

NOTES:

- 1. See RECOMMENDED OPERATING RANGE table.
- 2. VDIF specifies the minimum input differential voltage (VTR VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
- 3. Vcm specifies the maximum allowable range of (VTR + Vcp) /2. Differential mode only.
- 4. For single-ended operation, in differential mode, AVREF is tied to the DC voltage VREF.
- 5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
- 6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
- 7. Typical values are at VDD = 2.5V, VDDQ = 1.5V, +25°C ambient.
- 8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced.
- 9. For differential mode (RxS = LOW), A and \overline{A}/V_{REF} must be at the opposite rail.

POWER SUPPLY CHARACTERISTICS FOR HSTL OUTPUTS(1)

Symbol	Parameter	Test Conditions ⁽²⁾	Typ.	Max	Unit
IDDQ	Quiescent Vdd Power Supply Current	VDDQ = Max., Reference Clock = LOW ⁽³⁾	20	30	mA
		Outputs enabled, All outputs unloaded			
IDDQQ	Quiescent VDDQ Power Supply Current	VDDQ = Max., Reference Clock = LOW ⁽³⁾	0.1	0.3	mA
		Outputs enabled, All outputs unloaded			
IDDD	Dynamic Vdd Power Supply	VDD = Max., VDDQ = Max., CL = 0pF	10	20	μΑ/MHz
	Current per Output				
IDDDQ	Dynamic VDDQ Power Supply	VDD = Max., VDDQ = Max., CL = 0pF	15	30	μΑ/MHz
	Current per Output				
Ітот	Total Power Vbb Supply Current	VDDQ = 1.5V, FREFERENCE CLOCK = 100MHz, CL = 15pF	20	30	mA
		VDDO = 1.5V, FREFERENCE CLOCK = 250MHz, CL = 15pF	25	40	
Ітото	Total Power VDDQ Supply Current	VDDQ = 1.5V, FREFERENCE CLOCK = 100MHz, CL = 15pF	15	30	mA
		VDDQ = 1.5V, FREFERENCE CLOCK = 250MHz, CL = 15pF	30	60	

- 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.
- 2. The termination resistors are excluded from these measurements.
- 3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR HSTL

Symbol	Parameter	Value	Units
VDIF	Input Signal Swing ⁽¹⁾	1	V
Vx	Differential Input Signal Crossing Point ⁽²⁾	750	mV
VTHI	Input Timing Measurement Reference Level ⁽³⁾	Crossina Point	V
tr, tr	Input Signal Edge Rate ⁽⁴⁾	1	V/ns

NOTES:

- 1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the VDIF (AC) specification under actual use conditions.
- 2. A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the Vx specification under actual use conditions.
- 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
- 4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR eHSTL(1)

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽⁷⁾	Max	Unit
Input Chara	Input Characteristics						
Іін	Input HIGH Current ⁽⁹⁾	V _{DD} = 2.6V	VI = VDDO/GND			±5	uΑ
lıL	Input LOW Current ⁽⁹⁾	V _{DD} = 2.6V	VI = GND/VDDQ			±5	
Vik	Clamp Diode Voltage	V _{DD} = 2.4V, I _{IN} =	-18mA		- 0.7	- 1.2	V
Vin	DC Input Voltage			- 0.3		+3.6	V
Vdif	DC Differential Voltage ^(2,8)			0.2		_	V
Vсм	DC Common Mode Input Voltage ^(3,8)			800	900	1000	mV
ViH	DC Input HIGH ^(4,5,8)			V _{REF} + 100		_	mV
VIL	DC Input LOW ^(4,6,8)			_		VREF - 100	mV
Vref	Single-Ended Reference Voltage ^(4,8)			_	900	_	mV
0 1 101							

Output Characteristics

Voн	Output HIGH Voltage	Iон = -8mA	VDDO - 0.4	_	V	L
		Іон = -100uA	VDDQ - 0.1	_	V	
Vol	Output LOW Voltage	IOL = 8mA	ı	0.4	V	
		IoL = 100μA	-	0.1	V	Г

- 1. See RECOMMENDED OPERATING RANGE table.
- 2. Voir specifies the minimum input differential voltage (VTR VcP) required for switching where VTR is the "true" input level and VcP is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state
- 3. V_{CM} specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.
- 4. For single-ended operation, in a differential mode, A/VREF is tied to the DC voltage VREF.
- 5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
- 6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
- 7. Typical values are at VDD = 2.5V, VDDQ = 1.8V, +25°C ambient.
- 8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced.
- 9. For differential mode (RxS = LOW), A and AVREF must be at the opposite rail.

POWER SUPPLY CHARACTERISTICS FOR eHSTL OUTPUTS(1)

Symbol	Parameter	Test Conditions ⁽²⁾	Typ.	Max	Unit
IDDQ	Quiescent VDD Power Supply Current	VDDQ = Max., Reference Clock = LOW ⁽³⁾	20	30	mA
		Outputs enabled, All outputs unloaded			
IDDQQ	Quiescent VDDQ Power Supply Current	VDDQ = Max., Reference Clock = LOW ⁽³⁾	0.1	0.3	mA
		Outputs enabled, All outputs unloaded			
lddd	Dynamic Vod Power Supply	VDD = Max., VDDQ = Max., CL = 0pF	10	20	μA/MHz
	Current per Output				
DDDDQ	Dynamic VDDQ Power Supply	VDD = Max., VDDQ = Max., CL = 0pF	20	30	μA/MHz
	Current per Output				
Ітот	Total Power Vdd Supply Current	VDDQ = 1.8V, FREFERENCE CLOCK = 100MHz, CL = 15pF	20	30	mA
		VDDQ = 1.8V, Freference clock = 250MHz, Cl = 15pF	25	40	
Ітото	Total Power VDDQ Supply Current	VDDQ = 1.8V, FREFERENCE CLOCK = 100MHz, CL = 15pF	20	40	mA
		VDDQ = 1.8V, FREFERENCE CLOCK = 250MHz, CL = 15pF	40	80	

NOTES:

- 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.
- 2. The termination resistors are excluded from these measurements.
- 3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR eHSTL

Symbol	Parameter	Value	Units
Vdif	Input Signal Swing ⁽¹⁾	1	V
Vx	Differential Input Signal Crossing Point ⁽²⁾	900	mV
Vтні	Input Timing Measurement Reference Level ⁽³⁾	Crossina Point	V
tr, tr	Input Signal Edge Rate ⁽⁴⁾	1	V/ns

NOTES:

- 1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the VDIF (AC) specification under actual use conditions.
- 2. A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the Vx specification under actual use conditions.
- 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
- 4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR LVEPECL(1)

Symbol	Parameter	Test Co	Test Conditions		Typ. ⁽²⁾	Max	Unit	
Input Chara	Input Characteristics							
Iн	Input HIGH Current ⁽⁶⁾	VDD = 2.6V	VI = VDDO/GND	_	_	±5	μA	
l _L	Input LOW Current ⁽⁶⁾	VDD = 2.6V	Vi = GND/VDDQ		_	±5		
Vik	Clamp Diode Voltage	VDD = 2.4V, IIN =	-18mA		- 0.7	- 1.2	V	
Vin	DC Input Voltage			- 0.3	_	3.6	V	
Vсм	DC Common Mode Input Voltage(3,5)			915	1082	1248	mV	
Vref	Single-Ended Reference Voltage(4,5)				1082	_	mV	
ViH	DC Input HIGH			1275	_	1620	mV	
VIL	DC Input LOW			555	_	875	mV	

- 1. See RECOMMENDED OPERATING RANGE table.
- 2. Typical values are at V_{DD} = 2.5V, +25°C ambient.
- 3. V_{CM} specifies the maximum allowable range of (V_{TR} + V_{CP}) /2. Differential mode only.
- 4. For single-ended operation while in differential mode, \overline{A}/V_{REF} is tied to the DC voltage V_{REF} .
- 5. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced
- 6. For differential mode (RxS = LOW), A and AVREF must be at the opposite rail.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR LVEPECL

Symbol	Parameter	Value	Units
VDIF	Input Signal Swing ⁽¹⁾	732	mV
Vx	Differential Input Signal Crossing Point ⁽²⁾	1082	mV
VTHI	Input Timing Measurement Reference Level ⁽³⁾	Crossina Point	V
tr, tr	Input Signal Edge Rate ⁽⁴⁾	1	V/ns

NOTES:

- 1. The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the VDIF (AC) specification under actual use conditions.
- 2. A 1082mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the Vx specification under actual use conditions.
- 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
- 4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR 2.5V

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽⁸⁾	Max	Unit
Input Chara	cteristics			-			
Iн	Input HIGH Current(10)	VDD = 2.6V	Vi = Vddo/GND	_		±5	uА
lıL	Input LOW Current ⁽¹⁰⁾	VDD = 2.6V	VI = GND/VDDQ			±5	
Vik	Clamp Diode Voltage	V _{DD} = 2.4V, I _{IN} =	-18mA		- 0.7	- 1.2	V
VIN	DC Input Voltage			- 0.3		+3.6	V
Single-Ende	ed Inputs ⁽²⁾						
Vih	DC Input HIGH			1.7		_	V
VIL	DC Input LOW			_		0.7	V
Differential	Inputs	-		-		-	
VdIF	DC Differential Voltage ^(3,9)			0.2		_	V
Vсм	DC Common Mode Input Voltage ^(4,9)			1150	1250	1350	mV
ViH	DC Input HIGH ^(5,6,9)			VREF + 100			mV
VIL	DC Input LOW ^(5,7,9)					Vref - 100	mV
Vref	Single-Ended Reference Voltage ^(5,9)			_	1250	_	mV
Output Cha	racteristics					-	
Vон	Output HIGH Voltage	Iон = -12mA		VDDQ - 0.4			V
		Іон = -100μΑ		VDDQ - 0.1		_	V
Vol	Output LOW Voltage	IoL = 12mA				0.4	V
		IoL = 100μA				0.1	V

- 1. See RECOMMENDED OPERATING RANGE table.
- 2. For 2.5V LVTTL single-ended operation, the RxS pin is tied HIGH and AVREF is tied to GND.
- 3. VDIF specifies the minimum input differential voltage (VTR VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
- 4. Vcm specifies the maximum allowable range of (VTR + Vcp) /2. Differential mode only.
- 5. For single-ended operation, in differential mode, \overline{A}/V_{REF} is tied to the DC voltage V_{REF} .
- 6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
- 8. Typical values are at V_{DD} = 2.5V, V_{DDQ} = V_{DD} , +25°C ambient.
- 9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced.
- 10. For differential mode (RxS = LOW), A and \overline{A} /VREF must be at the opposite rail.

POWER SUPPLY CHARACTERISTICS FOR 2.5V LVTTL OUTPUTS(1)

Symbol	Parameter	Test Conditions ⁽²⁾	Тур.	Max	Unit
IDDQ	Quiescent Vdd Power Supply Current	VDDQ = Max., Reference Clock = LOW ⁽³⁾	20	30	mA
		Outputs enabled, All outputs unloaded			
IDDQQ	Quiescent VDDQ Power Supply Current	VDDQ = Max., Reference Clock = LOW ⁽³⁾	0.1	0.3	mA
		Outputs enabled, All outputs unloaded			
IDDD	Dynamic Vdd Power Supply	VDD = Max., VDDQ = Max., CL = 0pF	15	20	μΑ/MHz
	Current per Output	· ·			·
IDDDQ	Dynamic VDDQ Power Supply	VDD = Max., VDDQ = Max., CL = 0pF	30	40	μΑ/MHz
	Current per Output	· ·			
Ітот	Total Power Vbb Supply Current	VDDQ = 2.5V, FREFERENCE CLOCK = 100MHz, CL = 15pF	20	40	mA
		VDDQ = 2.5V, FREFERENCE CLOCK = 200MHz, CL = 15pF	30	50	
Ітото	Total Power VDDQ Supply Current	VDDQ = 2.5V, FREFERENCE CLOCK = 100MHz, CL = 15pF	30	50	mA
		VDDQ = 2.5V, FREFERENCE CLOCK = 200MHz, CL = 15pF	70	100	

NOTES:

- 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.
- 2. The termination resistors are excluded from these measurements.
- 3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 2.5V LVTTL

Symbol	Parameter	Value	Units
VDIF	Input Signal Swing ⁽¹⁾	V _{DD}	V
Vx	Differential Input Signal Crossing Point ⁽²⁾	Vpp/2	V
VTHI	Input Timing Measurement Reference Level ⁽³⁾	Crossina Point	V
tr, tr	Input Signal Edge Rate ⁽⁴⁾	2.5	V/ns

NOTES:

- 1. A nominal 2.5V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the VDIF (AC) specification under actual use conditions.
- 2. A nominal 1.25V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the Vx specification under actual use conditions.
- 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
- 4. The input signal edge rate of 2.5V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.

SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 2.5V LVTTL

Symbol	Parameter	Value	Units
VIH	Input HIGH Voltage	Vdd	V
VIL	Input LOW Voltage	0	V
VTHI	Input Timing Measurement Reference Level ⁽¹⁾	Vpp/2	V
tr, tr	Input Signal Edge Rate ⁽²⁾	2	V/ns

- 1. A nominal 1.25V timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.
- $2. \ \, \text{The input signal edge rate of 2V/ns or greater is to be maintained in the 10\% to 90\% range of the input waveform.}$

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR 1.8V LVTTL⁽¹⁾

Symbol	Parameter	Test Co	nditions	Min.	Typ. ⁽⁸⁾	Max	Unit
Input Chara	acteristics						
Іін	Input HIGH Current ⁽¹²⁾	V _{DD} = 2.6V	Vi = Vddo/GND	_	_	±5	uА
IIL	Input LOW Current ⁽¹²⁾	VDD = 2.6V	VI = GND/VDDO			±5	
Vik	Clamp Diode Voltage	V _{DD} = 2.4V, I _{IN} =	-18mA		- 0.7	- 1.2	V
VIN	DC Input Voltage			- 0.3		VDDQ + 0.3	V
Single-Ende	ed Inputs ⁽²⁾						
VIH	DC Input HIGH			1.073 ⁽¹⁰⁾		_	V
VIL	DC Input LOW			_		0.683 ⁽¹¹⁾	V
Differential	Inputs						
VdIF	DC Differential Voltage ^(3,9)			0.2		_	V
Vсм	DC Common Mode Input Voltage ^(4,9)			825	900	975	mV
VIH	DC Input HIGH ^(5,6,9)			VREF + 100		_	mV
VIL	DC Input LOW ^(5,7,9)					Vref - 100	mV
VREF	Single-Ended Reference Voltage ^(5,9)				900	_	mV
Output Cha	racteristics						
Vон	Output HIGH Voltage	Iон = -6mA		VDDQ - 0.4		_	V
		Іон = -100µА		VDD0 - 0.1		_	V
Vol	Output LOW Voltage	IOL = 6mA				0.4	V
		IoL = 100μA		_		0.1	V

- 1. See RECOMMENDED OPERATING RANGE table.
- 2. For 1.8V LVTTL single-ended operation, the RxS pin is allowed to float or tied to VDD/2 and AVREF is tied to GND.
- 3. VDIF specifies the minimum input differential voltage (VTR VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
- 4. Vcm specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.
- 5. For single-ended operation in differential mode, \$\overline{A}\$/VReF is tied to the DC voltage VReF. The input is guaranteed to toggle within ±200mV of VReF when VReF is constrained within ±600mV and VDDI-600mV, where VDDI is the nominal 1.8V power supply of the device driving the A input. To guarantee switching in voltage range specified in the JEDEC 1.8V LVTTL interface specification, VREF must be maintained at 900mV with appropriate tolerances.
- 6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
- 7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
- 8. Typical values are at VDD = 2.5V, VDDQ = 1.8V, +25°C ambient.
- 9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced.
- 10. This value is the worst case minimum V_{IH} over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is V_{IH} = 0.65 V_{DD} where V_{DD} is 1.8V ± 0.15V. However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated worst case value (V_{IH} = 0.65 [1.8 0.15V]) rather than reference against a nominal 1.8V supply.
- 11. This value is the worst case maximum V_{IL} over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is V_{IL} = 0.35 ⋅ V_{DD} where V_{DD} is 1.8V ± 0.15V. However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated worst case value (V_{IH} = 0.35 ⋅ [1.8 + 0.15V]) rather than reference against a nominal 1.8V supply.
- 12. For differential mode (RxS = LOW), A and A/VREF must be at the opposite rail.

POWER SUPPLY CHARACTERISTICS FOR 1.8V LVTTL OUTPUTS(1)

Symbol	Parameter	Test Conditions ⁽²⁾	Тур.	Max	Unit
IDDQ	Quiescent Vod Power Supply Current	VDDQ = Max., Reference Clock = LOW ⁽³⁾	20	30	mA
		Outputs enabled, All outputs unloaded			
Iddaa	Quiescent VDDQ Power Supply Current	VDDQ = Max., Reference Clock = LOW ⁽³⁾	0.1	0.3	mA
		Outputs enabled, All outputs unloaded			
IDDD	Dynamic Vdd Power Supply	VDD = Max., VDDQ = Max., CL = 0pF	20	30	μΑ/MHz
	Current per Output	·			·
IDDDQ	Dynamic VDDQ Power Supply	VDD = Max., VDDQ = Max., CL = 0pF	20	30	μΑ/MHz
	Current per Output	·			·
Ітот	Total Power Vdd Supply Current	VDDQ = 1.8V, FREFERENCE CLOCK = 100MHz, CL = 15pF	20	30	mA
	,	VDDO = 1.8V, FREFERENCE CLOCK = 200MHz, CL = 15pF	30	40	
Ітото	Total Power VDDQ Supply Current	VDDQ = 1.8V, FREFERENCE CLOCK = 100MHz, CL = 15pF	20	40	mA
		VDDQ = 1.8V, FREFERENCE CLOCK = 200MHz, CL = 15pF	45	80]

NOTES:

- 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.
- 2. The termination resistors are excluded from these measurements.
- 3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 1.8V LVTTL

Symbol	Parameter	Value	Units
VDIF	Input Signal Swing ⁽¹⁾	Vddi	V
Vx	Differential Input Signal Crossing Point ⁽²⁾	VDDI/2	mV
VTHI	Input Timing Measurement Reference Level ⁽³⁾	Crossina Point	V
tr, tr	Input Signal Edge Rate ⁽⁴⁾	1.8	V/ns

NOTES:

- 1. Vppi is the nominal 1.8V supply (1.8V ± 0.15V) of the part or source driving the input. A nominal 1.8V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the VpiF (AC) specification under actual use conditions.
- 2. A nominal 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the Vx specification under actual use conditions.
- 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
- 4. The input signal edge rate of 1.8V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.

SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 1.8V LVTTL

Symbol	Parameter	Value	Units
VIH	Input HIGH Voltage ⁽¹⁾	Vddi	V
VIL	Input LOW Voltage	0	V
V _{THI}	Input Timing Measurement Reference Level ⁽²⁾	Vpdi/2	mV
tr, tr	Input Signal Edge Rate ⁽³⁾	2	V/ns

- 1. VDDI is the nominal 1.8V supply (1.8V \pm 0.15V) of the part or source driving the input.
- 2. A nominal 900mV timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.
- 3. The input signal edge rate of 2V/ns or greater is to be maintained in the 10% to 90% range of the input waveform.

AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (6) Symbol Parameter Min. Max Unit **Skew Parameters** tsk(o) Same Device Output Pin-to-Pin Skew⁽¹⁾ Single-Ended and Differential Modes 60 ps Single-Ended in Differential Mode (DSE) 60 $t_{SK(P)^{(2)}}$ Pulse Skew⁽³⁾ Single-Ended and Differential Modes 300 DS Single-Ended in Differential Mode (DSE) 300 dr⁽⁴⁾ **Duty Cycle** 40 60 % Part-to-Part Skew⁽⁵⁾ Single-Ended and Differential Modes tsk(PP) 300 ps Single-Ended in Differential Mode (DSE) 300 **Propagation Delay** Propagation Delay A to On 2.5 **t**PLH ns **t**PHL Output Rise Time (20% to 80%) 2.5V / 1.8V LVTTL Outputs 350 1050 tR ps

fo	Frequency Range (HSTL/eHSTL outputs)	_	_	250	MHz
	Frequency Range (2.5V/1.8V LVTTL outputs)	_	_	200	
Output Gate Enable/Disable Delay					
tpge	Output Gate Enable to On	_	_	3.5	ns
tpgD	Output Gate Enable to Qn Driven to GL Designated Level	_	_	3	ns

HSTL / eHSTL Outputs

HSTL / eHSTL Outputs

2.5V / 1.8V LVTTL Outputs

350

350

350

1350

1050

1350

ps

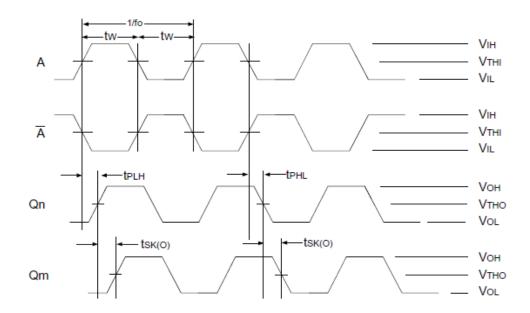
NOTES:

tF

- 1. Skew measured between all outputs under identical input and output interfaces, transitions, and load conditions on any one device.
- 2. For only 1.8V/2.5V LVTTL and eHSTL outputs.

Output Fall Time (20% to 80%)

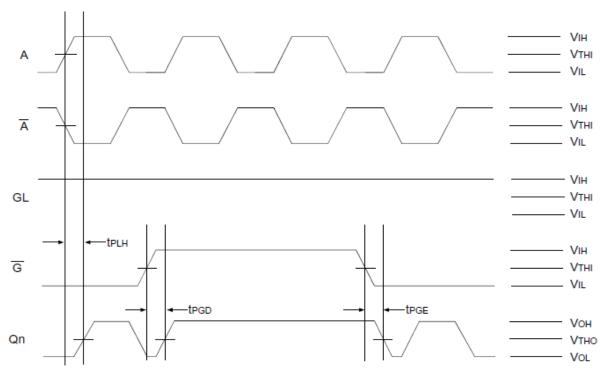
- 3. Skew measured is difference between propagation times tell and tell of any output under identical input and output interfaces, transitions, and load conditions on any one device.
- 4. For only HSTL outputs.
- 5. Skew measured is the magnitude of the difference in propagation times between any outputs of two devices, given identical transitions and load conditions at identical VDD/VDDQ levels and temperature.
- 6. Guaranteed by design.


AC DIFFERENTIAL INPUT SPECIFICATIONS(1)

Symbol	Parameter	Min.	Typ.	Max	Unit
t w	Reference Clock Pulse Width HIGH or LOW (HSTL/eHSTL outputs)(2)	1.73	_	_	ns
	Reference Clock Pulse Width HIGH or LOW (2.5V / 1.8V LVTTL outputs)(2)	2.17	_	_	
HSTL/eHSTL/1.8\	/ LVTTL/2.5V LVTTL			•	
Vdif	AC Differential Voltage ⁽³⁾	400	_	_	mV
Vih	AC Input HIGH ^(4,5)	Vx + 200	_	_	mV
VIL	AC Input LOW ^(4,6)	_		Vx - 200	mV
LVEPECL					•
Vdif	AC Differential Voltage ⁽³⁾	400	_	_	mV
ViH	AC Input HIGH ⁽⁴⁾	1275		_	mV
VIL	AC Input LOW ⁽⁴⁾	_	_	875	mV

- 1. For differential input mode, RxS is tied to GND.
- 2. Both differential input signals should not be driven to the same level simultaneously. The input will not change state until the inputs have crossed and the voltage range defined by VDIF has been met or exceeded.
- 3. Differential mode only. VDIF specifies the minimum input voltage (VTR VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The AC differential voltage must be achieved to guarantee switching to a new state.
- 4. For single-ended operation, \overline{A} /VREF is tied to DC voltage (VREF). Refer to each input interface's DC specification for the correct VREF range.
- 5. Voltage required to switch to a logic HIGH, single-ended operation only.
- 6. Voltage required to switch to a logic LOW, single-ended operation only.

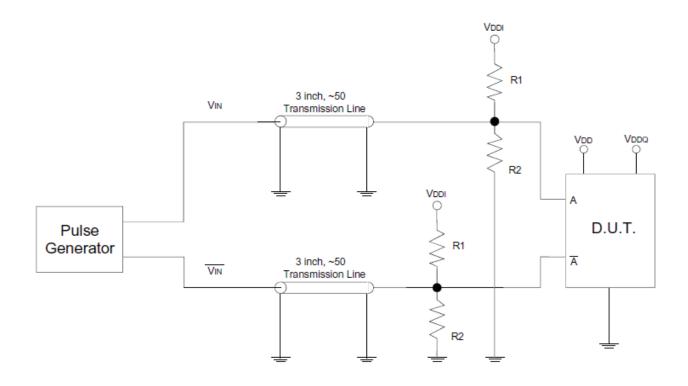
AC TIMING WAVEFORMS


Propagation and Skew Waveforms

NOTES

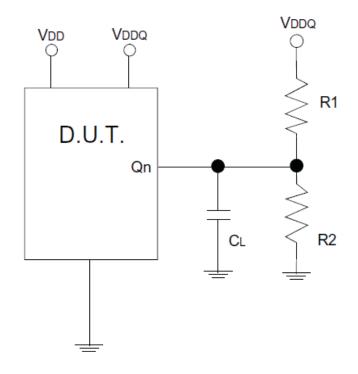
- $1. \ \, \text{TPHL and IPLH signals are measured from the input passing through VTHI or input pair crossing to Qn passing through VTHO.}$
- 2. Pulse Skew is calculated using the following expression:

$$tsk(P) = |tPHL - tPLH|$$


where tphl and tplh are measured on the controlled edges of any one output from rising and falling edges of a single pulse. Please note that the tphl and tplh shown are not valid measurements for this calculation because they are not taken from the same pulse.

Gate Disable/Enable Showing Runt Pulse Generation

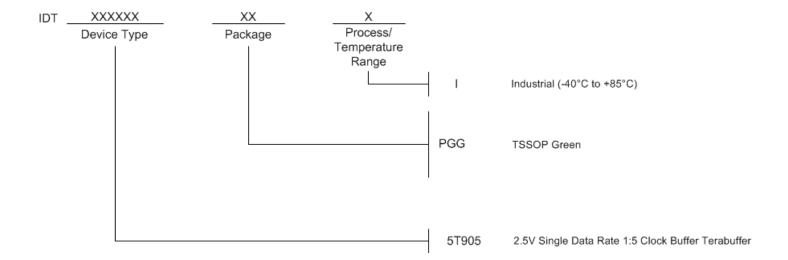
TEST CIRCUITS AND CONDITIONS


Test Circuit for Differential Input⁽¹⁾

DIFFERENTIAL INPUT TEST CONDITIONS

Symbol	$V_{DD} = 2.5V \pm 0.1V$	Unit
R1	100	Ω
R2	100	Ω
Vddi	Vcm*2	V
Vтні	HSTL: Crossing of A and \overline{A} eHSTL: Crossing of A and \overline{A} LVEPECL: Crossing of A and \overline{A} 1.8V LVTTL: VDDI/2 2.5V LVTTL: VDD/2	V

This input configuration is used for all input interfaces. For single-ended testing, the V_{IN} input is tied to GND. For testing single-ended in differential input mode, the V_{IN} is left floating.


Test Circuit for SDR Outputs

SDR OUTPUT TEST CONDITIONS

Symbol	$V_{DD} = 2.5V \pm 0.1V$	Unit
	V _{DDQ} = Interface Specified	
Cı	15	pF
R1	100	Ω
R2	100	Ω
VTHO	VDDQ/2	V

ORDERING INFORMATION

REVISION HISTORY

Rev	Table	Page	Discription of Change	Date
А		1	NRND - Not Recommended for New Designs	5/5/13
А		1	Product Discontinuation Notice - Last time buy expires November 2, 2016. PDN# CQ-15-05 Updated data sheet format.	11/3/15

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, California 95138 Sales

800-345-7015 or +408-284-8200 Fax: 408-284-2775 www.IDT.com Technical Support email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright 2015. All rights reserved.