

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

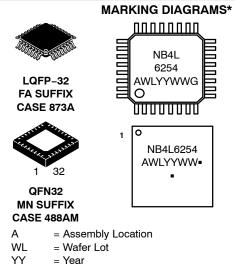
2.5V / 3.3V Differential LVPECL 2x2 Clock Switch and Low Skew Fanout Buffer

Description

The NB4L6254 is a differential 2x2 clock switch and drives precisely aligned clock signals through its LVPECL fanout buffers. It employs a fully differential architecture with bipolar technology, offers superior digital signal characteristics, has very low clock output skew and supports clock frequencies from DC up to 3.0 GHz.

The NB4L6254 is designed for the most demanding, skew critical differential clock distribution systems. Typical applications for the NB4L6254 are clock distribution, switching and data loopback systems of high-performance computer, networking and telecommunication systems, as well as on-board clocking of OC-3, OC-12 and OC-48 communication systems. In addition, the NB4L6254 can be configured as a single 1:6 or dual 1:3 LVPECL fanout buffer.

The NB4L6254 can be operated from a single 3.3 V or 2.5 V power supply.


Features

- Maximum Clock Input Frequency, 3 GHz
- Maximum Input Data Rate, 3 Gb/s
- Differential LVPECL Inputs and Outputs
- Low Output Skew: 50 ps Maximum Output-to-Output Skew
- Synchronous Output Enable Eliminating Output Runt Pulse Generation and Metastability
- Operating Range: Single 3.3 V or 2.5 V Supply $V_{CC} = 2.375$ V to 3.465 V
- LVCMOS Compatible Control Inputs
- Packaged in LQFP-32
- Fully Differential Architecture
- -40°C to 85°C Ambient Operating Temperature
- These are Pb-Free Devices*

ON Semiconductor®

http://onsemi.com

- WW = Work Week
- G or G or
- (Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

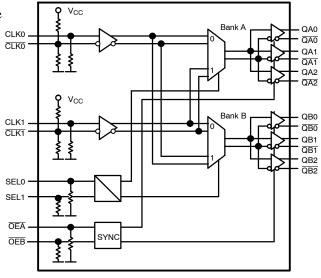


Figure 1. Functional Block Diagram

ORDERING INFORMATION

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

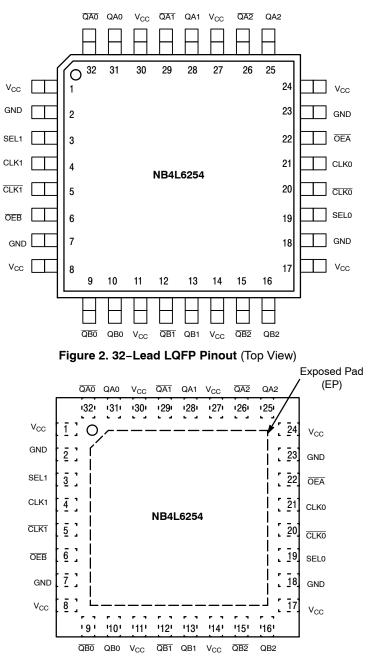


Figure 3. 32-Lead QFN Pinout (Top View)

Table 1. PIN DESCRIPTION

Pin Name	I/O	Description
CLK0, CLK0	LVPECL Input	Differential reference clock signal input 0.
CLK1, CLK1	LVPECL Input	Differential reference clock signal input 1.
OEAb, OEB	LVCMOS Input	Output Enable
SEL0, SEL1	LVCMOS Input	Clock Switch Select
QA[0-2], <u>QA[0-2]</u> QB[0-2], <u>QB[0-2]</u>	LVPECL Output	Differential LVPECL Clock Outputs, (banks A and B) Typically terminated with 50 Ω resistor to V_{CC} – 2.0 V.
GND	Power Supply	Negative Supply Voltage
V _{CC}	Power Supply	Positive supply voltage. All V_{CC} pins must be connected to the positive power supply for correct DC and AC operation.
EP		The exposed pad (EP) on the QFN-32 package bottom is thermally connected to the die for improved heat transfer out of the package. THe exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to GND.

Table 2. FUNCTION TABLE

Control	Default	0	1
OEA	0	QA[0-2], QA[0-2] are active. Deassertion of OEA can be asynchronous to the reference clock without generation of output runt pulses	$QA[0-2] = L, \overline{QA[0-2]} = H$ (outputs disabled). Assertion of \overline{OE} can be asynchronous to the reference clock without generation of output runt pulses
OEB	0	QB[0-2], QB[0-2] are active. Deassertion of OEB can be asynchronous to the reference clock without generation of output runt pulses	$QB[0-2] = L, \overline{QB[0-2]} = H$ (outputs disabled). Assertion of \overline{OE} can be asynchronous to the reference clock without generation of output runt pulses
SEL0, SEL1	00	Refer to Table 3	Refer to Table 3

Table 3. CLOCK SELECT CONTROL

SEL0	SEL1	CLK0 Routed To	CLK1 Routed to	Application Mode
0	0	QA[0:2] and QB[0:2]	-	1:6 Fanout of CLK0
0	1	-	QA[0:2] and QB[0:2]	1:6 Fanout of CLK1
1	0	QA[0:2]	QB[0:2]	Dual 1:3 Buffer
1	1	QB[0:2]	QA[0:2]	Dual 1:3 Buffer (Crossed)

Table 4. ATTRIBUTES

Characteristi	Value				
Internal Input Pullup Resistor		37.5 kΩ			
Internal Input Pulldown Resistor		75 kΩ			
ESD Protection	Human Body Model Machine Model	> 2000 V > 200 V			
Latchup Immunity		>200 mA			
Cin, inputs		4.0 pF (TYP)			
Moisture Sensitivity (Note 1)	LQFP-32 QFN32	Level 2 Level 1			
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in			
Transistor Count		336			
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test					

1. For additional information, see Application Note AND8003/D.

Table 5. MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition	Condition	Rating	Unit
V _{CC}	Positive Power Supply			$-0.3 \le V_{CC} \le 3.6$	V
V _{IN}	DC Input Voltage			$-0.3 \leq V_{IN} \leq V_{CC} + 0.3$	V
V _{OUT}	DC Output Voltage			$\begin{array}{l} -0.3 \leq V_{OUT} \leq V_{CC} \\ + 0.3 \end{array}$	V
I _{IN}	DC Input Current			±20	mA
l _{out}	LVPECL DC Output Current	Continuous Surge		±50 100	mA mA
T _A	Operating Temperature Range	LQFP-32		-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 lfpm 500 lfpm	LQFP-32 LQFP-32	80 55	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	2S2P (Note 3)	LQFP-32	12 to 17	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	QFN-32 QFN-32	31 27	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	2S2P	QFN-32	12	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C
V _{TT}	Output Termination Voltage			V _{CC} – 2.0, TYP	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Maximum Ratings are those values beyond which device damage may occur.
 JEDEC standard multilayer board – 2S2P (2 signal, 2 power); MIL–SPEC 883E Method 1012.1.

Table 6. DC CHARACTERISTICS V_{CC} = 2.375 V to 3.465 V, GND = 0 V, T_A = -40° C to $+85^{\circ}$ C

Symbol	Characteristic		Min	Тур	Max	Unit
POWER	SUPPLY CURRENT		•			
I _{GND}	Power Supply Current (Outputs Open)			60	85	mA
LVPECL	CLOCK OUTPUTS			•		
V _{OH}	LVPECL Output HIGH Voltage (Notes 4, 5)	V _{CC} = 3.3 V V _{CC} = 2.5 V	V _{CC} - 1145 2155 1355	V _{CC} - 1020 2280 1480	V _{CC} – 895 2405 1605	mV
V _{OL}	LVPECL Output LOW Voltage (Notes 4, 5)	V _{CC} = 3.3 V V _{CC} = 2.5 V	V _{CC} - 1945 1355 555	V _{CC} – 1770 1530 730	V _{CC} – 1600 1700 900	mV
CLOCK I	NPUTS		•			
V _{PP}	Dynamic Differential Input Voltage (Clock Inputs)		0.1		1.3	V
V _{CMR}	Differential Cross-point Voltage (Clock Inputs)		1.0		V _{CC} – 0.3	V
LVCMOS	CONTROL INPUTS					
V _{IH}	Output HIGH Voltage (LVTTL/LVCMOS)		2.0			V
V _{IL}	Output LOW Voltage (LVTTL/LVCMOS)				0.8	V
IIH	Input Current V _{IN} = V _{CC} or V _{IN} = GND		-100		+100	μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

4. LVPECL Outputs loaded with 50 Ω termination resistors to V_{TT} = V_{CC} – 2.0 V for proper operation.

5. LVPECL Output parameters vary 1:1 with V_{CC}.

Symbol	Characteristic	Min	Тур	Max	Unit
V _{INPP}	Differential Input Voltage (Peak-to-Peak)	0.3		1.3	V
V _{CMR}	Differential Input Cross-Point Voltage (Clock Inputs)	1.2		V _{CC} – 0.3	V
f _{IN}	Clock Input Frequency	0		3.0	GHz
V _{OUTPP}	Differential Output Output Voltage Amplitude (Peak–to–Peak) (Note 7) $f_O < 1.1 \mbox{ GHz} \\ f_O < 2.5 \mbox{ GHz} \\ f_O < 3.0 \mbox{ GHz}$	0.45 0.35 0.2	0.70 0.55 0.35		V
f CLKOUT	Output Clock Frequency Range	0		3.0	GHz
t _{pd}	Propagation Delay CLKx to Qx (Differential Configuration)		485	610	ps
t _{skew}	Within Device Output-to-Output Skew (Differential Configuration) Device-to-Device Skew Output Pulse Skew (Duty Cycle Skew) (Note 8)		25 30 10	50 250 60	ps
DCO		49.4 45.2		50.6 54.8	%
t _{JIT}	CLOCK Random Jitter (RMS) (SEL0 ≠ SEL1) (Note 10)		0.3	0.8	ps
t _r , t _f	Output Rise/Fall Times (Note 11) CLKx / CLKx		130	300	ps
t _{PDL}	Output Disable Time, T = CLK period			3.5 T + t _{PD}	ns
tPLD	Output Enable Time, T = CLK period	3 T + t _{PD}		4 T + t _{PD}	ns

Table 7. AC CHARACTERISTICS $V_{CC} = 2.375$ V to 3.465 V, GND = 0 V, $T_A = -40^{\circ}$ C to +85°C (Note 6)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

6. LVPECL Outputs loaded with 50 Ω to V_{CC} – 2.0V. 7. V_{OUTPP} MIN = 0.1 V @ +85°C, f_O < 3.0 GHz. 8. Output Pulse Skew is the absolute difference of the propagation delay times: $|t_{PLH} - t_{PHL}|$ 9. DCO_{MIN/MAX} = 43.2%/59.2% @ +85°C. 10. t_{JITMAX} = 1.6 ps @ 85°C, 3.0 V 11. Measured 20% to 80%

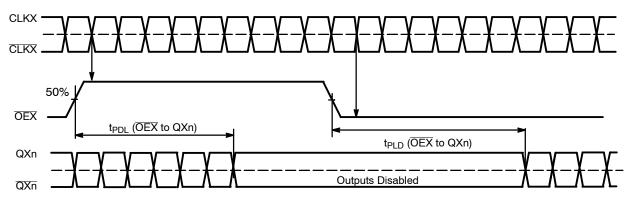


Figure 4. Output Disable / Enable Timing

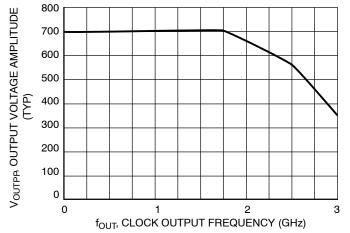


Figure 5. Output Voltage Amplitude (V_{OUTPP}) versus Clock Output Frequency at Ambient Temperature (Typical)

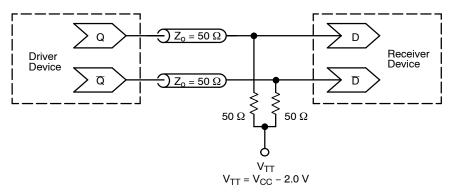


Figure 6. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

Example Configurations

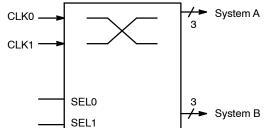


Figure 7. 2 x 2 Clock Switch

SEL0	SEL1	Switch Configuration
0	0	CLK0 Clocks System A and System B
0	1	CLK1 Clocks System A and System B
1	0	CLK0 Clocks System A and CLK1 Clocks System B
1	1	CLK1 Clocks System B and CLK1 Clocks System A

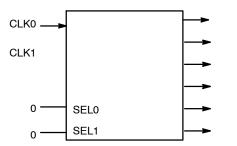
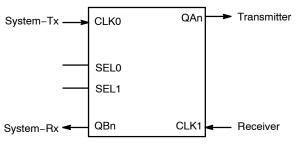



Figure 8. 1:6 Clock Fanout Buffer

SEL0	SEL1	Switch Configuration
0	0	System Loopback
0	1	Line Loopback
1	0	Transmit/Receive Operation
1	1	System and Line Loopback

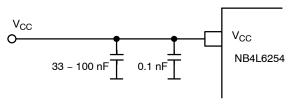
APPLICATIONS INFORMATION

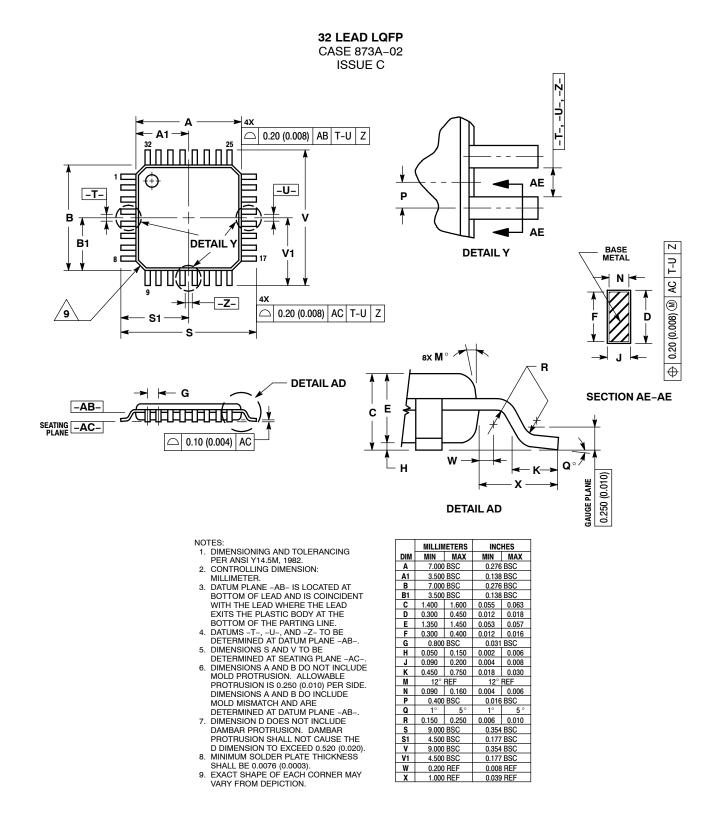
Maintaining Lowest Device Skew

The NB4L6254 guarantees low output–output bank skew at 50 ps and a part–to–part skew of 250 ps. To ensure low skew clock signals in the application, both outputs of any differential output pair need to be terminated identically, even if only one output is used. When fewer than all nine output pairs are used, identical termination of all output pairs within the output bank is recommended. If an entire output bank is not used, it is recommended to leave all of these outputs open and unterminated. This will reduce the device power consumption while maintaining minimum output skew.

Power Supply Bypassing

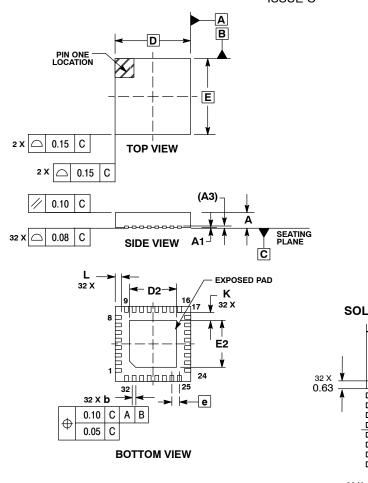
The NB4L6254 is a mixed analog/digital product. The differential architecture of the NB4L6254 supports low noise signal operation at high frequencies. In order to maintain its superior signal quality all V_{CC} pins should be bypassed by high-frequency ceramic capacitors connected to GND. If the spectral frequencies of the internally generated switching noise on the supply pins cross the series resonant port of an individual bypass capacitor, its overall impedance begins to look inductive and thus increases with increasing frequency. The parallel capacitor combination shown ensures that a low impedance path to ground exists for frequencies well above the noise bandwidth.




Figure 10. V_{CC} Power Supply Bypass

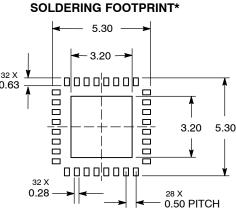
ORDERING INFORMATION

Device	Package	Shipping [†]
NB4L6254FAG	LQFP-32 (Pb-Free)	250 Units / Tray
NB4L6254FAR2G	LQFP-32 (Pb-Free)	2000 / Tape & Reel
NB4L6254MNG	QFN32 (Pb-Free)	74 Units / Rail
NB4L6254MNR4G	QFN32 (Pb-Free)	1000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS


QFN32 5*5*1 0.5 P CASE 488AM-01 **ISSUE O**

NOTES

- DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- З.
- DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM TERMINAL 4
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.800	0.900	1.000	
A1	0.000	0.025	0.050	
A3	0.	200 REI	F	
b	0.180	0.250	0.300	
D	5.00 BSC			
D2	2.950	3.100	3.250	
Е	5.00 BSC			
E2	2.950	3.100	3.250	
е	0.500 BSC			
К	0.200			
L	0.300	0.400	0.500	

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative