# 阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

# **Read Statement**

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".





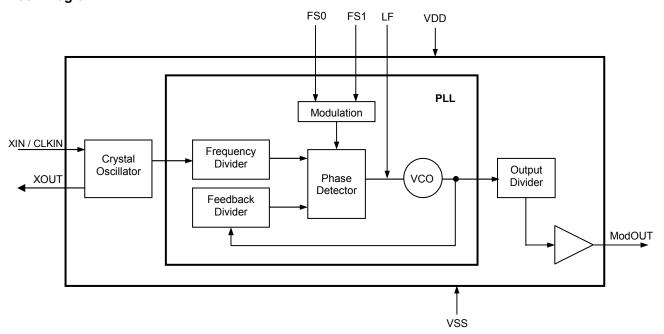
# **General Purpose EMI Reduction IC**

#### **Features**

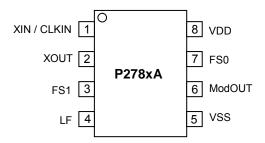
- Provides up to 15dB of EMI suppression
- FCC approved method of EMI attenuation
- Generates a 1X, 2X, and 4X low EMI spread spectrum clock of the input frequency
- Input frequency range from 3 to 78MHz
- External loop filter for spread % adjustment
- Spreading ranges from ±0.25% to ±5.0%
- Ultra low cycle-to-cycle jitter
- Zero-cycle slip
- 3.3V operating voltage range
- Ultra-low power CMOS design
- P278xA is available in an 8 pin SOIC Package

#### **Product Description**

The P278xA is a versatile spread spectrum frequency modulator designed specifically for digital camera and other digital video and imaging applications. The P278xA reduces electromagnetic interference (EMI) at the clock


source, which provides system wide reduction of EMI of all clock dependent signals. The P278xA allows significant system cost savings by reducing the number of circuit board layers and shielding that are traditionally required to pass EMI regulations.

The P278xA uses the most efficient and optimized modulation profile approved by the FCC. The P278xA modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock and, more importantly, decreases the peak amplitudes of its harmonics. This result in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most frequency generators. Lowering EMI by increasing a signal's bandwidth is called spread spectrum clock generation.


#### **Applications**

The P278xA is targeted towards MFP, xDSL, fax modem, set-top box, USB controller, DSC, and embedded systems.

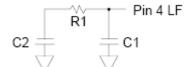
#### **Block Diagram**



# **Pin Configuration**



Standard pin Configuration offered in both 8 pin SOIC Packages.


### Pin Description (P278xA)

| Pin# | Pin Name  | Туре | Description                                                                                                                                                                                 |  |  |  |
|------|-----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1    | XIN/CLKIN | I    | Connect to crystal or clock input. This pin has dual functions. It can be connected either to an external crystal or an external reference clock.                                           |  |  |  |
| 2    | XOUT      | 0    | unconnected.                                                                                                                                                                                |  |  |  |
| 3    | FS1       | I    | Digital logic input used to select input frequency range (see the <i>Input Freque Selection Table</i> ). This pin has an internal pull-up resistor.                                         |  |  |  |
| 4    | LF        | I    | External Loop Filter for the PLL. By changing the value of the CRC circuit, the percentage spread can be adjusted accordingly. See the <i>Loop Filter Selection Table</i> for detail value. |  |  |  |
| 5    | VSS       | ı    | Ground Connection. Connect to system ground.                                                                                                                                                |  |  |  |
| 6    | ModOUT    | 0    | Spread Spectrum Clock Output.                                                                                                                                                               |  |  |  |
| 7    | FS0       | I    | Digital logic input used to select input frequency range (see the <i>Input Frequency Selection Table</i> ). This pin has an internal pull-up resistor.                                      |  |  |  |
| 8    | VDD       | Р    | Connect to +3.3 V                                                                                                                                                                           |  |  |  |

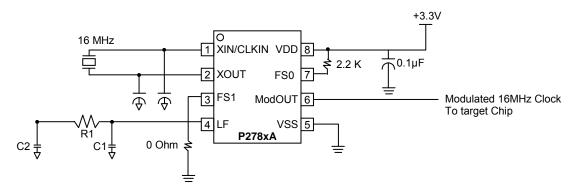
# **Input Frequency Selection Table**

| FS1 | FS0       | Input (MHz)   | Output   | Frequency Scal | Modulation Rate (KHz) |                         |
|-----|-----------|---------------|----------|----------------|-----------------------|-------------------------|
|     | 131   130 | input (iii12) | P2781A   | P2782A         | P2784A                | modulation reace (RTIZ) |
| 0   | 0         | 3 to 9        | 3 to 9   | 6 to 18        | 12 to 36              | Fin / 128               |
| 0   | 1         | 10 to 19      | 10 to 19 | 20 to 38       | 40 to 76              | Fin / 256               |
| 1   | 0         | 20 to 38      | 20 to 38 | 40 to 76       | 80 to 152             | Fin / 512               |
| 1   | 1         | 39 to 78      | 39 to 78 | 78 to 156      | 156 to 312            | Fin / 1024              |

# **Loop Filter Selection Table VDD 3.3V**



Contact ON Semiconductor for loop values that are not listed in the table and for Component selection values for industrial and automotive temperatures.


|              |     |     | B۱         | $N = \pm 0.50^{\circ}$ | % <sup>1</sup> | B\         | $N = \pm 0.75^{\circ}$ | % <sup>1</sup> | E          | 3W = ±1.00 | D% <sup>1</sup> |            | BW = ±1.25 | 5% <sup>1</sup> |
|--------------|-----|-----|------------|------------------------|----------------|------------|------------------------|----------------|------------|------------|-----------------|------------|------------|-----------------|
| Input<br>MHz | FS1 | FS0 | C1<br>(pF) | C2<br>(pF)             | R1<br>(ohm)    | C1<br>(pF) | C2<br>(pF)             | R1<br>(ohm)    | C1<br>(pF) | C2<br>(pF) | R1<br>(ohm)     | C1<br>(pF) | C2<br>(pF) | R1<br>(ohm)     |
| 3            | 0   | 0   | 270        | 330,000                | 220            | 270        | 330,000                | 300            | 270        | 100,000    | 390             | 560        | 100,000    | 510             |
| 4            | 0   | 0   | 270        | 100,000                | 270            | 270        | 100,000                | 390            | 270        | 100,000    | 560             | 560        | 100,000    | 680             |
| 5            | 0   | 0   | 270        | 100,000                | 390            | 270        | 100,000                | 560            | 270        | 100,000    | 750             | 560        | 100,000    | 910             |
| 6            | 0   | 0   | 270        | 100,000                | 510            | 270        | 100,000                | 750            | 270        | 10,000     | 1,000           | 680        | 6,800      | 1,200           |
| 7            | 0   | 0   | 270        | 100,000                | 620            | 270        | 100,000                | 1,000          | 270        | 5,600      | 1,200           | 330        | 3,300      | 1,200           |
| 8            | 0   | 0   | 270        | 100,000                | 820            | 270        | 100,000                | 1,200          | 270        | 12,000     | 2,200           | 680        | 6,800      | 2,200           |
| 9            | 0   | 0   | 270        | 100,000                | 1,000          | 270        | 100,000                | 1,500          | 270        | 5,600      | 2,200           | 270        | 2,700      | 2,200           |
| 10           | 0   | 1   | 270        | 100,000                | 330            | 270        | 100,000                | 510            | 270        | 100,000    | 750             | 560        | 100,000    | 910             |
| 11           | 0   | 1   | 270        | 100,000                | 390            | 270        | 100,000                | 560            | 270        | 100,000    | 866(1%)         | 560        | 100,000    | 1,100           |
| 12           | 0   | 1   | 270        | 100,000                | 510            | 270        | 100,000                | 750            | 270        | 10,000     | 1,000           | 680        | 6,800      | 1,200           |
| 13           | 0   | 1   | 270        | 100,000                | 560            | 270        | 100,000                | 820            | 270        | 12,000     | 1,200           | 470        | 4,700      | 1,200           |
| 14           | 0   | 1   | 270        | 100,000                | 620            | 270        | 100,000                | 1,000          | 270        | 5,600      | 1,200           | 330        | 3,300      | 1,200           |
| 15           | 0   | 1   | 270        | 100,000                | 750            | 270        | 100,000                | 1,100          | 270        | 3,900      | 1,200           | 330        | 3,300      | 1,500           |
| 16           | 0   | 1   | 270        | 100,000                | 820            | 270        | 100,000                | 1,200          | 270        | 12,000     | 2,200           | 680        | 6,800      | 2,200           |
| 17           | 0   | 1   | 270        | 100,000                | 910            | 270        | 100,000                | 1,300          | 270        | 10,000     | 2,200           | 390        | 3,900      | 2,200           |
| 18           | 0   | 1   | 270        | 100,000                | 1,000          | 270        | 100,000                | 1,500          | 270        | 5,600      | 2,200           | 270        | 2,700      | 2,200           |
| 19           | 0   | 1   | 270        | 100,000                | 1,200          | 270        | 100,000                | 1,600          | 270        | 3,300      | 2,200           | 270        | 2,700      | 2,700           |
| 20           | 0   | 0   | 270        | 100,000                | 330            | 270        | 100,000                | 560            | 270        | 100,000    | 750             | 560        | 100,000    | 910             |
| 21-22        | 1   | 0   | 270        | 100,000                | 390            | 270        | 100,000                | 620            | 270        | 100,000    | 866 (1%)        | 560        | 100,000    | 1,100           |
| 23-24        | 1   | 0   | 270        | 100,000                | 510            | 270        | 100,000                | 750            | 270        | 10,000     | 1,000           | 680        | 6,800      | 1,200           |
| 25-26        | 1   | 0   | 270        | 100,000                | 560            | 270        | 100,000                | 820            | 270        | 12,000     | 1,200           | 470        | 4,700      | 1,200           |
| 27-28        | 1   | 0   | 270        | 100,000                | 620            | 270        | 100,000                | 1,000          | 270        | 6,800      | 1,200           | 330        | 3,300      | 1,200           |
| 29-30        | 1   | 0   | 270        | 100,000                | 750            | 270        | 100,000                | 1,100          | 270        | 3,900      | 1,200           | 330        | 3,300      | 1,500           |
| 31-32        | 1   | 0   | 270        | 100,000                | 820            | 270        | 100,000                | 1,200          | 270        | 12,000     | 2,200           | 680        | 6,800      | 2,200           |
| 33-34        | 1   | 0   | 270        | 100,000                | 910            | 270        | 100,000                | 1,300          | 270        | 10,000     | 2,200           | 390        | 3,900      | 2,200           |
| 35-36        | 1   | 0   | 270        | 100,000                | 1,000          | 270        | 100,000                | 1,500          | 270        | 5,600      | 2,200           | 270        | 2,700      | 2,200           |
| 37-38        | 1   | 0   | 270        | 100,000                | 1,200          | 270        | 100,000                | 1,600          | 270        | 3,300      | 2,200           | 270        | 2,700      | 2,700           |
| 39-42        | 1   | 1   | 270        | 100,000                | 330            | 270        | 100,000                | 560            | 270        | 100,000    | 750             | 560        | 100,000    | 910             |
| 43-46        | 1   | 1   | 270        | 100,000                | 390            | 270        | 100,000                | 620            | 270        | ,          | 866 (1%)        | 560        | 100,000    | 1,100           |
| 47-50        | 1   | 1   | 270        | 100,000                | 510            | 270        | 100,000                | 750            | 270        | 10,000     | 1,000           | 680        | 6,800      | 1,200           |
| 51-54        | 1   | 1   | 270        | 100,000                | 560            | 270        | 100,000                | 820            | 270        | 12,000     | 1,200           | 470        | 4,700      | 1,200           |
| 55-58        | 1   | 1   | 270        | 100,000                | 620            | 270        | 100,000                | 1,000          | 270        | 6,800      | 1,200           | 330        | 3,300      | 1,200           |
| 59-62        | 1   | 1   | 270        | 100,000                | 750            | 270        | 100,000                | 1,100          | 270        | 3,900      | 1,200           | 330        | 3,300      | 1,500           |
| 63-66        | 1   | 1   | 270        | 100,000                | 820            | 270        | 100,000                | 1,200          | 270        | 12,000     | 2,200           | 680        | 6,800      | 2,200           |
| 67-70        | 1   | 1   | 270        | 100,000                | 910            | 270        | 100,000                | 1,300          | 270        | 8,200      | 2,200           | 390        | 3,900      | 2,200           |
| 71-74        | 1   | 1   | 270        | 100,000                | 1,000          | 270        | 100,000                | 1,600          | 270        | 5,600      | 2,200           | 270        | 2,700      | 2,200           |
| 75-78        | 1   | 1   | 270        | 100,000                | 1,200          | 270        | 100,000                | 1,800          | 270        | 3,300      | 2,200           | 270        | 2,700      | 2,700           |

Note: 1. The BW value is representative of typical conditions.

#### **Spread Spectrum Selection**

The P278xA performs Zero Cycle Slip when set at low percentage spreading. This allows no occurrence of system timing error. The optimal setting should minimize system EMI to the fullest without affecting system performance. The spreading is described as a percentage deviation of the center frequency. (Note: the center frequency is the frequency of the external reference input on CLKIN, Pin 1.)

The P2781A is designed for PC peripheral, networking, notebook PC, and LCD monitor applications. It is optimized for operation between 3 to 78MHz range. In the following application schematic example, the P2781A spread percentage selection is determined by the external LF value specified in the Loop Filter Selection Table. The Input Frequency Selection Table specifies the input frequency range. The external LF allows the user to fine tune the spread percentage to optimize the EMI reduction benefits of the spread spectrum.



Note: Both logic input pins FS1 and FS0 have to be connected to either VDD or VSS. Do not leave them floating.

**Absolute Maximum Ratings** 

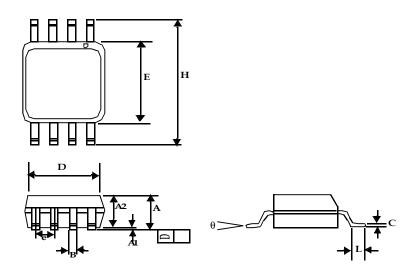
| Symbol           | Parameter                                                                                                                                                                     | Rating       | Unit            |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|--|--|--|--|--|
| $V_{DD},V_{IN}$  | Voltage on any pin with respect to Ground                                                                                                                                     | -0.5 to +4.6 | V               |  |  |  |  |  |
| T <sub>STG</sub> | Storage temperature                                                                                                                                                           | -65 to +125  | ${\mathcal C}$  |  |  |  |  |  |
| Ts               | Max. Soldering Temperature (10 sec)                                                                                                                                           | 260          | ${\mathfrak C}$ |  |  |  |  |  |
| $T_J$            | T <sub>J</sub> Junction Temperature 150 ℃                                                                                                                                     |              |                 |  |  |  |  |  |
| T <sub>DV</sub>  | T <sub>DV</sub> Static Discharge Voltage (As per JEDEC STD22- A114-B) 2 KV                                                                                                    |              |                 |  |  |  |  |  |
|                  | Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability. |              |                 |  |  |  |  |  |

**Operating Conditions** 

| Parameter       | Description                                 | Min | Max | Unit |
|-----------------|---------------------------------------------|-----|-----|------|
| VDD             | Supply Voltage                              | 3.0 | 3.6 | V    |
| T <sub>A</sub>  | Operating Temperature (Ambient Temperature) | -40 | +85 | C    |
| $C_L$           | Load Capacitance                            |     | 15  | pF   |
| C <sub>IN</sub> | Input Capacitance                           |     | 7   | pF   |

## **DC Electrical Characteristics**

(Test condition: All parameters are measured at room temperature (+25℃) unless otherwise stated.)


| Symbol           | Parameter                                                           | Min         | Тур | Max           | Unit |
|------------------|---------------------------------------------------------------------|-------------|-----|---------------|------|
| V <sub>IL</sub>  | Input low voltage                                                   | VSS - 0.3   |     | 0.8           | V    |
| V <sub>IH</sub>  | Input high voltage                                                  | 2.0         |     | VDD +0.3      | V    |
| I <sub>IL</sub>  | Input low current (internal input pull-up resistor on FS0 and FS1)  |             | 60  |               | μΑ   |
| I <sub>IH</sub>  | Input high current (internal input pull-up resistor on FS0 and FS1) |             | 60  |               | μΑ   |
| $I_{XOL}$        | XOUT output low current                                             |             | 10  |               | mA   |
| I <sub>XOH</sub> | XOUT output high current                                            |             | 10  |               | mA   |
| $V_{OL}$         | Output low voltage (VDD = 3.3V, I <sub>OL</sub> = 20mA)             |             |     | 0.4           | V    |
| V <sub>OH</sub>  | Output high voltage (VDD = 3.3V, I <sub>OH</sub> = 20mA)            | 2.5         |     |               | V    |
| I <sub>DD</sub>  | Static supply current                                               |             | 3   |               | mA   |
| I <sub>CC</sub>  | Typical dynamic supply current (25pF scope probe loading)           | 5.2 at 3MHz |     | 21.2 at 82MHz | mA   |
| VDD              | Operating voltage                                                   | 3.0         | 3.3 | 3.6           | V    |

## **AC Electrical Characteristics**

| Symbol          |                         |       | Parameter                                                               | Min       | Тур  | Max        | Unit |
|-----------------|-------------------------|-------|-------------------------------------------------------------------------|-----------|------|------------|------|
| f <sub>IN</sub> | Input frequency: P278xA |       |                                                                         | 3         |      | 78         |      |
|                 |                         |       | P2781A                                                                  | 3         |      | 78         | MHz  |
| $f_{OUT}$       | Output frequ            | ency: | P2782A                                                                  | 6         |      | 156        |      |
|                 |                         |       | P2784A                                                                  | 12        |      | 312        |      |
| t <sub>LH</sub> | P278xA                  |       | e time (measured at 0.8V to 2.0V, pe probe loading)                     |           | 1    |            | nS   |
| t <sub>HL</sub> | P278xA                  |       | I time (measured at 2.0V to 0.8V, 25 probe loading)                     |           | 1    |            | nS   |
| t <sub>JC</sub> | P2781A                  |       | le-to-cycle, ±6sigma, 1000 sweeps,<br>read, I/O frequency = 16MHz)      |           | ±250 |            | pS   |
| t <sub>D</sub>  | P2781A                  |       | ty cycle deviation (error from 50%<br>, 25pF scope probe loading)       | ±1 @ 3MHz |      | ±2 @ 82MHz | %    |
| ΔF              | P278xA                  |       | y deviation tolerance from BW%<br>he <i>Loop Filter Selection Table</i> | -20       | 0    | +20        | %    |

# **Package Information**

# 8-Pin SOIC Package



|        | Dimensions |       |             |      |  |  |  |
|--------|------------|-------|-------------|------|--|--|--|
| Symbol | Inc        | hes   | Millimeters |      |  |  |  |
|        | Min        | Max   | Min         | Max  |  |  |  |
| A1     | 0.004      | 0.010 | 0.10        | 0.25 |  |  |  |
| Α      | 0.053      | 0.069 | 1.35        | 1.75 |  |  |  |
| A2     | 0.049      | 0.059 | 1.25        | 1.50 |  |  |  |
| В      | 0.012      | 0.020 | 0.31        | 0.51 |  |  |  |
| С      | 0.007      | 0.010 | 0.18        | 0.25 |  |  |  |
| D      | 0.193      | BSC   | 4.90 BSC    |      |  |  |  |
| E      | 0.154      | BSC   | 3.91 BSC    |      |  |  |  |
| е      | 0.050 BSC  |       | 1.27 BSC    |      |  |  |  |
| Н      | 0.236 BSC  |       | 6.00 BSC    |      |  |  |  |
| L      | 0.016      | 0.050 | 0.41        | 1.27 |  |  |  |
| θ      | 0°         | 8°    | 0°          | 8°   |  |  |  |

Note: Controlling dimensions are millimeters. SOIC - 0.074 grams unit weight.

**Ordering Codes** 

| Ordering #   | Top Marking | Package Type                      | Temperature  |
|--------------|-------------|-----------------------------------|--------------|
| P2781AF-08ST | ABG         | 8 PIN SOIC, TUBE, Pb Free         | 0℃ to +70℃   |
| P2781AF-08SR | ABG         | 8 PIN SOIC, TAPE AND REEL,Pb Free | 0℃ to +70℃   |
| I2781AF-08ST | ABH         | 8 PIN SOIC, TUBE, Pb Free         | -40℃ to +85℃ |
| I2781AG-08SR | ABJ         | 8 PIN SOIC, TAPE AND REEL, Green  | -40℃ to +85℃ |
| P2782AF-08SR | ABK         | 8 PIN SOIC, TAPE AND REEL,Pb Free | 0℃ to +70℃   |
| P2784AF-08SR | ABO         | 8 PIN SOIC, TAPE AND REEL,Pb Free | 0℃ to +70℃   |

A "microdot" placed at the end of last row of marking or just below the last row toward the center of package indicates Pb-free.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. U.S Patent Pending; Timing-Safe and Active Bead are trademarks of PulseCore Semiconductor, a wholly owned subsidiary of ON Semiconductor. This literature is subject to all applicable copyright laws

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303-675-2175 or 800-344-3860 Toll Free

USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free

USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative