阅读申明

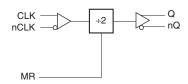
- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

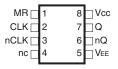
- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

÷2, Differential-to-2.5V/3.3V **ECL/LVPECL Clock Generator**

DATA SHEET


GENERAL DESCRIPTION

The 87332I-01 is a high performance ÷2 Differential-to-2.5V/3.3V ECL/LVPECL Clock Generator. The CLK, nCLK pair can accept most standard differential input levels The 87332I-01 is characterized to operate from either a 2.5V or a 3.3V power supply. Guaranteed output and part-to-part skew characteristics make the 87332I-01 ideal for those clock distribution applications demanding well defined performance and repeatability.


FEATURES

- One ÷2 differential 2.5V/3.3V LVPECL / ECL output
- · One CLK, nCLK input pair
- CLK, nCLK pair can accept the following differential input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL
- · Maximum output frequency: 500MHz
- · Maximum input frequency: 1GHz
- Translates any single ended input signal to 3.3V LVPECL levels with resistor bias on nCLK input
- Part-to-part skew: 400ps (maximum)
- Propagation delay: 1.6ns (maximum)
- LVPECL mode operating voltage supply range: $V_{CC} = 2.375V$ to 3.8V, $V_{EE} = 0V$
- ECL mode operating voltage supply range: $V_{CC} = 0V, V_{EE} = -2.375V \text{ to } -3.8V$
- -40°C to 85°C ambient operating temperature
- · Available in lead-free (RoHS 6) package

BLOCK DIAGRAM

PIN ASSIGNMENT

8-Lead SOIC

3.90mm x 4.90mm x 1.37mm package body M Package Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ту	ре	Description
1	MR	Input	Pulldown	Master reset. When LOW, outputs are enabled. When HIGH, divider is reset forcing Q output LOW and nQ output HIGH. LVCMOS / LVTTL interface level.
2	CLK	Input	Pulldown	Non-inverting differential clock input.
3	nCLK	Input	Pullup	Inverting differential clock input.
4	nc	Unused		No connect.
5	V _{EE}	Power		Negative supply pin.
6, 7	Q, nQ	Output		Differential output pair. LVPECL interface levels.
8	V _{cc}	Power		Positive supply pin.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

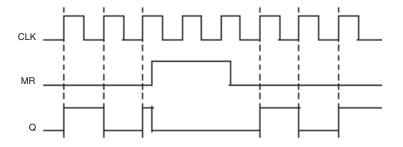


FIGURE 1. TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{CC} 4.6V

Inputs, V, -0.5V to $V_{CC} + 0.5 V$

Outputs, I_o

Continuous Current 50mA Surge Current 100mA

Package Thermal Impedance, θ_{IA} 112.7°C/W (0 Ifpm) -65°C to 150°C Storage Temperature, T_{STG}

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 3A. Power Supply DC Characteristics, $V_{CC} = 2.375V$ to 3.8V, $V_{EE} = 0$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc}	Positive Supply Voltage		2.375	3.3	3.8	V
I _{EE}	Power Supply Current				30	mA

Table 3B. LVCMOS DC Characteristics, $V_{CC} = 2.375V$ to 3.8V, $V_{EE} = 0$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	MR		2		V _{CC} + 0.3	V
V _{IL}	Input Low Voltage	MR		-0.3		0.8	V
I _{IH}	Input High Current	MR	$V_{CC} = V_{IN} = 3.8V$			150	μΑ
I	Input Low Current	MR	$V_{CC} = 3.8V, V_{IN} = 0V$	-5			μΑ

Table 3C. Differential DC Characteristics, $V_{cc} = 2.375V$ to 3.8V, $V_{ee} = 0$, $Ta = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Input High Current	CLK	$V_{CC} = V_{IN} = 3.8V$			150	μΑ
IH		nCLK	$V_{CC} = V_{IN} = 3.8V$			5	μΑ
	Input Low Current	CLK	$V_{CC} = 3.8V, V_{IN} = 0V$	-5			μA
¹ı∟		nCLK	$V_{CC} = 3.8V, V_{IN} = 0V$	-150			μA
V _{PP}	Peak-to-Peak Input Voltage			0.15		1.3	V
V _{CMR}	Common Mode Input Voltage; NOTE 1, 2			V _{EE} + 0.5		V _{CC} - 0.85	V

NOTE 1: Common mode voltage is defined as V_{IH} . NOTE 2: For single ended applications, the maximum input voltage for CLK, nCLK is V_{CC} + 0.3V.

Table 3D. LVPECL DC Characteristics, $V_{CC} = 2.375V$ to 3.8V, $V_{EE} = 0$, $TA = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{cc} - 1.4		V _{cc} - 0.9	V
V _{OL}	Output Low Voltage; NOTE 1		V _{cc} - 2.0		V _{cc} - 1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.65		1.0	V

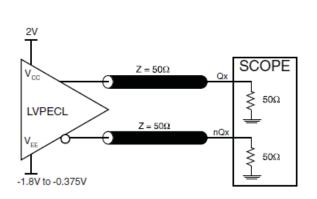
NOTE 1: Outputs terminated with 50 Ω to V_{cc} - 2V.

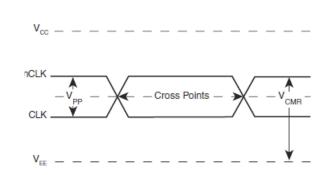
Table 4. AC Characteristics, $V_{CC} = 2.375V$ to 3.8V, $V_{EE} = 0$, TA = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Input Frequency				1	GHz
t _{PD}	Propagation Delay; NOTE 1	f ≤ 1GHz	1.1	1.4	1.6	ns
tsk(pp)	Part-to-Part Skew; NOTE 2, 3				400	ps
t _R	Output Rise Time	20% to 80%	200		700	ps
t _F	Output Fall Time	20% to 80%	200		700	ps
odc	Output Duty Cycle		49		51	%

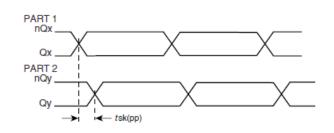
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

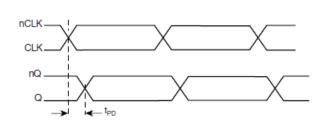
NOTE: All parameters measured at 500MHz unless noted otherwise.


NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

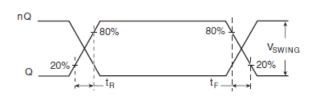

NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

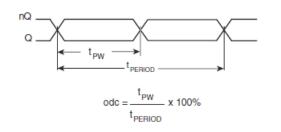
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.


PARAMETER MEASUREMENT INFORMATION



3.3V OUTPUT LOAD AC TEST CIRCUIT


DIFFERENTIAL INPUT LEVEL



PART-TO-PART SKEW

PROPAGATION DELAY

OUTPUT RISE/FALL TIME

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{cc}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might

need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{\rm CC}=3.3V$, V_REF should be 1.25V and R2/R1 = 0.609.

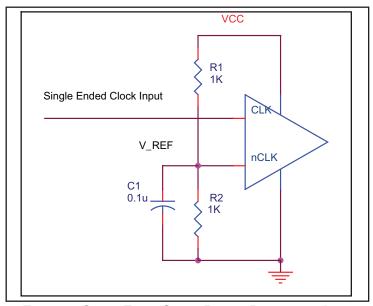


FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT

TERMINATION FOR 3.3V LVPECL OUTPUTS

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to

drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 3A and 3B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

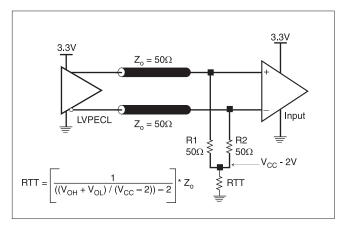


FIGURE 3A. LVPECL OUTPUT TERMINATION

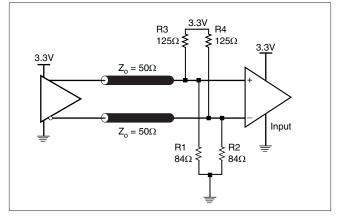


FIGURE 3B. LVPECL OUTPUT TERMINATION

TERMINATION FOR 2.5V LVPECL OUTPUTS

Figure 4A and Figure 4B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50 Ω to V_{CC} - 2V. For V_{CC} = 2.5V, the V_{CC} - 2V is very close to ground

level. The R3 in Figure 4B can be eliminated and the termination is shown in *Figure 4C*.

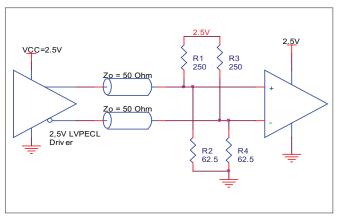


FIGURE 4A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE

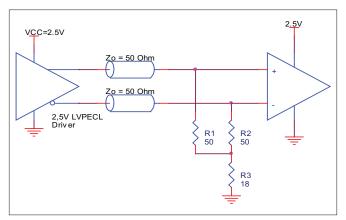


FIGURE 4B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE

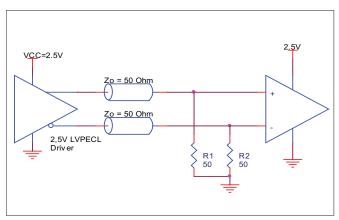


FIGURE 4C. 2.5V LVPECL TERMINATION EXAMPLE

DIFFERENTIAL CLOCK INPUT INTERFACE

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both Vswing and Voh must meet the VPP and VcmR input requirements. *Figures 5A to 5F* show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only.

Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 5A, the input termination applies for IDT open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

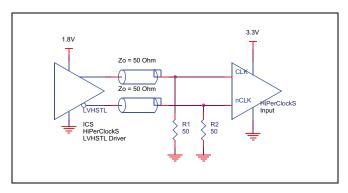


FIGURE 5A. CLK/nCLK INPUT DRIVEN BY AN IDT OPEN EMITTER LVHSTL DRIVER

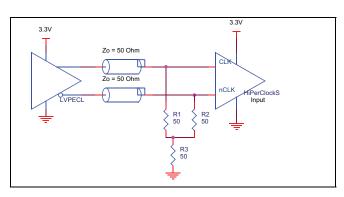


FIGURE 5B. CLK/nCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER

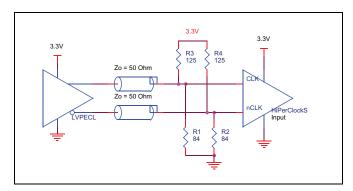


FIGURE 5C. CLK/nCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER

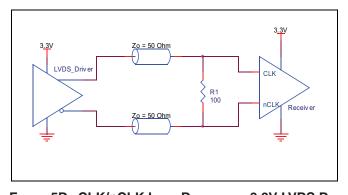


FIGURE 5D. CLK/nCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER

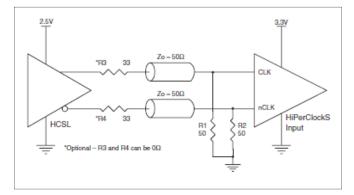


FIGURE 5E. CLK/nCLK INPUT DRIVEN BY A 3.3V HCSL DRIVER

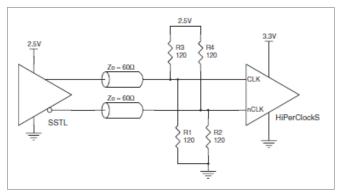


FIGURE 5F. CLK/nCLK INPUT DRIVEN BY A 2.5V SSTL DRIVER

Power Considerations

This section provides information on power dissipation and junction temperature for the 87332I-01. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 87332I-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{cc} = 3.8V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.8V * 30mA = 114mW
- Power (outputs)_{MAX} = 30mW/Loaded Output pair

Total Power MAX (3.8V, with all outputs switching) = 114mW + 30mW = 144mW

2. Junction Temperature.

Junction temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS[™] devices is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + TA

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W per Table 5 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}\text{C} + 0.144\text{W} * 103.3^{\circ}\text{C/W} = 99.9^{\circ}\text{C}$. This is well below the limit of 125°C

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (multi-layer).

Table 5. Thermal Resistance θ_{JA} for 8-pin SOIC, Forced Convection

θJA by Velocity (Linear Feet per Minute)

 O
 200
 500

 Single-Layer PCB, JEDEC Standard Test Boards
 153.3°C/W
 128.5°C/W
 115.5°C/W

 Multi-Layer PCB, JEDEC Standard Test Boards
 112.7°C/W
 103.3°C/W
 97.1°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

3. Calculations and Equations.

The purpose of this section is to calculate power dissipation on the LVPECL output pair.

LVPECL output driver circuit and termination are shown in Figure 6.

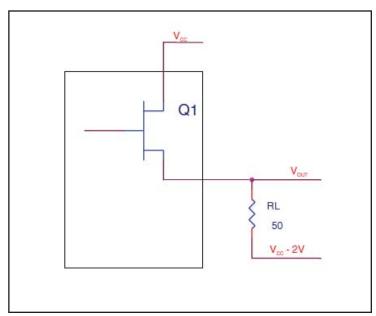


FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of $V_{cc}-2V$.

• For logic high,
$$V_{OUT} = V_{OH_MAX} = V_{CC_MAX} - 0.9V$$

 $(V_{CC_MAX} - V_{OH_MAX}) = 0.9V$

• For logic low,
$$V_{OUT} = V_{OL_MAX} = V_{CC_MAX} - 1.7V$$

 $(V_{CC_MAX} - V_{OL_MAX}) = 1.7V$

Pd_H is power dissipation when the output drives high.

 $\label{eq:pd_L} \mbox{Pd_L} \mbox{ is the power dissipation when the output drives low.}$

$$Pd_H = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - (V_{CC_MAX} - V_{OH_MAX}))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega] * 0.9V = \textbf{19.8mW}$$

$$Pd_L = [(V_{\text{OL_MAX}} - (V_{\text{CC_MAX}} - 2V))/R_L] * (V_{\text{CC_MAX}} - V_{\text{OL_MAX}}) = [(2V - (V_{\text{CC_MAX}} - V_{\text{OL_MAX}}))/R_L] * (V_{\text{CC_MAX}} - V_{\text{OL_MAX}}) = [(2V - 1.7V)/50\Omega] * 1.7V = \textbf{10.2mW}$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW

RELIABILITY INFORMATION

Table 6. $\theta_{\text{JA}} \text{vs. Air Flow Table}$

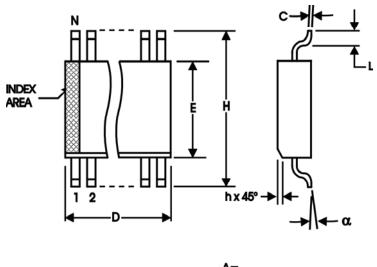
θ_{JA} by Velocity (Linear Feet per Minute)

 O
 200
 500

 Single-Layer PCB, JEDEC Standard Test Boards
 153.3°C/W
 128.5°C/W
 115.5°C/W

 Multi-Layer PCB, JEDEC Standard Test Boards
 112.7°C/W
 103.3°C/W
 97.1°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.


TRANSISTOR COUNT

The transistor count for 87332I-01 is: 383

Compatible to part number MC100EP32

PACKAGE OUTLINE AND DIMENSIONS

PACKAGE OUTLINE - M SUFFIX

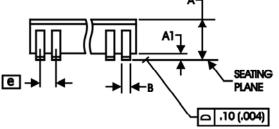


TABLE 7. PACKAGE DIMENSIONS

SYMBOL	Millin	neters
STWIBOL	MINIMUN	MAXIMUM
N	8	8
А	1.35	1.75
A1	0.10	0.25
В	0.33	0.51
С	0.19	0.25
D	4.80	5.00
Е	3.80	4.00
е	1.27 E	BASIC
Н	5.80	6.20
h	0.25	0.50
L	0.40	1.27
α	0°	8°

Reference Document: JEDEC Publication 95, MS-012

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Package	Temperature
87332AMI-01LF	332AI01L	8 lead "Lead-Free" SOIC	tube	-40°C to 85°C
87332AMI-01LFT	332AI01L	8 lead "Lead-Free" SOIC	tape & reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

REVISION HISTORY SHEET					
Rev	Table	Page	Description of Change	Date	
В	T2 T8	1 2 6 6 7 8 13	Features Section - added Lead-Free bullet. Pin Characteristics Table - changed CIN from 4pF max. to 4pF typical. Added "Wiring the Differential Input to Accept Single Ended Levels. Added Termination for 3.3V LVPECL Output. Added Termination for 2.5V LVPECL Output. Added Differential Clock Input Interface. Ordering Information Table - corrected marking. Added Lead-Free part number and note. Updated format of datasheet.	7/5/05	
С	T3D	4 9 - 10	LVPECL DC Characteristics Table -corrected V_{OH} max. from V_{CC} - 1.0V to V_{CC} - 0.9V; and V_{SWING} max. from 0.9V to 1.0V. Power Considerations - corrected power dissipation to reflect V_{OH} max in Table 3D.	4/13/07	
С	T4	4 6 8 12	Added thermal note to AC Characteristics table. Updated figures 3A & 3B, LVPECL Output Termination diagrams. Updated Differential Clock Input Interface. Ordering Information Table - add LF marking. Deleted "ICS" prefix from part/order number. Updated header/footer of datasheet.	11/16/09	
С	T8	12	Ordering Information - removed leaded devices - PDN CQ-13-02	2/12/15	

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, California 95138 Sales

800-345-7015 or +408-284-8200 Fax: 408-284-2775 www.IDT.com Technical Support email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright 2015. All rights reserved.