

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

# **Read Statement**

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

# Low Power MEMS Jitter Attenuator

# ABMJB-902

# ESD Sensitive

### Moisture Sensitivity Level: MSL=1

#### **FEATURES**:

- Low power and miniature package programmable jitter attenuator
- Input/output frequency up to 200MHz
- I/Ô pins can be configured as output enable (OE), frequency switching (CSEL), power down (PDB) input, or CLK1 (2) output.
- <10µA current consumption with PDB active
- Operating temperature range from -40°C to +85°C
- 6-pin SOT23 RoHS-compliant packages
- Related devices:
  - ABMJB-903: Single-ended input, differential output, and phase noise cleaning

#### **STANDARD SPECIFICATIONS:**

#### Absolute Maximum Ratings <sup>(1)</sup>

RoHS/RoHS II Compliant

## > APPLICATIONS:

- IEEE1588 GPIO clock cleanup
- FPGA-generated clock cleanup
- 1/10/40/100 Gigabit Ethernet (GbE)
- SONET/SDH
- PCI-Express
- CPRI/OBSAI wireless base stations
- Fibre Channel
- SAS/SATA
- DIMM

| Parameters                            | Min. | Typ. | Max.          | Units | Notes          |  |  |
|---------------------------------------|------|------|---------------|-------|----------------|--|--|
| Supply Voltage (V <sub>DD</sub> )     |      |      | +4.6          | V     |                |  |  |
| Input Voltage (V <sub>IN</sub> )      | -0.5 |      | $V_{DD}$ +0.5 | V     |                |  |  |
| Lead Temperature                      |      |      | +260          | °C    | Soldering, 20s |  |  |
| Case Temperature                      |      |      | +115          | °C    |                |  |  |
| Storage Temperature (T <sub>S</sub> ) | -65  |      | +150          | °C    |                |  |  |

#### **Operation Ratings**<sup>(2)</sup>

| Parameters                             | Min.  | Тур. | Max.  | Units | Notes            |
|----------------------------------------|-------|------|-------|-------|------------------|
| Supply Voltage (V <sub>DD</sub> )      | +2.25 |      | +3.63 | V     |                  |
| Junction Thermal Resistance $(O_{JA})$ |       |      | 195   | °C/W  | SOT23, Still-Air |
| Ambient Temperature (T <sub>A</sub> )  | -40   |      | +85   | °C    |                  |

#### **DC Electrical Characteristics**

 $V_{DD} = 3.3V \pm 10\%$  or 2.5V $\pm 10\%$ ; CL = 15pF; T<sub>A</sub> = 25°C

| Parameters                                     | Min.  | Typ. | Max.  | Units | Notes                                                                   |
|------------------------------------------------|-------|------|-------|-------|-------------------------------------------------------------------------|
| Supply Current dynamia (I)                     |       | 12   | 18    | mA    | $V_{DD} = 3.3V, 30MHz, Load = 15pF$                                     |
| Supply Current, dynamic (I <sub>DD</sub> )     |       |      | <10   | μA    | When $PDB = 0$                                                          |
| Operating Voltage (V <sub>DD</sub> )           | +2.25 |      | +3.63 | V     |                                                                         |
| Power Supply Ramp (t <sub>PU</sub> )           | 0.001 |      | 100   | ms    | Time for $V_{DD}$ to reach 90% $V_{DD}$ . Power ramp must be monotonic. |
| Output Current, low drive (I <sub>OLD</sub> )  | 4     |      |       | mA    |                                                                         |
| Output Current, standard drive $(I_{OSD})$     | 8     |      |       | mA    | $V_{OL} = 0.4 V, V_{OH} = V_{DD} - 0.9 V, V_{DD} = 3.3 V$               |
| Output Current, high drive (I <sub>OHD</sub> ) | 16    |      |       | mA    | 5.5 (                                                                   |

Notes:

1. Exceeding the absolute maximum ratings may damage the device.

2. The device is not guaranteed to function outside tis operating ratings.







2.9 x 2.8 x 1.45 mm SOT23-6L

**ESD** Sensitive

(Pb) RoHS/RoHS II Compliant



2.9 x 2.8 x 1.45 mm SOT23-6L

#### **AC Electrical Characteristics**

 $V_{DD} = 3.3V \pm 10\%$  or 2.5V $\pm 10\%$ ; CL = 15pF; T<sub>A</sub> = 25°C

| Parameters                   |                          | Min. | Тур. | Max.            | Units    | Notes                                                                                                                             |
|------------------------------|--------------------------|------|------|-----------------|----------|-----------------------------------------------------------------------------------------------------------------------------------|
| Input (REFIN)<br>Frequency   | 3.3V Operation           | 1    |      | 200             | MIL      |                                                                                                                                   |
|                              | 2.5V Operation           | 1    |      | 167             | MITZ     |                                                                                                                                   |
|                              |                          | 0.8  |      | V <sub>DD</sub> |          | Internally AC-coupled (high frequency)                                                                                            |
| Input Signal Amplitude       |                          | 0.1  |      | $V_{DD}$        | $V_{PP}$ | Internally AC-coupled (low frequency)<br>For 3.3V operation, $F_{REFIN} \leq 50MHz$<br>For 2.5V operation, $F_{REFIN} \leq 40MHz$ |
|                              |                          | 5    |      | 200             |          | CLK0 and CLK1, 3.3V operation                                                                                                     |
| Output Fraguanay             |                          | 5    |      | 167             | MUz      | CLK0 and CLK1, 2.5V operation                                                                                                     |
| Output Frequency             |                          | 1.25 |      | 200             | MITZ     | CLK2, 3.3V operation                                                                                                              |
|                              |                          | 1.25 |      | 167             |          | CLK2, 2.5V operation                                                                                                              |
| Settling Time                |                          |      |      | 1               | ms       | At power up (after $V_{DD}$ increases over 2.25V)                                                                                 |
| Output Enable Time           |                          |      |      | 10              | ns       | OE function: $T_A = 25^{\circ}C$ , 15pF load. Add<br>one clock period to this measurement for<br>a usable clock output            |
|                              |                          |      |      | 1               | ms       | PDB function: $T_A = 25^{\circ}C$ , 15pF load                                                                                     |
| Output Rise Time             |                          |      | 1.2  | 1.7             | ns       | 15pF load, 10/90% $V_{\text{DD}},$ high drive, 3.3V                                                                               |
| Output Fall Time             |                          |      | 1.2  | 1.7             | ns       | 15pF load, 10/90% $V_{\text{DD}},$ high drive, 3.3V                                                                               |
| Duty Cycle                   |                          | 45   | 50   | 55              | %        | @2.5V and 3.3V over entire frequency range. Threshold = $V_{DD}/2$                                                                |
| Period Jitter (peak-         | -to-peak) <sup>(3)</sup> |      | 75   |                 | ps       | 10,000 samples measured                                                                                                           |
| Jitter Attenuation Bandwidth |                          |      | 4    |                 | kHz      | CLK0 = REFIN                                                                                                                      |

Notes:

ABRACON IS

ISO9001:2008 CERTIFIED

3. Jitter performance can be considered the noise floor of the device. Jitter cannot be attenuated below this value.

#### > **OPTIONS AND PART IDENTIFICATION:**

Please refer to the <u>ABMJB-902 Part Number and Configuration Guide</u> for available part numbers and configurations.





ESD Sensitive

(Pb) RoHS/RoHS II Compliant



**OUTLINE DIMENSION:** 



ABRACON IS ISO9001:2008 CERTIFIED



2 Faraday, Suite# B | Irvine | CA 92618 **Revised: 03.09.15** Ph. 949.546.8000 | Fax. 949.546.8001 Visit **www.abracon.com** for Terms and Conditions of Sale

**ESD** Sensitive

**(Pb)** RoHS/RoHS II Compliant



**PIN DESCRIPTION:** 

| OE, PDB, CLK1<br>GND<br>REFIN<br>SOT23-6L package |               |          |           |                                                                                          |  |  |  |
|---------------------------------------------------|---------------|----------|-----------|------------------------------------------------------------------------------------------|--|--|--|
| Pin No.                                           | Pin Name      | Pin Type | Pin Level | Function                                                                                 |  |  |  |
| 1                                                 | PDB, OE, CLK1 | I/O      | LVCMOS    | Customizable pin: power down or output enable control input with pull-up or clock output |  |  |  |
| 2                                                 | GND           | GND      |           | Power supply ground                                                                      |  |  |  |
| 3                                                 | REF_IN        | I, (SE)  | LVCMOS    | Reference clock input                                                                    |  |  |  |
| 4                                                 | VDD           | PWR      |           | Power supply                                                                             |  |  |  |
| 5                                                 | CSEL, CLK2    | I/O      | LVCMOS    | Customizable pin: configuration select control input with pull-up or clock output        |  |  |  |
| 6                                                 | CLK0          | 0        | LVCMOS    | Clock output                                                                             |  |  |  |

### **BLOCK DIAGRAM:**

ABRACON IS ISO9001:2008 CERTIFIED





ESD Sensitive



2.9 x 2.8 x 1.45 mm SOT23-6L

#### **FUNCTIONAL DESCRIPTION**

The ABMJB-902 series is a highly featured, very flexible, advanced programmable jitter filter design for high performance, low-power, small form-factor applications. The ABMJB-902 accepts a reference clock input between 1MHz and 200MHz and is capable of producing up to three outputs in the 5MHz to 200MHz range. The most common configuration will be comprised of the same input and output frequency, but this flexible design also allows frequency translation from one frequency to another frequency as long as both frequencies are within the specified ranges for input and output.

#### **Jitter Filter Programming**

Typically, the jitter filter settings will be optimized for one particular input and output frequency, but the flexible design also allows configurations for a certain frequency range, up to one octave wide.

The typical bandwidth of the jitter filter is 4kHz. This means that jitter frequency components above 4kHz will be attenuated. In case of frequency translation, the bandwidth may be slightly different.

#### Clock Output (CLK0)

CLK0 is the main clock output. The output drive level can be programmed to low drive (4mA), standard drive (8mA) or high drive (16mA). The maximum output frequency is 200MHz at 3.3V operation and 167MHz at 2.5V operation.

#### Clock Output (CLK1, CLK2)

The CLK1 and CLK2 feature allows the PL902xxx to have two additional clock outputs programmed to one of the following frequencies:

- CLK1 = CLK0
- CLK2 = CLK0, CLK0/2 or CLK0/4

CLK1 and CLK2 allow the same output drive level programming as CLK0. Because of the extra /2 and /4 settings, CLK2 is capable of going down to 1.25MHz. In case only an output clock of <5MHz is needed, CLK0 and CLK1 can be disabled.

#### **Output Enable (OE)**

The output enable feature allows the user to enable and disable the clock output(s) by toggling the OE pin. The OE pin incorporates a  $60k\Omega$  pull-up resistor, giving a default condition of logic "1".

#### **Power Down Control (PDB)**

The power down (PDB) feature allows the user to put the ABMJB-902 into sleep mode. When activated (logic "0"), PDB disables the synthesizer circuitry, counters, and all other active circuitry. In power down mode, the IC consumes  $<10\mu$ A of power. The PDB pin incorporates a 60k $\Omega$  pull-up resistor giving a default condition of logic "1".

#### **Configuration Select (CSEL)**

The configuration select (CSEL) feature allows the PL902xxx to switch between two pre-programmed configurations allowing the device on-the-fly frequency switching. The CSEL pin incorporates a  $60k\Omega$  pull-up resistor giving a default condition of logic "1".

Examples for this feature are:

- Select between two frequencies or two frequency ranges.
- Select between two frequency translations, like 1:1 and 1:2.



ESD Sensitive

(Pb) RoHS/RoHS II Compliant



2.9 x 2.8 x 1.45 mm SOT23-6L

#### **KEY PROGRAMMING PARAMETERS:**

| CLK[0:2]<br>Output Frequency                                            | Output Drive Strength                                        | Programmable<br>Input/Output                                                                      |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| CLK0 = REFIN<br>CLK1 = CLK0<br>CLK2 = CLK0, CLK0/2, or CLK0/4           | Three optional drive strengths to choose from:<br>• Low: 4mA | <ul> <li>One output pin can be configured as:</li> <li>OE – input</li> <li>PDB – input</li> </ul> |  |
| Frequency translation is optional within the specified frequency range. | <ul><li>Standard: 8mA (default)</li><li>High: 16mA</li></ul> | <ul> <li>CSEL – input</li> <li>CLK1, 2 – output</li> </ul>                                        |  |

#### > LAYOUT RECOMMENDATIONS

The following guidelines are designed to assist the user to create a performance-optimized PCB design.

#### Signal Integrity and Termination Considerations

Keep traces short for good signal integrity.

Trace = Inductor. With a capacitive load this causes ringing.

Long trace = Transmission line. Without proper termination, this will cause reflections that also look like ringing.

Design long traces (greater than 1 inch) as "striplines" or "microstrips" with defined impedance.

Match the trace at one side to avoid reflections bouncing back and forth.

#### **Decoupling and Power Supply Considerations**

Place decoupling capacitors as close as possible to the VDD pin(s) to limit noise from the power supply.

Multiple VDD pins should be decoupled separately for best performance.

The addition of a ferrite bead in series with VDD can help prevent noise from other board sources.

The value of the decoupling capacitor is frequency-dependent. Typical values to use are  $0.1\mu$ F for designs using frequencies >50MHz and  $0.01\mu$ F for designs using frequencies >50MHz.

Typical CMOS Termination Place series resistor as close to CMOS output as possible.

| CMOS OUTPUT BUFFER<br>(TYPICAL BUFFER IMPEDANCE 20Ω) | 50Ω LINE      | TO CMOS INPUT |
|------------------------------------------------------|---------------|---------------|
|                                                      |               | $\rightarrow$ |
| SERIES RESI                                          | STOR          |               |
| USE VALUE TO MAT                                     | CH OUTPUT     |               |
| BUFFER IMPEDANCE                                     | TO 50Ω TRACE. |               |
| TYPICAL VALU                                         | E 30Ω.        |               |
|                                                      |               |               |



# Low Power MEMS Jitter Attenuator

# ABMJB-902

#### PERIOD JITTER HISTOGRAM



10MHz input clock with bad period jitter - 460pcs peak-to-peak period jitter

**ESD** Sensitive

(Pb) RoHS/RoHS II Compliant

10MHz output clock from Jitter Attenuator - 75pcs peak-to-peak period jitter

Acquisition is stop 40.0 GSa/s 83 pts 12GHz Standard BW 3) On 4) On 1) 0n ⊽ ~ ∿ ∿ <sup>1</sup> 100.0000 ns •••\* H 200 ps/ **4** 0 ► T 2 mV stogram Color Grade Scales 99.99771462 10.6371 ps edian Mode 99.99666667 ns Hits 100.00111 ns Peak 10.81 khits 960 hits Y Scale 240 hits/ Y Offset 0 hits Std Dev 75.56 ps u±1σ p-p Min





2 Faraday, Suite# B | Irvine | CA 92618 **Revised: 03.09.15** Ph. 949.546.8000 | Fax. 949.546.8001 Visit www.abracon.com for Terms and Conditions of Sale



2.9 x 2.8 x 1.45 mm SOT23-6L

# Low Power MEMS Jitter Attenuator

## ABMJB-902





2.9 x 2.8 x 1.45 mm SOT23-6L

#### **FIXING EXTREME JITTER IN 10MHZ IEEE1588 GPIO CLOCKS**

An IEEE1588 system can manufacture a 10MHz clock from 8ns pulses, but this creates extreme period jitter of about 24ns peak-to-peak in this case. The Jitter Attenuator cleans that up to 100ps peak-to-peak, allowing the clock to be used in more jitter-sensitive applications.

10MHZ clock from IEEE1588:



Jitter Attenuator Output Clock:







2 Faraday, Suite# B | Irvine | CA 92618 **Revised: 03.09.15** Ph. 949.546.8000 | Fax. 949.546.8001 Visit www.abracon.com for Terms and Conditions of Sale

ESD Sensitive

(Pb) RoHS/RoHS II Compliant



2.9 x 2.8 x 1.45 mm SOT23-6L

#### **REFLOW PROFILE:**



#### **▷** TAPE & REEL:



**ATTENTION:** Abracon Corporation's products are COTS – Commercial-Off-The-Shelf products; suitable for Commercial, Industrial and, where designated, Automotive Applications. Abracon's products are not specifically designed for Military, Aviation, Aerospace, Life-dependant Medical applications or any application requiring high reliability where component failure could result in loss of life and/or property. For applications requiring high reliability and/or presenting an extreme operating environment, written consent and authorization from Abracon Corporation is required. Please contact Abracon Corporation for more information.





2 Faraday, Suite# B | Irvine | CA 92618 **Revised: 03.09.15** Ph. 949.546.8000 | Fax. 949.546.8001 Visit www.abracon.com for Terms and Conditions of Sale