

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

Programmable Clock Generator AK8142

Features

- Supply Voltage: 3.0 – 3.6V(Main) 1.8 – 3.3V(Interface)
- Low Current Consumption: 5.0mA (Typ.)
- Crystal Unit Oscillation: 16.0MHz – 32.0MHz
- Input Frequency:
 2.0MHz 67.0MHz
- Output Frequency:
 4.0MHz 200MHz
- Low Jitter Performance: 15 ps (Typ.) Period 1s
- Operating Temperature Range: -30 to +85°C
 - I2C Interface:
- Package:
 - 16-pin TSSOP

Block Diagram

Description

The AK8142 is a programmable clock generator IC with an integrated Fractional N PLL. Highly accurate clocks can be output from an external master clock or a crystal unit.

Applications

· General purpose clock generator

AK8142 Register Programmable Clock Generator

PIN DESCRIPTION

Pin No.	Pin Name	Pin Type	Description
			Crystal connection.
1	XIN	IN	Please input external clock to XIN when the external clock is
			used.
			Reset signal input pin. High pulse reset the register and digital
2	RESET	IN	part of PLL.
			Hi: Reset Lo: Normal operation
			Frequency setting register bank selection pin.
3	FSEL	IN	Hi: Register bank1 Lo: Register bank0
			Valid when CTLFSEL="1" of Register F7.
4	VDD1		3.3V power supply for PLL core.
5	GND1		Ground 1.
6	GND2		Ground 2.
7	VDD2		Power supply for clock output buffer.
	1002		1.8V or 3.3V can be used.
8	CKOUT	OUT	Clock output.
9	REFOUT	OUT	PLL reference clock output.
10	SCL	IN	Serial interface clock input.
11	SDA	IN / OUT	Serial data input and output pin. Open drain.
12	נחחע		Power supply for serial interface.
12	1005		1.8V or 3.3V can be used.
13	GND3		Ground 3.
14	A1	IN	Device address setting pin.
15	A0	IN	Device address setting pin.
			Crystal connection.
16	XOUT	IN	Please keep this pin open if the external clock is input to XIN
			pin.

Ordering Information

Part Number	Marking	Shipping Packaging	Package	Temperature Range
AK8142	8142	Tape and Reel	16-pin TSSOP	-30 to 85 °C

Absolute Maximum Rating

Over operatin	ng free-air temperature	e range unless otherwis	e noted (1)
	J		

Items	Symbol	Ratings	Unit
Supply Voltage	VDD	-0.3 to 4.6	V
Input Voltage	Vin	VSS-0.3 to VDD+0.3	V
Input Current (any pins except supplies)	I _{IN}	±10	mA
Storage Temperature	Tstg	-55 to 130	°C

Note

(1) Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rating conditions for extended periods may affect device reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

ESD Sensitive Device

This device is manufactured on a CMOS process, therefore, generically susceptible to damage by excessive static voltage. Failure to observe proper handling and installation procedures can cause damage. AKEMD recommends that this device is handled with appropriate precautions.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Temperature	Та		-30		85	°C
	VDD1		3.0	3.3	3.6	V
Supply Voltage	VDD2 VDD3		1.7	1.8	VDD1	V
Input Clock Frequency1	Fin1	Quartz Oscillator input	16.0	24.0	32.0	MHz
Input Clock Frequency2	Fin2	External input, >0.8Vpp	2.0		67.0	MHz
Input Clock Duty Cycle		External input	30	50	70	%
Output Load Capacitance	Cp1	Pin: CKOUT 4MHz – 100MHz 100MHz – 150MHz 150MHz – 200MHz			15 10 8	pF
	Cp2	Pin: REFOUT 2MHz – 67.0MHz			25	pF

Recommended Operation Conditions

DC Characteristics

All specifications at VDD1: 3.3V, VDD2/VDD3: 1.8V, Ta: -30 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
High level input voltage1	V _{IH} 1	Pin: A0, A1, FSEL,	0.7VDD1			V
Low level input voltage1	V _{IL} 1	RESET			0.3VDD1	V
High level input voltage2 (1)	V _{IH} 2		0.7VDD3			V
Low level input voltage2 (1)	V _{IL} 2	PIN. SOL, SDA			0.3VDD3	V
Input Current	١L	Pin: A0, A1, FSEL, RESET	-10		+10	μA
High level output voltage1	V _{OH} 1	REFOUT, CLKOUT IOH= -4mA	0.8VDD2			V
Low level output voltage1	V _{OL} 1	REFOUT, CLKOUT IOL = +4mA			0.2VDD2	V
Low level output voltage2	V _{OL} 2	Pin: SDA IOL = +3mA, Open Drain			0.4	V
	I _{DD} 1	No load, VDD1		3.5		mA
Current Consumption (2), (3)	I _{DD} 2	No load, VDD2		0.95		mA
	I _{DD} 3	No load, VDD3		0.05		mA
Power down current	I _{pd}	OE="L" FSEL="L" or open		0	10	μA

(1) Do not exceed the voltage VDD3.

(2) External clock mode.(SCL=H, SDA=H), No load.

(3) XIN = 16MHz, CKOUT = 24.5759989MHz.

Register: FF=03hex, FE=74hex, FD=BChex, FC=25hex, FB=32hex, FA=61hex

AC Characteristics

All specifications at VDD1: 3.3V, VDD2/VDD3: 1.8V, Ta: -30 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	MIN	ТҮР	МАХ	Unit
Phase Comparison Period ⁽¹⁾			2		4	MHz
VCO Frequency ⁽²⁾		CKOUT	100			MHz
	1	CKOUT, Divided	4.0		100	MHz
Output Clock Frequency		CKOUT, not Divided	100		200	MHz
(1)(7)		REFOUT ⁽⁵⁾	40	50	60	
Output Clock Duty Cycle (4)(/)		CKOUT, Divided	45	50	55	%
		CKOUT, not Divided	30	50	70	
		REFOUT, 0.2VDD to 0.8VDD 2MHz – 66.0MHz			3.0	ns
Output Clock Rise Time (4)(7)	t _{rise}	CKOUT, 0.2VDD to 0.8VDD 4MHz – 100MHz			3.0	ns
		CKOUT, 0.2VDD to 0.8VDD 100MHz – 150MHz			2.5	ns
		CKOUT, 0.2VDD to 0.8VDD 150MHz – 200MHz			2.0	Ns
		REFOUT, 0.2VDD to 0.8VDD 2MHz – 66.0MHz			3.0	Ns
Output Clock Fall Time ⁽⁴⁾⁽⁷⁾	trail	CKOUT, 0.2VDD to 0.8VDD 4MHz – 100MHz			3.0	Ns
	*1011	CKOUT, 0.2VDD to 0.8VDD 100MHz – 150MHz			2.5	ns
		CKOUT, 0.2VDD to 0.8VDD 150MHz – 200MHz			2.0	ns
Output Clock Jitter (4)(7)	Jit	CKOUT, Period, 1σ		15		ps
Output Lock Time (6)	t _{lock}	CKOUT, Power-up		1		ms

(1) Phase Comparison Frequency = Input frequency / MDIV value. Refer to register address FA.

(2) VCO Frequency = Phase Comparison Frequency x NDIV value. Refer to register address FC.

- (3) Refer to register address FB.
- (4) With the load capacitance specified by the recommended operation conditions.
- (5) Quartz oscillator input or external clock input with 50% duty.
- (6) The time that output reaches the target frequency within accuracy of ±0.1% from the point that the FSEL is switched.
- (7) Design value

Serial interface (I2C:slave mode) AC Characteristics

All specifications at VDD1: 3.3V, VDD2/VDD3: 1.8V, Ta: -30 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	MIN	МАХ	Unit
SCL clock frequency	fSCL			400	kHz
SCL Clock Low Period	tLOW		4.7		us
SCL Clock High Period	tHIGH		4.0		us
Pulse width of spikes which must be suppressed	tl			100	ns
SLC Low to SDA Data Out	tAA		0.1	3.5	us
Bus free time between a STOP and START condition	tBUF		4.7		us
Start Condition Hold Time	tHD.STA		4.0		us
Start Condition Setup Time (for a Repeated Start condition)	tSU.STA		4.7		ms
Data in Hold Time	tHD.DAT		0		us
Data in Setup Time	tSU.DAT		200		ns
SDA and SCL Rise Time	tR	(*)		1.0	us
SDA and SCL Fall Time	tF	(*]		0.3	us
Stop Condition Setup Time	tSU.STO		4.0		us
Data Out Hold Time	tDH		100		ns

(*) Design value.

Function Description

I2C interface

Read/Write performance of I2C interface is expressed below. The device address #1 of AK8142 is fixed as "1010". The device address #2 is set by A0, A1 pins.

Byte wtire operation

Byte write operation is described below. Data must be sent after sending 8 bits address and receiving ACK.

Page write operation

Page write operation is described below. Only lower 4 bits of address are valid. Upper 4 bits are fixed as "1111". Therefore the address which is written after "1111 1111" becomes "1111 0000".

Current address read

Current address read operation is described below. The data that is read by this operation is obtained as "last accessed address + 1". Therefore, It is consequent to return "0000 0000" after accessing the address "0000 1111".

Random read

Random read operation is described below. It is necessary to operate "dummy write" before sending read command. Dummy write is to send the address to read.

Sequential read

Sequential read operation is described below. It is possible to read next address sequentially by sending ACK instead of stop condition.

Change data

Change data operation is described below. It is available when SCL is Low.

Start / Stop timing

Start / Stop timing is described below. The sequence is started when SDA goes from high to low during SCL is high. The sequence is stopped when SDA goes from low to high during SCL is high.

Register map

FA – FF has 2 dimensions which are selectable by BANK bit. Zero is returned when "– " bits are read. Bottom part: Reset value

*note The power-on-reset does not reset "SFTRST" of register F7.

Address	D7	D6	D5	D4	D3	D2	D1	D0	Note
FF	_	_	-	_	_	_	FRAC[17]	FRAC[16]	Sigma-Delta
							0	0	fraction
FF	FRAC[15]	FRAC[14]	FRAC[13]	FRAC[12]	FRAC[11]	FRAC[10]	FRAC[9]	FRAC[8]	
	0	0	0	0	0	0	0	0	
FD	FRAC[7]	FRAC[6]	FRAC[5]	FRAC[4]	FRAC[3]	FRAC[2]	FRAC[1]	FRAC[0]	
	0	0	0	0	0	0	0	0	
FC	_	INT[6]	INT[5]	INT[4]	INT[3]	INT[2]	INT[1]	INT[0]	Sigma-Delta
		0	1	0	0	0	0	0	integer
FB	_	OUTC[2]	OUTC[1]	OUTC[0]	ODIVPG[3]	ODIVPG[2]	ODIVPG[1]	ODIVPG[0]	
10		1	1	1	0	1	1	1	CONDIN
FA	MDIVC[3]	MDIVC[2]	MDIVC[1]	MDIVC[0]	MDIVP[3]	MDIVP[2]	MDIVP[1]	MDIVP[0]	MDIV
17	0	1	1	0	0	0	0	1	
F9	_	-	_	-	RSRV	RSRV	RSRV	RSRV	Reserve
10					0	1	0	1	Reserve
F8	_	_	_	-	RSRV	RSRV	RSRV	RSRV	Reserve
10					0	0	0	0	Reserve
F7	BANK	BANKWR	CTLFSEL	CKOFF[1]	CKOFF[0]	RSRV	PD	SFTRST	RESET
	0	0	0	0	0	0	0	0	BANK
F6	_	-	-	-	CKOUTEN[1]	REFOTEN[0]	REFOTEN[1]	REFOTEN[0]	OUTBUE
10					0	0	0	0	001201
E5	_	-	-	-	-	-	DUMON	DITHER	Sigma-Delta
							0	1	eigina bona
F4	_	_	_	-	-	_	-	-	Test
~	_	-	-	-	-	-	-	-	Test
F1	-	_	-	—	-	—	_	-	Test

Registers F1 to F4 are for test purpose only. Do not access these registers.

Register definitions

Refer "Frequency setting procedure" on page 15 for details.

Address FF, FE, FD

Address	D7	D6	D5	D4	D3	D2	D1	D0
FF							FRAC[17]	FRAC[16]
FE	FRAC[15]	FRAC[14]	FRAC[13]	FRAC[12]	FRAC[11]	FRAC[10]	FRAC[9]	FRAC[8]
FD	FRAC[7]	FRAC[6]	FRAC[5]	FRAC[4]	FRAC[3]	FRAC[2]	FRAC[1]	FRAC[0]

FRAC[17:0]

FRACTIONAL N fractional part settings

	- U-	
FRAC[17:0]	A value	Decimal fraction
01 1111 1111 1111 1111	+131071	0.49999619
01 1111 1111 1111 1110	+131070	
01 0000 0000 0000 0000	+65536	0.25
00 0000 0000 0000 0001	+1	0.00000381
00 0000 0000 0000 0000	0	0
11 1111 1111 1111 1111	-1	-0.00000381
11 1111 1111 1111 1110	-2	
11 0000 0000 0000 0000	-65536	-0.25
10 0000 0000 0000 0001	-131071	-0.49999619
10 0000 0000 0000 0000	-131072	-0.5

Fractional part of N is expressed by $A/2^{18}$. Here, the numerator A is defined by FRAC bits. FRAC is treated as 2's Complement which is able to set from -2^{17} up to $+2^{17}$. Consequently, it is possible to set from -0.5 to +0.5 for fractional part of N.

FRAC[17:0] settings are updated after writing register FF. Setting procedure should be 1.FD, 2.FE and then 3.FF.

Address FC

Address	D7	D6	D5	D4	D3	D2	D1	D0
FC	—	INT[6]	INT[5]	INT[4]	INT[3]	INT[2]	INT[1]	INT[0]

INT[5:0]

FRACTIONAL N integral part settings

INT[6:0]	Integral value
000 0000 - 001 1000	Prohibited
001 1001	25
001 1010	26
110 0011	99
110 0100	100
110 0101 - 111 1111	Prohibited

*note Do not set any value except "25" - "100".

Address FB

Address	D7	D6	D5	D4	D3	D2	D1	D0
FB								
	_	OUTC[2]	OUTC[1]	OUTC[0]	ODIVPG[3]	ODIVPG[2]	ODIVPG[1]	ODIVPG[0]

OUTC[2] Programmable divider input select

 0
 VCO output (not divided)

 1
 VCO 1/2 output

OUTC[1:0] PLL output select OUTC[1:0] 0 0 VCO output (not divided) 0 1 VCO 1/2 output

10

1 1

ODI	VP	G[3	:01
	V I V	212	.01

Programmable divider control

VCO 1/4 output

VCO programmable divider output

ODIVPG[3:0]	Dividing value
0000	(Fixed output)
0001	4
0010	6
0011	8
0100	10
0101	12
0110	14
0111	16
1000	18
1001	20
1010	22
1011	24
1100	26
1101	28
1110	30
1111	(Fixed output)

Address FA

Address	D7	D6	D5	D4	D3	D2	D1	D0
FA								
	MDIVC[3]	MDIVC[2]	MDIVC[1]	MDIVC[0]	MDIVP[3]	MDIVP[2]	MDIVP[1]	MDIVP[0]

MDIVC[3]	Prog	rammable divider input select			
	0	CLKIN			
	1	CLKIN 1/2			
MDIVC[2]	3or4	divider select			
	0	3 divider			
	1	4 divider			
MDIVC[1:0]	M divider dividing value settings				
	MDIVC[1:0]	Dividing value			
	0 0	1			
	0 1	2			
	10	3or4			
	1 1	programmable			

MDIVP[3:0]

Programmable divider control				
MDIVP[3:0]	Dividing value			
0000	Prohibited			
0001	2			
0010	3			
0011	4			
0100	5			
0101	6			
0110	7			
0111	8			
1000	9			
1001	10			
1010	11			
1011	12			
1100	13			
1101	14			
1110	15			
1111	Prohibited			

Address F9, F8

Address	D7	D6	D5	D4	D3	D2	D1	D0
F9	_	-	_	_	Reserved	Reserved	Reserved	Reserved
F8	_	_	_	_	Reserved	Reserved	Reserved	Reserved

These registers are reserved. Set 05hex and 00hex to F9 and F8, respectively.

Address F7

Address	D7	D6	D5	D4	D3	D2	D1	D0
F7								
	BANK	BANKWR	CTLFSEL	CKOFF[1]	CKOFF[0]	Reserved	PD	SFTRST

BANK	Access registe	r select for frequency settings				
	0	BANKO				
		Valid when CTLFSEL="0"				
	1	BANK1				
		Valid when CTLFSEL="0"				
BANKWR	Select the BAN	VK to write				
	0	BANKO				
	1	BANK1				
CTLFSEL	Select function for the FSEL pin					
	0	Invalid				
		Set invalid when register is set.				
	1	Valid				
		Frequency selection BANK is selectable with FSEL pin.				
CKOFF[1]	Control REFO	UT output buffer				
[-]	0	Output enable				
	1	Output disenable (500k-ohm Pull Down)				
	<u> </u>					
CKOFF[0]	Control PLL ou	utput buffer				
	0	Output enable				
	1	Output disenable (500k-ohm Pull Down)				
Record	This hit is record	red. Set to "O"				
Reserved						
PD	Power down c	ontrol				
	0	Power up				
	1	Power down (PLL analog part)				
		Output turns to "H".				
SETRST	Software reset	control				
	0	Reset cancel				
	1	Reset (PLL digital part and Register)				
	·•	Set to "0" to cancel the software reset.				

Address F6

Address	D7	D6	D5	D4	D3	D2	D1	D0
F6								
	—	—	—	—	CKOUTEN[1]	CKOUTEN[0]	REFOUTEN[1]	REFOUTEN[0]

CKOUTEN[1:0]

Control CKOUT buffer drivability

CKOUTEN[1:0]	
0 0	High (x3)
0 1	Middle (x2)
10	Middle (x2)
11	Low (x1)

REFOUTEN[1:0] Control REFOUT buffer drivability

REFOUTEN[1:0]	
0 0	High (x3)
0 1	Middle (x2)
1 0	Middle (x2)
11	Low (x1)

Address F5

Address	D7	D6	D5	D4	D3	D2	D1	D0
F5		_	_	_	_	_	DUMON	DITHER

DUMON

Control SDM (Sigma Delta Modulator)

DUMON	
0	Normal mode
1	Bypassing SDM
	Set this when using PLL with integer only.

DITHER

Fractional N divider settings

DITHER	
0	Perform as fractional part is 0.
	Set this when using PLL with integer only.
1	Normal mode

Address F4 - F1

These registers are test propose only. Do not access these address.

Frequency setting procedure

Output frequency of CKOUT is determined by REFCLK Dividing value (MDIV), OUTPUT Dividing value (ODIV), Fractional N Dividing value (INT,FRAC). These parameters should be set as described below.

Step1. Deciding VCO base frequency.

This frequency (fvco) is decided from Output frequency and Output dividing value (address FB). Note: Set VCO frequency between 100MHz to 200MHz. Set ODIV bit to "1" when output frequency exceeds 100MHz.

Step2. Deciding Phase comparison frequency.

Set M divider as this frequency becomes between 2MHz to 4MHz.

Step3. Deciding Feedback dividing value.

This value is decided by VCO frequency (fvco) and Phase comparison frequency (fcmp). 7 bits integral part and 18 bits fractional part (signed 2's complement) is necessary to be set.

Integral part (INT)	= round (fvco / fcmp)
Fractional part (FRAC)	= round ((fvco / fcmp) – INT) x 2^{18})

Exsample1) input 27MHz, output 123.75MHz

1.	VCO frequency:	123.75MHz	ODIV = 1		
2.	Phase comparison frequency:	3MHz	MDIV = 9		
		27MHz / 9 = 3MHz			
3.	Feedback dividing value:	41.25	INT = 41d, FRAC = 65536d		
		INT = round (123.7	5/3 = round (41.25) = 41d		
		FRAC = round ((41.25 – 41) x 2 ¹⁸) = 65536d			
		Output frequency er	ror: 0ppm		

Register settings of exsample1)

[Address]	[Value]	[Contents]
0xF7	0x08	Clear SFTRST, BANK0, FSEL=Invalid, REFOUT=OFF
0xFA	0x38	MDIV=9d
0xFB	0x00	ODIV=1d
0xFC	0x29	INT =41d
0xFD	0x00	FRAC(Lower 8bits)
0xFE	0x00	FRAC(Medium 8bits)
0xFF	0x01	FRAC(Upper 2bits)
		FRAC=655536d

Exsample2) input 16MHz, output 24.576MHz

- 1. VCO frequency:
- 2. Phase comparison frequency:
- 3. Feedback dividing value:

Register settings of example2)

[Address]	[Value]	[Contents]
0×F7	0x08	Clear SFTRST, BANK0, FSEL=Invalid, REFOUT=OFF
0xFA	0x06	MDIV=4d
0xFB	0x32	ODIV=6d
0xFC	0x25	INT =37d
0xFD	0xBC	FRAC(Lower 8bits)
0xFE	0x74	FRAC(Medium 8bits)
0xFF	0x03	FRAC(Upper 2bits)
		FRAC=-35652d

Power up sequence

Supplying proper voltage to the power pins.

*Note: VDD1, VDD2, VDD3 must be supplied simultaneously.

Power-on-reset is executed by setting RESET = "L" during start up.

- SCL / SDA are acceptable 1ms later.
 - *Note: When using RESET signal, It takes 500us after releasing the RESET to accept SCL / SDA access.

Reset circuit

To reset this IC, these tree methods are available.

- 1) Internal power-on-reset
- 2) Hardware reset by RESET pin
- 3) Software reset by "SFTSRT" of register F7

The "SFTRST" bit is not cleared by power-on-reset. It should be manually set to "0" after power-on-reset if it is necessary.

Package Information Mechanical data (Units:mm)

c: Date code (5digits)

*) **AKM** is the brand name of AKEMD's IC's.

AKM and the logo - *interfective* - are the brand of AKEMD's IC's and identify that AKEMD continues to offer the best choice for high performance mixed-signal solution under this brand.

RoHS Compliance

8142

XXXXX

8

Marking

All integrated circuits form Asahi Kasei EMD Corporation (AKEMD) assembled in "lead-free" packages* are fully compliant with RoHS.

(*) RoHS compliant products from AKEMD are identified with "Pb free" letter indication on product label posted on the anti-shield bag and boxes.

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., LTD. (AKM) sales office or authorized distributor concerning their current status.
- AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here:

(a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for application in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.

(b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.

• It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.