阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

COB LC72121MA

CMOS IC

PLL Frequency Synthesizers for Electronic Tuning

ON Semiconductor ${ }^{\circledR}$

http:/lonsemi.com

Overview

The LC72121MA are high input sensitivity (20 mVrms at 130 MHz) PLL frequency synthesizers for 3 V systems. These ICs are serial data (CCB) compatible with the LC72131K/KMA, and feature the improved input sensitivity and lower spurious radiation (provided by a redesigned ground system) required in high-performance AM/FM tuners.

Features

- High-speed programmable divider
- FMIN: 10 to $160 \mathrm{MHz} \cdots \cdots \cdots \cdots$....... Pulse swallower technique (With built-in divide-by-2 prescaler)
- AMIN: 2 to 40 MHz Pulse swallower technique
0.5 to $10 \mathrm{MHz} \cdots \cdots \cdots \cdots$. Direct division technique
- IF counter
- IFIN: 0.4 to 15 MHz For AM and FM IF counting
- Reference frequency
- One of 12 reference frequencies can be selected (using a 4.5 or 7.2 MHz crystal element) $1,3,5,9,10,3.125,6.25,12.5,15,25,50$, and 100 kHz
- Phase comparator
- Supports dead zone control. - Built-in unlocked state detection circuit • Built-in deadlock clear circuit
- An MOS transistor for an active low-pass filter is built in.
- I/O ports
- Output-only ports: 4 pins - I/O ports: 2 pins - Supports the output of a clock time base signal.
- Serial data I/O
- Support CCB format communication with the system controller.
- Operating ranges
- Supply voltage: 2.7 to $3.6 \mathrm{~V} \bullet$ Operating temperature: -40 to $+85^{\circ} \mathrm{C}$
- Package
- MFP24SJ
- CCB is ON Semiconductor ${ }^{\circledR}$'s original format. All addresses are managed by ON Semiconductor® for this format.
- CCB is a registered trademark of Semiconductor Components Industries, LLC.

Specifications
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SSd }}=\mathrm{V}_{\text {SSa }}=\mathrm{V}_{\text {SSX }}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$V_{\text {DD }}$ max	$V_{\text {DD }}$	-0.3 to +7.0	V
Maximum input voltage	$\mathrm{V}_{\text {IN }}{ }^{1}$ max	CE, CL, DI, AIN	-0.3 to +7.0	V
	$\mathrm{V}_{\text {IN }}{ }^{\text {max }}$	XIN, FMIN, AMIN, IFIN	-0.3 to $V_{D D}+0.3$	V
	$\mathrm{V}_{1 \times} 3$ max	$\overline{\mathrm{O} 1}, \overline{\mathrm{IO}}$	-0.3 to +15	V
Maximum output voltage	$\mathrm{V}_{\mathrm{O}} 1$ max	DO	-0.3 to +7.0	V
	$\mathrm{V}_{\mathrm{O}}{ }^{2}$ max	XOUT, PD	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{V}_{\mathrm{O}} 3$ max	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO} 1}, \overline{\mathrm{IO} 2}$, AOUT	-0.3 to +15	V
Maximum output current	$1{ }^{1} 1$ max	DO, AOUT	0 to 6.0	mA
	lo2 max	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}$	0 to 10	mA
Allowable power dissipation	Pd max	($\mathrm{Ta} \leq 85^{\circ} \mathrm{C}$)	200	mW
Operating temperature	Topr		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +125	${ }^{\circ} \mathrm{C}$

Note 1: Power pins VDD and VSS: Insert a capacitor with a capacitance of 2,000pF or higher between these pins when using the IC.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Ranges at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SSd}}=\mathrm{V}_{\mathrm{SSa}}=\mathrm{V}_{\mathrm{SSX}}=0 \mathrm{~V}$

Parameter	Symbol	Pin	Conditions	Ratings			Unit
				min	typ	max	
Supply voltage	V_{DD}	$\mathrm{V}_{\text {DD }}$		2.7		3.6	V
Input high-level voltage	$\mathrm{V}_{1 \mathrm{H}^{1}}$	CE, CL, DI		$0.7 \mathrm{~V}_{\text {DD }}$		6.5	V
	$\mathrm{V}_{\mathrm{IH}}{ }^{2}$	$\overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}$		0.7V VD		13	V
Input low-level voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{CE}, \mathrm{CL}, \mathrm{DI}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}$		0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
Output voltage	$\mathrm{V}_{\mathrm{O}} 1$	DO		0		6.5	V
	$\mathrm{V}_{\mathrm{O}} 2$	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}, \mathrm{AOUT}$		0		13	V
Input frequency	fin^{1}	XIN	$\mathrm{V}_{\text {IN }}{ }^{1}$	1.0		8.0	MHz
	fin^{2}	FMIN	$\mathrm{V}_{1 \mathrm{~N}^{2}}$	10		160	MHz
	fin^{3}	AMIN	$\mathrm{V}_{1 \mathrm{I}^{3}}(\mathrm{SNS}=1)$	2.0		40	MHz
	fin^{4}	AMIN	$\mathrm{V}_{1 \mathrm{~N} 4(\mathrm{SNS}=0)}$	0.5		10	MHz
	fin^{5}	IFIN	$V_{\text {IN }}{ }^{5}$	0.4		15	MHz
Guaranteed crystal oscillator frequency	X'tal	XIN, XOUT	Note 2	4.0		8.0	MHz
Input amplitude	$\mathrm{V}_{\text {IN }} 1$	XIN	fin^{1}	200		800	mV rms
	$\mathrm{V}_{\text {IN }}{ }^{2-1}$	FMIN	$\mathrm{f}=10$ to 130 MHz	20		800	mVrms
	$\mathrm{V}_{\text {IN }}{ }^{2-2}$	FMIN	$\mathrm{f}=130$ to 160 MHz	40		800	mVrms
	$\mathrm{V}_{1 \mathrm{~N}^{3}}$	AMIN	$\mathrm{f}_{\mathrm{IN}} 3$ (SNS=1)	40		800	mVrms
	$\mathrm{V}_{\text {IN }}{ }^{\text {d }}$	AMIN	flN^{4} (SNS=0)	40		800	mVrms
	$\mathrm{V}_{\text {IN }} 5$	IFIN	$\mathrm{f}_{\text {IN }}{ }^{\text {(IFS }}=1$)	40		800	mVrms
	$\mathrm{V}_{\text {IN }} 6$	IFIN	$\mathrm{f}^{\prime} \mathrm{N}^{5}$ (IFS=0)	70		800	mVrms
Data setup time	tsu	DI, CL	Note 3	0.75			$\mu \mathrm{s}$
Data hold time	t_{HD}	DI, CL	Note 3	0.75			$\mu \mathrm{s}$
Clock low level time	${ }^{\text {t }} \mathrm{CL}$	CL	Note 3	0.75			$\mu \mathrm{s}$
Clock high level time	${ }^{\mathrm{t}} \mathrm{CH}$	CL	Note 3	0.75			$\mu \mathrm{s}$
CE wait time	${ }^{\text {t EL }}$	CE, CL	Note 3	0.75			$\mu \mathrm{s}$
CE setup time	$t_{\text {ES }}$	CE, CL	Note 3	0.75			$\mu \mathrm{s}$
CE hold time	t_{EH}	CE, CL	Note 3	0.75			$\mu \mathrm{s}$
Data latch change time	${ }_{\text {t }} \mathrm{C}$		Note 3			0.75	$\mu \mathrm{s}$
Data output time	${ }_{t} \mathrm{DC}$	DO, CL	Differs depending on the value of the pull-up resistor. Note 3				
	${ }^{\text {t }} \mathrm{DH}$	DO, CE				0.35	$\mu \mathrm{s}$

Note 2: Recommended crystal oscillator CI values:

$$
\mathrm{CI} \leq 120 \Omega(\text { For a } 4.5 \mathrm{MHz} \text { crystal })
$$

$$
\mathrm{CI} \leq 70 \Omega \text { (For a } 7.2 \mathrm{MHz} \text { crystal })
$$

The characteristics of the oscillation circuit depends on the printed circuit board, circuit constants, and other
factors. Therefore we recommend consulting with the anufacturer of the crystal for evaluation and reliability.
Note 3: Refer to "Serial Data Timing".
Electrical Characteristics in the Allowable Operating Ranges

Parameter	Symbol	Pin	Conditions	Ratings			Unit
				min	typ	max	
Internal feedback resistance	Rf1	XIN			1.0		$\mathrm{M} \Omega$
	Rf2	FMIN			500		$\mathrm{k} \Omega$
	Rf3	AMIN			500		$\mathrm{k} \Omega$
	Rf4	IFIN			250		$\mathrm{k} \Omega$
Internal pull-down resistance	Rpd1	FMIN		100	200	400	$\mathrm{k} \Omega$
	Rpd2	AMIN		100	200	400	$\mathrm{k} \Omega$
Hysteresis	$\mathrm{V}_{\mathrm{HIS}}$	CE, CL, DI			$0.1 \mathrm{~V}_{\text {DD }}$		V
Output high-level voltage	V_{OH}	PD	$\mathrm{I}^{\prime}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}{ }^{-1.0}$			V
Output low-level voltage	$\mathrm{V}_{\mathrm{OL}} 1$	PD	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}$	$\mathrm{I}^{\mathrm{O}}=1 \mathrm{~mA}$			0.2	V
			$\mathrm{I}^{\circ}=8 \mathrm{~mA}$			1.6	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{3}$	DO	$\mathrm{I}^{\mathrm{O}}=1 \mathrm{~mA}$			0.2	V
			$\mathrm{I}^{\prime}=5 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{4}$	AOUT	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}, \mathrm{AlN}=1.3 \mathrm{~V}$			0.5	V
Input high-level current	${ }_{1} \mathrm{H}^{1}$	CE, CL, DI	$\mathrm{V}_{1}=6.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	IH^{2}	$\overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}$	$V_{1}=13 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	${ }_{1 / \mathrm{H}}{ }^{3}$	XIN	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {DD }}$	1.3		8	$\mu \mathrm{A}$
	${ }_{1 / \mathrm{H}}{ }^{4}$	FMIN, AMIN	$V_{1}=V_{\text {DD }}$	2.5		15	$\mu \mathrm{A}$
	${ }_{1 / \mathrm{H}}{ }^{5}$	IFIN	$V_{1}=V_{D D}$	5.0		30	$\mu \mathrm{A}$
	${ }_{1 / \mathrm{H}}{ }^{6}$	AIN	$V_{1}=6.5 \mathrm{~V}$			200	nA
Input low-level current	IIL^{1}	CE, CL, DI	$\mathrm{V}_{1}=0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }}{ }^{2}$	$\overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}$	$\mathrm{V}_{1}=0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	IIL^{3}	XIN	$V_{1}=0 \mathrm{~V}$	1.3		8	$\mu \mathrm{A}$
	IIL 4	FMIN, AMIN	$\mathrm{V}_{1}=0 \mathrm{~V}$	2.5		15	$\mu \mathrm{A}$
	${ }_{\text {ILI }} 5$	IFIN	$\mathrm{V}_{1}=0 \mathrm{~V}$	5.0		30	$\mu \mathrm{A}$
	IIL 6	AIN	$\mathrm{V}_{1}=0 \mathrm{~V}$			200	nA
Output off leakage current	loff1	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \mathrm{AOUT}, \overline{\mathrm{OO}}, \overline{\mathrm{O} 2}$	$\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	IOFF2	DO	$\mathrm{V}_{\mathrm{O}}=6.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
High-level 3-state off leakage current	IOFFH	PD	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$		0.01	200	nA
Low-level 3-state off leakage current	IOFFL	PD	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		0.01	200	nA
Input capacitance	$\mathrm{C}_{\text {IN }}$	FMIN			6		pF
Supply current	${ }^{\prime} \mathrm{DD} 1$	V_{DD}	$\begin{aligned} & \hline \text { X'tal }=7.2 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}} 2=130 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{IN} 2}=20 \mathrm{mVrms} \\ & \hline \end{aligned}$		2.5	6	mA
	${ }^{\prime} \mathrm{DD}^{2}$	$V_{\text {DD }}$	PLL block stopped (PLL INHIBIT mode) Crystal oscillator operating (crystal frequency: 7.2 MHz)		0.3		mA
	${ }^{\prime} \mathrm{DD}^{3}$	$\mathrm{V}_{\text {DD }}$	PLL block stopped. Crystal oscillator stopped.			10	$\mu \mathrm{A}$

Package Dimensions

unit : mm (typ)
3419

Pin Assignment

$\begin{aligned} & \stackrel{5}{2} \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$	\%	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{5}{8}$	$\underset{<}{2}$	Q	$\stackrel{\circ}{\circ}$	$\sum_{\\|}^{Z}$	$\sum_{<}^{\text {z }}$	-	- ${ }^{\text {® }}$	$\underline{\underline{Z}}$	
24	23	22	21	20	19	18	17	16	15	14	13	
∇					721	21M						
1	2	3	4	5	6	7	8	9	10	11	12	
$\frac{7}{\times}$	$\begin{aligned} & \times \\ & \infty \\ & \infty \end{aligned}$	ய	$\bar{\square}$	\bigcirc	O	\|\%	\|ơ	\%	\|	-	2	w

Block Diagram

Pin Descriptions

Pin name	Pin No.	Type	Function	Equivalent circuit
$\begin{aligned} & \text { XIN } \\ & \text { XOUT } \end{aligned}$	$\begin{gathered} 1 \\ 24 \end{gathered}$	X'tal OSC	- Crystal oscillator element connections (4.5 or 7.2 MHz)	
FMIN	17	Local oscillator signal input	- FMIN is selected when DVS in the serial data is set to 1. - Input frequency: 10 to 160 MHz - The signal is passed through an internal divide-by-two prescaler and then input to the swallow counter. - The divisor can be set to a value in the range 272 to 65535 . Since the internal divide-by-two prescaler is used, the actual divisor will be twice the set value.	
AMIN	16	Local oscillator signal input	- AMIN is selected when DVS in the serial data is set to 0 . - When SNS in the serial data is set to 1 : - Input frequency: 2 to 40 MHz - The signal is input to the swallow counter directly. - The divisor can be set to a value in the range 272 to 65535 . The set value becomes the actual divisor. - When SNS in the serial data is set to 0 : - Input frequency: 0.5 to 10 MHz - The signal is input to a 12 -bit programmable divider directly. - The divisor can be set to a value in the range 4 to 4095 . The set value becomes the actual divisor.	
CE	3	Chip enable	- This pin must be set high to enable serial data input (DI) or serial data output (DO).	
DI	4	Input data	- Input for serial data transferred from the controller	$\square-5>0$
CL	5	Clock	- Clock used for data synchronization for serial data input (DI) and serial data output (DO).	
DO	6	Output data	- Output for serial data transmitted to the controller. The content of the data transmitted is determined by DOC0 through DOC2.	
$V_{\text {DD }}$	18	Power supply	- LC72121MA power supply (VD 2.7 to 3.6 V) - The power on reset circuit operates when power is first applied.	-
$\mathrm{V}_{\text {SSX }}$	2	Ground	- Ground for the crystal oscillator circuit	-
VSSd	15	Ground	- Ground for the LC72121MA digital systems other than those that use V_{SS} or $\mathrm{V}_{\mathrm{SSX}}$.	-
$\begin{aligned} & \overline{\overline{\mathrm{BO} 1}} \\ & \overline{\mathrm{BO} 2} \\ & \overline{\mathrm{BO} 3} \\ & \overline{\mathrm{BO} 4} \end{aligned}$	$\begin{gathered} 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	Output port	- Output-only ports - The output state is determined by BO 1 through BO 4 in the serial data. When the data value is 0 : The output state will be the open circuit state. When the data value is 1 : The output state will be a low level. - A time base signal $(8 \mathrm{~Hz})$ is output from $\overline{\mathrm{BO1}}$ when TBC in the serial data is set to 1 .	
$\overline{\overline{\mathrm{O} 1}}$	$\begin{aligned} & 11 \\ & 14 \end{aligned}$	I/O port	- Shared function I/O ports - The pin function is determined by IOC1 and IOC2 in the serial data. When the data value 0 : Input port When the data value 1: Output port - When specified to function as an input port: The input pin state is reported to the controller through the DO pin. When the input state is low: The data will be 0 : When the input state is high: The data will be 1 : - When specified to function as an output port: The output state is determined by IO 1 and IO 2 in the serial data. When the data value is 0 : The output state will be the open circuit state. When the data value is 1 : The output state will be a low level. - These pins are set to input mode after a power on reset.	

Continued on next page.

Continued from preceding page.

Pin name	Pin No.	Type		Function •PLL charge pump output A high level is output when the frequency of the local oscillator signal divided by N is higher than the reference frequency, and a low level is output when that frequency is lower. This pin goes to the highimpedance state when the frequencies match.
AIN				
AOUT				

Procedures for Input and Output of Serial Data

This product uses the CCB (Computer Control Bus), which is Ours audio product serial bus format, for data input and output. This product adopts an 8-bit address CCB format.

	I/O mode	Address								Function
		B0	B1	B2	B3	A0	A1	A2	A3	
[1]	IN1(82)	0	0	0	1	0	1	0	0	- Control data input (serial data input) mode - 24 bits of data are input. - See the "DI Control Data (serial data input)" section for details on the content of the input data.
[2]	IN2(92)	1	0	0	1	0	1	0	0	- Control data input (serial data input) mode - 24 bits of data are input. - See the "DI Control Data (serial data input)" section for details on the content of the input data.
[3]	OUT(A2)	0	1	0	1	0	1	0	0	- Data output (serial data output) mode - The number of bits output is equal to the number of clock cycles. - See the "DO output Data (serial data output)" section for details on the content of the output data.

Structure of the DI Control Data (serial data input)

[1] IN1 mode

[2] IN2 mode

Control Data

No.	Control block/data	Function					Related data
(1)	Programmable divider data P0 to P15 DVS, SNS	- Specifies the divisor for the programmable divider. This is a binary value in which P15 is the MSB. The LSB changes depending on DVS and SNS. (* : don’t care) * LSB : When P4 is the LSB, P0 to P3 are ignored. - These pins select the signal input to the programmable divider (FMIN or AMIN) and switch the input frequency range. (*: don't care) * See the "Structure of the Programmable Divider" section for details.					
(2)	Reference divider data R0 to R3 XS	- Reference frequency selection * PLL INHIBIT mode In this mode, the programmable divider and the IF counter block are stopped, the FMIN, AMIN, and IFIN pins are pulled down to ground, and the charge pump output goes to the highimpedance state. - Crystal oscillator element selection data $\begin{aligned} & \mathrm{XS}=0: 4.5 \mathrm{MHz} \\ & \mathrm{XS}=1: 7.2 \mathrm{MHz} \end{aligned}$ Note that 7.2 MHz is selected after a power on reset.					
(3)	IF counter control data CTE GT0, GT1	- IF counter measurement start command data CTE =1: Starts the counter CTE $=0$: Resets the counter - IF counter measurement time. * See the "Structure of the IF Counter" section for details.					IFS
(4)	I/O port setup data IOC1,IOC2	- Specifies input or output for the shared function I/O pins ($\overline{\mathrm{IO}}$ and $\overline{\mathrm{IO}}$).$\begin{aligned} & \text { Data }=0: \text { Input port } \\ & \text { Data }=1 \text { : Output port } \end{aligned}$					
(5)	$\begin{aligned} & \text { Output port data } \\ & \text { BO1 to BO4 } \\ & \text { IO1,IO2 } \end{aligned}$	- Determines the output state of the $\overline{\mathrm{BO} 1}$ through $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO} 1}$, and $\overline{\mathrm{IO} 2}$ output ports. Data $=0$: Open Data $=1$: Low level - The data is reset to 0 , setting the pins to the open state, after a power on reset.					$10 C 1$ $10 C 2$

Continued on next page.

Continued from preceding page.

No.	Control block/data	Function				Related data
(6)	DO pin control data DOC0 DOC1 DOC2	- Determines the DO pin output. The open state is selected after a power on reset. *1. end-UC: IF counter measurement end check DO pin (1) Count start (2) Count end CE:high (1)When end-UC is selected and an IF count is started (by switching CTE from 0 to 1), the DO pin automatically goes to the open state. (2)When the IF counter measurement period completes, the DO pin goes to the low level, allowing applications to test for the completion of the count period. (3)The DO pin is set to the open state by performing a serial data input or output operation (when the CE pin is set high). *2. The DO pin will go to the open state if the corresponding IO pin is set up to be an output port. Note) During the data input period (the period that CE is high in IN1 or IN2 mode), the DO pin goes to the open state regardless of the DO pin control data (DOC0 to DOC2). During the data output period (the period that CE is high in OUT mode) the DO pin state reflects the internal DO serial data in synchronization with the CL clock, regardless of the DO pin control data (DOC0 to DOC2).				$\begin{aligned} & \text { UL0, UL1 } \\ & \text { CTE } \\ & \text { IOC1 } \\ & \text { IOC2 } \end{aligned}$
(7)	Unlocked state detection data UL0, UL1	- Selects the width of taken to be unlocke * When the PLL is un	phase f a phas $\phi \mathrm{E}$ det ked, the	($\phi \mathrm{E}$) de in exc width s s pin goes	r PLL lock state discriminatio he detection width occurs. Detection output Open ϕE is output directly ϕE is extended by 1 to 2 ms \uparrow UL in the serial data output	$\begin{aligned} & \text { DOC0 } \\ & \text { DOC1 } \\ & \text { DOC2 } \end{aligned}$
(8)	Phase comparator control data DZ0, DZ1	- Controls the phase Dead zone width: DZ	mparato \square < DZB <	d zone zone m DZA DZB DZC DZD DZD		
(9)	Clock time base TBC	- Setting the TBC bit to 1 causes an $8-\mathrm{Hz}$ clock time base signal with a 40% duty to be output from the $\overline{\mathrm{BO} 1}$ pin. (The BO1 data will be ignored.)				B01
(10)	Charge pump control data DLC	- Forcibly controls the charge pump output. * If the circuit deadlocks due to the VCO control voltage (Vtune) being 0 and the VCO being stopped, applications can get out of the deadlocked state by setting the charge pump output to low and setting Vtune to V_{CC}. (Deadlock clear circuit)				
(11)	IF counter control data IFS	- This data is normally set to 1 . Setting this data to 0 sets the circuit to reduced input sensitivity mode, in which the sensitivity is reduced by about 10 to 30 mV rms. * See the "IF Counter Operation" section for details.				
(12)	Test data TESTO to 2	All these bits are set to 0 after a power on reset.				
(13)	DNC	- This bit must be set to 0 .				

Structure of the DO Output Data (serial data output)

[3] OUT mode

Control Data Functions

No.	Control block/data	Function	Related data
(1)	I/O port data I2, I1	- Data latched from the I/O port $\overline{\mathrm{IO} 1}$ or $\overline{\mathrm{IO} 2}$ pin states. - These bits reflect the pin states regardless of the I/O port mode (input or output). The data is latched at the point the circuit enters data output mode (OUT mode). $11 \leftarrow$ The $\overline{\mathrm{O} 1}$ pin state High : 1 $12 \leftarrow$ The $\overline{\mathrm{O} 2}$ pin state Low : 0	$\begin{aligned} & \text { IOC1 } \\ & \text { IOC2 } \end{aligned}$
(2)	PLL unlocked state data UL	- Indicates the state of the unlocked state detection circuit. $\mathrm{UL} \leftarrow 0$: When the PLL is unlocked. $\mathrm{UL} \leftarrow 1$: When the PLL is locked or in the detection disabled mode	$\begin{aligned} & \text { UL0 } \\ & \text { UL1 } \end{aligned}$
(3)	IF counter binary counter C19 to C0	- Indicates the value of the IF counter (20-bit binary counter). C19 \leftarrow MSB of the binary counter $\mathrm{C} 0 \leftarrow \mathrm{LSB}$ of the binary counter	CTE GTO GT1

1.Serial Data Input (IN1/IN2) tSU, $\mathrm{t}_{\mathrm{HD}}, \mathrm{t}_{\mathrm{ES}}, \mathrm{t}_{\mathrm{EH}}, \geq 0.75 \mu \mathrm{~s} \mathrm{t}_{\mathrm{LC}}<0.75 \mu \mathrm{~s}$

(1) CL: Normally high

(2) CL: Normally low

2.Serial Data Output (Out) tsu, tHD, $t_{E L}, t_{E S}, t_{E H}, \geq 0.75 \mu s t_{D C}, t_{D H}<0.35 \mu s$

(1) CL: Normally high

CE

CL

DO
(2) CL: Normally low

Note: The data conversion times (t DC and $\mathrm{t} D \mathrm{H}$) depend on the value of the pull-up resistor and the printed circuit board capacitance since the DO pin is an n-channel open-drain circuit.

Serial Data Timing

When CL is Stopped at the Low Level

When CL is Stopped at the High Level

Structure of the Programmable Divider

	DVS	SNS	Input pin	Set divisor	Actual divisor	Input frequency range
（A）	1	$*$	FMIN	272 to 65535	Twice the set value	10 to 160 MHz
（B）	0	1	AMIN	272 to 65535	The set value	2 to 40 MHz
（C）	0	0	AMIN	4 to 4095	The set value	0.5 to 10 MHz

＊：Don＇t care

Sample Programmable Divider Divisor Calculations

（1）For FM with a step size of 50 kHz （DVS $=1$, SNS $=$＊：FMIN selected）
FM RF $=90.0 \mathrm{MHz}(\mathrm{IF}+10.7 \mathrm{MHz})$
FM VCO $=100.7 \mathrm{MHz}$
PLL fref $=25 \mathrm{kHz}(\mathrm{R} 0$ to R1＝1，R2 to R3＝0）
100.7 MHz （FM VCO）$\div 25 \mathrm{kHz}$（fref）$\div 2$（for the FMIN $1 / 2$ prescaler）$=2014 \rightarrow 07 \mathrm{DE}$（hexadecimal）

E				D				7				0											
0	1	1	1	1	0	1	1	1	1	1	0	0	0	0	0	＊	1			1	1	0	0
인	г	N	ณ	\＆	¢	\bigcirc	人	\propto	®	음	$\bar{\Sigma}$	$\underset{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{m}{\Sigma}$	$\stackrel{\rightharpoonup}{\square}$	$\frac{\infty}{2}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{2}$	$\stackrel{\Perp}{5}$	$\stackrel{\sim}{\times}$	안	$\bar{\square}$	$\underset{\Upsilon}{\text { ¹ }}$	๕ٌ

（2）For SW with a step size of 5 kHz （ $\mathrm{DVS}=0, \mathrm{SNS}=1$ ：AMIN high－speed operation selected）
SW RF $=21.75 \mathrm{MHz}(\mathrm{IF}+450 \mathrm{kHz})$
SW VCO $=22.20 \mathrm{MHz}$
PLL fref $=5 \mathrm{kHz}(\mathrm{R} 0=\mathrm{R} 2=0, \mathrm{R} 1=\mathrm{R} 3=1)$
$22.2 \mathrm{MHz}(\mathrm{SW}$ VCO）$\div 5 \mathrm{kHz}$（fref）$=4440 \rightarrow 1158$（hexadecimal）

8				5				1				1											
0	0	0	1	1	0	1	0	1	0	0	0	1	0	0	0	1	0			0	1	0	1
\％	え	N	®	\％	ถ	\bigcirc	人	∞	¢	음	$\overline{\mathrm{a}}$	$\stackrel{N}{\Sigma}$	$\frac{m}{2}$	$\frac{\Delta}{\Sigma}$	$\frac{\boxed{1}}{\Sigma}$	\sum_{∞}^{∞}	$\stackrel{\infty}{a}$		$\stackrel{\sim}{\times}$	안	$\bar{\sim}$	$\underset{\text { ® }}{ }$	巛

（3）For MW with a step size of $9 \mathrm{kHz}(\mathrm{DVS}=0, \mathrm{SNS}=0$ ：AMIN low－speed operation selected）
MW RF $=1008 \mathrm{kHz}(\mathrm{IF}+450 \mathrm{kHz})$
WM VCO $=1458 \mathrm{kHz}$
PLL fref $=9 \mathrm{kHz}(\mathrm{R} 0=\mathrm{R} 3=1, \mathrm{R} 1=\mathrm{R} 2=0)$
1458 （MW VCO）$\div 9 \mathrm{kHz}$（fref）$=162 \rightarrow 0 \mathrm{~A} 2$（hexadecimal）

Structure of the IF Counter

The LC72121MA IF counter is a 20-bit binary counter, and takes the IF signal from the IFIN pin as its input. The result of the count can be read out serially, MSB first, from the DO pin.

GT1	GT0	Measurement time	
		Measurement time (GT)	Wait time (twU)
0	0	4 ms	3 to 4 ms
0	1	8	3 to 4
1	0	32	7 to 8
1	1	64	7 to 8

The IF frequency (Fc) is measured by determining how many pulses were input to the IF counter in the stipulated measurement time, GT.
$\mathrm{Fc}=\frac{\mathrm{C}}{\mathrm{GT}}$
$(\mathrm{C}=\mathrm{Fc} \times \mathrm{GT})$
C: Counted value (the number of pulses)

IF Counter Frequency Measurement Examples

(1) When the measurement time (GT) is 32 ms and the counted value (C) is 53980 (hexadecimal) or 342,400 (decimal).
IF frequency $(\mathrm{Fc})=342400 \div 32 \mathrm{~ms}=10.7 \mathrm{MHz}$

(2) When the measurement time (GT) is 8 ms and the counted value (C) is E10 (hexadecimal) or 3600 (decimal). IF frequency $(\mathrm{FC})=3600 \div 8 \mathrm{~ms}=450 \mathrm{kHz}$

			0				0				E				1				0			
			0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	0	0	0	0
\cong	$=$	3	$\stackrel{\bigcirc}{\grave{j}}$	$\stackrel{\infty}{\circlearrowright}$	\hat{j}	\div	$\stackrel{\llcorner }{\vdots}$	$\frac{\pi}{j}$	$\bar{\vdots}$	$\underset{\sim}{\sim}$	$\bar{\jmath}$	\div	8	\bigcirc	へ	8	$\stackrel{1}{6}$	J	\bigcirc	ก	\bar{j}	8

IF Counter Operation

Applications must first, before starting an IF count operation reset the IF counter by setting CTE in the serial data to 0 . The IF counter operation is started setting CTE in the serial data from 0 to 1 . Although the serial data is latched by dropping the CE pin from high to low, the IF signal input to the IFIN pin must be provided within the wait time from the point CE goes low. Next, the readout of the IF counter after measurement is complete must be performed while CTE is still 1 , since the counter will be reset if CTE is set to 0 .

Note: If IF counting is used, applications must determine whether or not the IF IC SD (station detect) signal is present in the microcontroller software, and perform the IF count only if that signal is asserted. This is because autosearch techniques that use IF counting only are subject to incorrect stopping at points where there is no station due to IF buffer leakage.
Note that the LC72121MA input sensitivity can be controlled with the IFS bit in the serial data. Reduced sensitivity mode (IFS = 0) must be selected when this IC is used in conjunction with an IF IC that does not provide an SD output and auto-search is implemented using only IF counting.

IFIN Minimum Sensitivity Standard

Note: Values in parentheses are actual performance values that are provided for reference purposes.

Unlocked State Detection

1. Unlocked state detection timing

Unlocked state detection is performed during the reference frequency (fref) period (interval). This means that a period at least as long as the period of the reference frequency is required to recognize the locked/unlocked state. However, applications must wait at least twice the period of the reference frequency immediately after changing the divisor (N) before checking the locked/unlocked state.

Figure 1 Unlocked State Detection Timing
For example, if fref is 1 kHz (a period of 1 ms) applications must wait at least 2 ms after the divisor N is changed before performing a locked/unlocked check.

Figure 2 Circuit Structure
2. Combining with Software

Figure 3 Combining with Software

3. Outputting the unlocked state data in the serial data

At the point of data output 1 in figure 3, the unlocked state data will indicate the unlocked state, since the VCO frequency is not stable (locked) yet. In cases such as this, the application should wait at least one whole period and then check again whether or not the frequency has stabilized with the data output 2 operation in the figure.
Applications can implement even more reliable recognition of the locked state by performing several more checks of the state and requiring that the locked state be detected sequentially.
<Flowchart for Lock Detection>

Wait at least 2 reference frequency periods.

Valid output data is acquired by using an interval of at least one reference frequency period.
*: Even more reliable recognition of the locked state can be achieved by performing several checks of the state and requiring that the locked state be detected sequentially.
4. Directly outputting the unlocked state to the DO pin

Since the unlocked state (high level when locked, low when unlocked) is output from the DO pin, applications can check for the locked state by waiting at least two reference frequency periods after changing the divisor N. However, in this case also, even more reliable recognition of the locked state can be achieved by performing several checks of the state and requiring that the locked state be detected sequentially.

Clock Time Base Usage Notes

When using the clock time base output function, the output pin ($\overline{\mathrm{BO} 1}$) pull-up resistor must have a value of over $100 \mathrm{k} \Omega$. The use of a Schmitt input in the microcontroller that accepts this signal is recommended to reduce chattering. This is to prevent degradation of the VCO C/N characteristics when combining with a loop filter that uses the internal transistor provided to form a low-pass filter. Although the ground for the clock time base output pin (VSSd) and the ground for the transistor ($\mathrm{V}_{\mathrm{SSa}}$) are isolated internally on the chip, applications must take care to avoid ground loops and minimize current fluctuations in the time base pin to prevent degradation of the low-pass filter characteristics.

Other Items
(1) Notes on the phase comparator dead zone

DZ1	DZ0	Dead zone mode	Charge pump	Dead zone
0	0	DZA	ON/ON	$--0 s$
0	1	DZB	ON/ON	$-0 s$
1	0	DZC	OFF/OFF	$+0 s$
1	1	DZD	OFF/OFF	$++0 s$

When the charge pump is used with one of the ON/ON modes, correction pulses are generated from the charge pump even if the PLL is locked. As a result, it is easy for the loop to become unstable, and special care is required in application design. The following problems can occur if an ON/ON mode is used.
(1) Sidebands may be created by reference frequency leakage.
(2) Sidebands may be created by low-frequency leakage due to the correction pulse envelope.

Although the loop is more stable when a dead zone is present (i.e. when an OFF/OFF mode is used), a dead zone makes it more difficult to achieve excellent C / N characteristics. On the other hand, while it is easy to achieve good C/N characteristics when there is no dead zone, achieving good loop stability is difficult. Accordingly, the DZA and DZB settings, in which there is no dead zone, can be effective in situations where a signal-to-noise ratio of 90 to 100 dB or higher is required in FM reception, or where it is desirable to increase the pilot margin in AM stereo reception.
However, if such a high signal-to-noise ratio is not required for FM reception, if an adequate pilot margin can be acquired in AM stereo reception, or if AM stereo is not required, then either DZC or DZD, in which there is a dead zone, should be chosen.

Dead Zone
As shown in figure 1, the phase comparator compares a reference frequency (fr) with fp . As shown in figure 2 , the phase comparator's characteristics consist of an output voltage (V) that is proportional to the phase difference ϕ. However, due to internal circuit delay and other factors, an actual circuit has a region (the dead zone, B) where the circuit cannot actually compare the phases. To implement a receiver with a high S / N ratio, it is desirable that this region be as small as possible. However, it is often desirable to have the dead zone be slightly wider in popularly-priced models. This is because in certain cases, such as when there is a strong RF input, popularly-priced models can suffer from mixer to VCO RF leakage that modulates the VCO. When the dead zone is small, the circuit outputs signals to correct this modulation and this output further modulates the VCO. This further modulation may then generate beats and the RF signal.

Figure 1
(2) Notes on the FMIN, AMIN, and IFIN pins

Coupling capacitors should be placed as close to their pin as possible. A capacitance of about 100 pF is desirable for these capacitors. In particular, if the IFIN pin coupling capacitor is not held under 1000 pF , the time to reach the bias level may become excessive and incorrect counts may result due to the relationship with the wait time.
(3) Notes on IF counting \rightarrow Use the SD signal in conjunction with IF counting

When counting the IF frequency, the microcontroller must determine the presence or absence of the IF IC SD (station detect) signal and turn on the IF counter buffer output and execute the IF count only if there is an SD signal. Autosearch techniques that only use the IF counter are subject to incorrect stopping at points where there is no station due to IF buffer leakage.
(4) DO pin usage

The DO pin can be used for IF counter count completion checking and as an unlock detection output in addition to its use in data output mode. It is also possible to have the DO pin reflect the state of an input pin to input that state to the microcontroller.
(5) Power supply pins

Capacitors must be inserted between the power supply VDD and VSS pins for noise exclusion. These capacitors must be placed as close as possible to the V_{DD} and V_{SS} pins.
(6) VCO setup

Applications must be designed so that the VCO (local oscillator) does not stop, even if the control voltage (Vtune) goes to 0 V . If it is possible for the oscillator to stop, the application must use the control data (DLC) to temporarily force Vtune to VCC to prevent deadlock from occurring. (Deadlock clear circuit)
(7) Front end connection example

Since this product is designed with the relatively high resistance of $200 \mathrm{k} \Omega$ for the pulldown (on) resistors built in to the FMIN and AMIN pins, a common AM/FM local oscillator buffer can be used as shown in the following circuit.

(8) PD pin

Note that the charge pump output voltage is reduced when this IC, which is a $3-V$ system, is used to replace the LC72131K/KMA, which is a $5-\mathrm{V}$ system. This means that since the loop gain is reduced, the loop filter constants, the lock time (SD wait time), and other related parameters must be reevaluated in the end product design.

Pin States after a Power on Reset

Sample Applications Circuit

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

