阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

NB3N1900K

3.3V 100/133 MHz Differential 1:19 HCSL Clock ZDB/Fanout Buffer for PCle ${ }^{\circledR}$

Description

The NB3N1900K differential clock buffers are designed to work in conjunction with a PCIe compliant source clock synthesizer to provide point-to-point clocks to multiple agents. The device is capable of distributing the reference clocks for Intel ${ }^{\circledR}$ QuickPath Interconnect (Intel QPI \& UPI), PCIe Gen1, Gen2, Gen3, Gen4. The NB3N1900K internal PLL is optimized to support 100 MHz and 133 MHz frequency operation. The NB3N1900K supports HCSL output levels.

Features

- Fixed Feedback Path for Lowest Input-to-Output Delay
- Eight Dedicated OE\# Pins for Hardware Control of Outputs
- PLL Bypass Configurable for PLL or Fanout Operation
- Selectable PLL Bandwidth
- Spread Spectrum Compatible: Tracks Input Clock Spreading for Low EMI
- SMBus Programmable Configurations
- 100 MHz and 133 MHz PLL Mode to Meet the Next Generation PCIe Gen2/Gen3/Gen4 and Intel QPI \& UPI Phase Jitter
- 2 Tri-Level Addresses Selection (Nine SMBUS Addresses)
- Cycle-to-Cycle Jitter: < 50 ps
- Output-to-Output Skew: < 65 ps
- Input-to-Output Delay: Fixed at 0 ps
- Input-to-Output Delay Variation: < 50 ps
- Phase Jitter: PCIe Gen3 < 1 ps rms
- Phase Jitter: PCIe Gen4 < 0.5 ps rms
- Phase Jitter: QPI 9.6GB/s < 0.2 ps rms
- QFN 72-pin Package, $10 \mathrm{~mm} \times 10 \mathrm{~mm}$
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

NB3N1900K = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 20 of this data sheet.

Figure 1. Simplified Block Diagram of NB3N1900K

NB3N1900K

Figure 2. Pin Configuration (Top View)

Table 1. PLL OPERATING MODE READBACK TABLE

HBW_BYP_LBW\#	Byte0, bit 7	Byte 0, bit 6
Low (Low BW)	0	0
Mid (Bypass)	0	1
High (High BW)	1	1

Table 2. POWER CONNECTIONS

Pin Number		
VDD	GND	
1	2	Analog PLL
8	7	Analog Input
$21,31,45$, 58,68	$26,44,63$	DIF clocks

Table 3. FUNCTIONALITY AT POWER UP (PLL MODE)

100M_133M\#	CLK_IN (MHz)	DIF (MHz)
1	100.00	CLK_IN
0	133.33	CLK_IN

Table 4. NB3N1900K SMBus ADDRESSING

Pin		SMBus Address - 8 bit (Rd/Wrt bit = 0)
SA_1	SA_0	D8
0	0	DA
0	M	DE
0	1	C 2
M	0	C 4
M	M	C 6
M	1	CA
1	0	CC
1	M	CE
1	1	

Table 5. PLL OPERATING MODE

HBW_BYP_LBW\#	MODE
Low	PLL Lo BW
Mid	Bypass
High	PLL Hi BW

NOTE: PLL is OFF in Bypass

Table 6. MODE TRI-LEVEL INPUT THRESHOLD

Level	Voltage
Low	$<0.8 \mathrm{~V}$
Mid	$1.2<\operatorname{Vin}<1.8 \mathrm{~V}$
High	$\operatorname{Vin}>2.2 \mathrm{~V}$

NB3N1900K

Table 7. PIN DESCRIPTION

Pin \#	Pin Name	Pin Type	Description
1	VDDA	PWR	3.3 V power for the PLL core.
2	GNDA	PWR	Ground pin for the PLL core.
3	IREF	OUT	This pin establishes the reference for the differential current-mode output pairs. It requires a fixed precision resistor to ground. 475Ω is the standard value for 100Ω differential impedance. Other impedances require different values. See data sheet.
4	100M_133M\#	IN	Input to select operating frequency $1=100.00 \mathrm{MHz}, 0=133.33 \mathrm{MHz}$
5	HBW_BYP_LBW\#	IN	Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.
6	PWRGD/PWRDN\#	IN	Notifies device to sample latched inputs and start up on first high assertion, or exit Power Down Mode on subsequent assertions. Low enters Power Down Mode.
7	GND	PWR	Ground pin.
8	VDDR	PWR	3.3 V power for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately.
9	CLK_IN	IN	0.7 V Differential true input
10	CLK_IN\#	IN	0.7 V Differential complementary Input
11	SA_0	IN	SMBus address bit. This is a tri-level input that works in conjunction with the SA_1 to decode 1 of 9 SMBus Addresses.
12	SDA	I/O	Data pin of SMBus circuitry, 5V tolerant
13	SCL	IN	Clock pin of SMBus circuitry, 5V tolerant
14	SA_1	IN	SMBus address bit. This is a tri-level input that works in conjunction with the SA_0 to decode 1 of 9 SMBus Addresses.
15	NC	N/A	No Connection.
16	NC	N/A	No Connection.
17	FB_OUT\#	OUT	Complementary half of differential feedback output, provides feedback signal to the PLL for synchronization with input clock to eliminate phase error.
18	FB_OUT	OUT	True half of differential feedback output, provides feedback signal to the PLL for synchronization with the input clock to eliminate phase error.
19	DIF0	OUT	0.7 V differential true clock output
20	DIFO\#	OUT	0.7 V differential complementary clock output
21	VDD	PWR	Power supply, nominal 3.3 V
22	DIF1	OUT	0.7 V differential true clock output
23	DIF1\#	OUT	0.7 V differential complementary clock output
24	DIF2	OUT	0.7 V differential true clock output
25	DIF2\#	OUT	0.7 V differential complementary clock output
26	GND	PWR	Ground pin.
27	DIF3	OUT	0.7 V differential true clock output
28	DIF3\#	OUT	0.7 V differential complementary clock output
29	DIF4	OUT	0.7 V differential true clock output
30	DIF4\#	OUT	0.7 V differential complementary clock output
31	VDD	PWR	Power supply, nominal 3.3 V
32	DIF5	OUT	0.7 V differential true clock output
33	DIF5\#	OUT	0.7 V differential complementary clock output
34	OE5\#	IN	Active low input for enabling DIF pair 5. $1=$ disable outputs, $0=$ enable outputs
35	DIF6	OUT	0.7 V differential true clock output
36	DIF6\#	OUT	0.7 V differential complementary clock output
37	OE6\#	IN	Active low input for enabling DIF pair 6. 1 =disable outputs, $0=$ enable outputs

Table 7. PIN DESCRIPTION

Pin \#	Pin Name	Pin Type	Description
38	DIF7	OUT	0.7 V differential true clock output
39	DIF7\#	OUT	0.7 V differential complementary clock output
40	OE7\#	IN	Active low input for enabling DIF pair 7 . $1=$ disable outputs, $0=$ enable outputs
41	DIF8	OUT	0.7 V differential true clock output
42	DIF8\#	OUT	0.7 V differential complementary clock output
43	OE8\#	IN	Active low input for enabling DIF pair 8. 1 = disable outputs, $0=$ enable outputs
44	GND	PWR	Ground pin.
45	VDD	PWR	Power supply, nominal 3.3 V
46	DIF9	OUT	0.7 V differential true clock output
47	DIF9\#	OUT	0.7 V differential complementary clock output
48	OE9\#	IN	Active low input for enabling DIF pair 9. $1=$ disable outputs, $0=$ enable outputs
49	DIF10	OUT	0.7 V differential true clock output
50	DIF10\#	OUT	0.7 V differential complementary clock output
51	OE10\#	IN	Active low input for enabling DIF pair 10. $1=$ disable outputs, $0=$ enable outputs
52	DIF11	OUT	0.7 V differential true clock output
53	DIF11\#	OUT	0.7 V differential complementary clock output
54	OE11\#	IN	Active low input for enabling DIF pair 11. $1=$ disable outputs, $0=$ enable outputs
55	DIF12	OUT	0.7 V differential true clock output
56	DIF12\#	OUT	0.7 V differential complementary clock output
57	OE12\#	IN	Active low input for enabling DIF pair 12. $1=$ disable outputs, $0=$ enable outputs
58	VDD	PWR	Power supply, nominal 3.3 V
59	DIF13	OUT	0.7 V differential true clock output
60	DIF13\#	OUT	0.7 V differential complementary clock output
61	DIF14	OUT	0.7 V differential true clock output
62	DIF14\#	OUT	0.7 V differential complementary clock output
63	GND	PWR	Ground pin.
64	DIF15	OUT	0.7 V differential true clock output
65	DIF15\#	OUT	0.7 V differential complementary clock output
66	DIF16	OUT	0.7 V differential true clock output
67	DIF16\#	OUT	0.7 V differential complementary clock output
68	VDD	PWR	Power supply, nominal 3.3 V
69	DIF17	OUT	0.7 V differential true clock output
70	DIF17\#	OUT	0.7 V differential complementary clock output
71	DIF18	OUT	0.7 V differential true clock output
72	DIF18\#	OUT	0.7 V differential complementary clock output

Table 8. ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$V_{\text {DDA }}$	3.3 V Core Supply Voltage (Note 2)				4.6	V
$V_{D D}$	3.3 V Logic Supply Voltage (Note 2)				4.6	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		$\begin{gathered} \text { GND - } \\ 0.5 \end{gathered}$			V
V_{IH}	Input High Voltage	Except for SMBus interface			$\begin{gathered} \mathrm{V}_{\mathrm{DD}}+ \\ 0.5 \end{gathered}$	V
$\mathrm{V}_{\text {IHSMB }}$	Input High Voltage	SMBus clock and data pins			5.5	V
T_{s}	Storage Temperature		-65		150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature				125	${ }^{\circ} \mathrm{C}$
T_{c}	Case Temperature				130	${ }^{\circ} \mathrm{C}$
ESD	ESD protection	Human Body Model	2000			V
$\theta \mathrm{JA}$	Thermal Resistance Junction-to-Ambient	Still air		18.1		${ }^{\circ} \mathrm{C} / \mathrm{W}$
өJC	Thermal Resistance Junction-to-Case			5.0		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Guaranteed by design and characterization, not tested in production.
2. Operation under these conditions is neither implied nor guaranteed.

NB3N1900K

Table 9. ELECTRICAL CHARACTERISTICS - INPUT/SUPPLY/COMMON PARAMETERS
($\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$), See Test Loads for Loading Conditions.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{IH}	Input High Voltage	Single-ended inputs, except SMBus, low threshold and tri-level inputs (Note 3)	2		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}+ \\ 0.3 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Single-ended inputs, except SMBus, low threshold and tri-level inputs (Note 3)	$\begin{gathered} \text { GND - } \\ 0.3 \end{gathered}$		0.8	V
VIH_FS (Note 4)	Input High Voltage		0.7		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}+ \\ 0.3 \end{gathered}$	V
VIL_FS (Note 4)	Input Low Voltage		$\begin{gathered} \text { GND - } \\ 0.3 \end{gathered}$		0.35	V
I_{IN}	Input Current	Single-ended inputs, $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ (Note 3)	-5		5	$\mu \mathrm{A}$
$\mathrm{F}_{\text {IBYP }}$		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, Bypass mode (Notes 3, 5 and 6)	33		400	MHz
$\mathrm{F}_{\text {IPLL }}$	Input Frequency	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 100.00 \mathrm{MHz} \mathrm{PLL}$ mode (Note 5)	99	100.00	101	MHz
$\mathrm{F}_{\text {IPLL }}$		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, 133.33 MHz PLL mode (Notes 5)	132.33	133.33	134.33	MHz
LPIN	Pin Inductance	(Note 3)			7	nH
$\mathrm{C}_{\text {IN }}$		Logic Inputs, except CLK_IN (Note 3)	1.5		5	pF
$\mathrm{C}_{\text {INDIF_IN }}$	Capacitance	CLK_IN differential clock inputs (Notes 3 and 7)	1.5		2.7	pF
Cout		Output pin capacitance (Note 3)			6	pF
TStAB	Clk Stabilization	From $V_{D D}$ Power-Up and after input clock stabilization or de-assertion of PD\# to 1st clock (Notes 3 and 5)			1.8	ms
f	Input SS Modulation Frequency	Allowable Frequency (Triangular Modulation) (Note 3)	30		33	kHz
tlatoe\#	OE\# Latency	DIF start after OE\# assertion DIF stop after OE\# de-assertion (Note 3)	4		12	cycles
$t_{\text {DRVPD }}$	Tdrive_PD\#	DIF output enable after PD\# de-assertion (Note 3)			300	$\mu \mathrm{s}$
$t_{\text {F }}$	Tfall	Fall time of control inputs (Notes 3 and 5)			5	ns
t_{R}	Trise	Rise time of control inputs (Notes 3 and 5)			5	ns
$\mathrm{V}_{\text {ILSMB }}$	SMBus Input Low Voltage	(Note 3)			0.8	V
$\mathrm{V}_{\text {IHSMB }}$	SMBus Input High Voltage	(Note 3)	2.1		$\mathrm{V}_{\text {DDSMB }}$	V
$\mathrm{V}_{\text {OLSMB }}$	SMBus Output Low Voltage	@ IPULLUP (Note 3)			0.4	V
IpULLUP	SMBus Sink Current	@ $\mathrm{V}_{\text {OL }}$ (Note 3)	4			mA
$\mathrm{V}_{\text {DDSMB }}$	Nominal Bus Voltage	3 V to $5 \mathrm{~V} \pm 10 \%$ (Note 3)	2.7		5.5	V
$t_{\text {RSMB }}$	SCL/SDA Rise Time	(Max $\mathrm{V}_{\mathrm{IL}}-0.15$) to (Min $\left.\mathrm{V}_{\mathrm{IH}}+0.15\right)$ (Note 3)			1000	ns
$\mathrm{t}_{\text {FSMB }}$	SCL/SDA Fall Time	(Min VIH + 0.15) to (Max $\mathrm{V}_{\mathrm{IL}}-0.15$) (Note 3)			300	ns
$\mathrm{f}_{\text {MAXSMB }}$	SMBus Operating Frequency	Maximum SMBus operating frequency (Notes 3 and 8)			100	kHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Guaranteed by design and characterization, not tested in production.
4. 100M_133M\# Frequency Select (FS).
5. Control input must be monotonic from 20% to 80% of input swing.
6. Fmax measured until output violates output duty cycle specifications and output $\mathrm{V}_{\text {High }}, \mathrm{V}_{\text {Low }}$ specification.
7. CLK_IN input
8. The differential input clock must be running for the SMBus to be active.

NB3N1900K

Table 10. ELECTRICAL CHARACTERISTICS - CLOCK INPUT PARAMETERS
($\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$), See Test Loads for Loading Conditions.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {IHDIF }}$	Input High Voltage - CLK_IN (Note 9)	Differential inputs (single-ended measurement)	600		1150	mV
$\mathrm{V}_{\text {ILDIF }}$	Input Low Voltage - CLK_IN (Note 9)	Differential inputs (single-ended measurement)	$\begin{gathered} \hline \mathrm{V}_{\mathrm{SS}}- \\ 300 \end{gathered}$		300	mV
$\mathrm{V}_{\text {COM }}$	Input Common Mode Voltage CLK_IN (Note 9)	Common Mode Input Voltage	300		1000	mV
$V_{\text {SWING }}$	Input Amplitude - CLK_IN (Note 9)	Peak to Peak value	300		1450	mV
dv/dt	Input Slew Rate - CLK_IN (Notes 9 and 10)	Measured differentially	0.4		8	V/ns
1 N	Input Leakage Current (Note 9)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$	-5		5	$\mu \mathrm{A}$
$\mathrm{d}_{\text {tin }}$	Input Duty Cycle (Note 9)	Measurement from differential waveform	45		55	\%
J ${ }_{\text {DIFIn }}$	Input Jitter - Cycle to Cycle (Note 9)	Differential Measurement	0		125	ps

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
9. Guaranteed by design and characterization, not tested in production.

10 . Slew rate measured through $\pm 75 \mathrm{mV}$ window centered around differential zero.

Table 11. ELECTRICAL CHARACTERISTICS - DIF 0.7 V CURRENT MODE DIFFERENTIAL OUTPUTS
$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$, See Test Loads for Loading Conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
dV/dt	Slew rate (Notes 11, 12 and 13)	Scope averaging on	1		4	V/ns
$\Delta \mathrm{dV} / \mathrm{dt}$	Slew rate matching (Notes 11, 12 and 14)	Slew rate matching, Scope averaging on			20	\%
Δ Trf	Rise/Fall Time Matching (Notes 11, 12 and 18)	Rise/fall matching, Scope averaging off			125	ps
$\mathrm{V}_{\text {High }}$	Voltage High (Note 11)	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging on)	660		850	mV
$\mathrm{V}_{\text {Low }}$	Voltage Low (Note 11)		-150		150	
$\mathrm{V}_{\text {max }}$	Max Voltage (Note 11)	Measurement on single ended signal using Absolute value. (Scope averaging off)			1150	mV
$\mathrm{V}_{\text {min }}$	Min Voltage (Note 11)		-300			
$\mathrm{V}_{\text {swing }}$	Vswing (Notes 11 and 12)	Scope averaging off	300			mV
$\mathrm{V}_{\text {cross_abs }}$	Crossing Voltage (abs) (Notes 11 and 15)	Scope averaging off	250		550	mV
$\Delta \mathrm{V}_{\text {cross }}$	Crossing Voltage (var) (Notes 11 and 16)	Scope averaging off			140	mV

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
11. Guaranteed by design and characterization, not tested in production. $I_{R E F}=V_{D D} /\left(3 x R_{R E F}\right)$. For $R_{R E F}=475 \Omega(1 \%), I_{R E F}=2.32 \mathrm{~mA} . I_{O H}$ $=6 \times \mathrm{I}_{\mathrm{REF}}$ and $\mathrm{V}_{\mathrm{OH}}=0.7 \mathrm{~V} @ \mathrm{Z}_{\mathrm{O}}=50 \Omega$ (100 Ω differential impedance).
12. Measured from differential waveform.
13. Slew rate is measured through the Vswing voltage range centered around differential 0 V . This results in a $\pm 150 \mathrm{mV}$ window around differential 0 V .
14. Matching applies to rising and falling edge rate of differential waveform. It is measured using a $\pm 75 \mathrm{mV}$ window centered on the average cross point where the clock rising meets clock\# falling. The median cross point is used to calculate voltage thresholds that the oscilloscope uses to calculate the slew rate. Measurement taken using a 100Ω differential impedance 5 " trace PCB.
15. Vcross is defined as voltage where Clock = Clock\# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock\# falling).
16. The total variation of all V cross measurements in any particular system. Note that this is a subset of V_{-}cross_min/max (V _cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V _cross_delta to be smaller than $\overline{\mathrm{V}}$ _cross absolute.
17. Measured from single-ended waveform
18. Measured with scope averaging off, using statistics function. Variation is difference between min and max.

NB3N1900K

Table 12. ELECTRICAL CHARACTERISTICS - CURRENT CONSUMPTION
$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$), See Test Loads for Loading Conditions

Symbol	Parameter	Conditions	Min	Typ	Max
Indit					
ID3.3OP	Operating Supply Current (Note 19)	All outputs active @ 100.00 MHz,			550
CD3.3PDZ	Powerdown Current (Note 19)	All differential pairs tri-stated			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
19. Guaranteed by design and characterization, not tested in production.

Table 13. ELECTRICAL CHARACTERISTICS - SKEW AND DIFFERENTIAL JITTER PARAMETERS
$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$), See Test Loads for Loading Conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit	
${ }_{\text {tsPO_PLL }}$	CLK_IN, DIF[x:0] (Notes 20, 21, 23, 24 and 27)	Input-to-Output Skew in PLL mode nominal value @ $25^{\circ} \mathrm{C}, 3.3 \mathrm{~V}$	-100		100	ps	
tPD_BYP	$\begin{array}{\|l} \text { CLK_IN, DIF[x:0] } \\ \text { (Notes 20, 21, 22, } 24 \text { and 27) } \end{array}$	Input-to-Output Skew in Bypass mode nominal value @ $25^{\circ} \mathrm{C}, 3.3 \mathrm{~V}$	2.5		4.5	ns	
$t_{\text {DSPO_PLL }}$	CLK_IN, DIF[x:0] (Notes 20, 21, 22, 24 and 27)	Input-to-Output Skew Variation in PLL mode across voltage and temperature			\|100		ps
$\mathrm{t}_{\text {DSPO_BYP }}$	CLK_IN, DIF[x:0] (Notes 20, 21, 22, 24 and 27)	Input-to-Output Skew Variation in Bypass mode across voltage and temperature	-250		250	ps	
tSKEW_ALL	DIF\{x:0] (Notes 20, 21, 22 and 27)	Output-to-Output Skew across all outputs (Common to Bypass and PLL mode)			65	ps	
jpeak-hibw	PLL Jitter Peaking (Notes 26 and 27)	HBW_BYP_LBW\# = 1	0		2.5	dB	
Jpeak-lobw	PLL Jitter Peaking (Notes 26 and 27)	HBW_BYP_LBW\# = 0	0		2	dB	
pll ${ }_{\text {HIBW }}$	PLL Bandwidth (Notes 27 and 28)	HBW_BYP_LBW\# = 1	2		4	MHz	
pll ${ }_{\text {LOBW }}$	PLL Bandwidth (Notes 27 and 28)	HBW_BYP_LBW\# = 0	0.7		1.4	MHz	
$t_{\text {DC }}$	Duty Cycle (Notes 20 and 27)	Measured differentially, PLL Mode	45	50	55	\%	
$t_{\text {DCD }}$	Duty Cycle Distortion (Notes 20 and 29)	Measured differentially, Bypass Mode @ 100.00 MHz	-2	0	2	\%	
$t_{\text {jcyc-cyc }}$	Jitter, Cycle to cycle (Notes 20, 27 and 30)	PLL mode			50	ps	
		Additive Jitter in Bypass Mode			50	ps	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
20. Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.
21. Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.
22. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.
23. This parameter is deterministic for a given device.
24. Measured with scope averaging on to find mean value. CLK_IN slew rate must be matched to DIF output slew rate.
25.t is the period of the input clock.
26. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
27. Guaranteed by design and characterization, not tested in production.
28. Measured at 3 db down or half power point.
29. Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode. @ 100.00 MHz .
30. Measured from differential waveform.

Table 14. ELECTRICAL CHARACTERISTICS - PHASE JITTER PARAMETERS
($\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$), See Test Loads for Loading Conditions.

Symbol	Parameter	Conditions (Notes 31 and 36)	Min	Typ	Max	Unit
$\mathrm{t}_{\text {jphPCleG1 }}$	Jitter, Phase	PCle Gen 1 (Notes 32 and 33)		12	86	ps (p-p)
$\mathrm{t}_{\text {jphPCleG2 }}$		PCle Gen 2 Lo Band $10 \mathrm{kHz}<\mathrm{f}<1.5 \mathrm{MHz}$ (Note 32)		0.2	3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$
		PCle Gen 2 High Band $1.5 \mathrm{MHz}<\mathrm{f}<$ Nyquist (50 MHz) (Note 32)		1.0	3.1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$
${ }^{\text {jphPCleG3 }}$		$\begin{gathered} \text { PCle Gen } 3 \\ (\text { PLL BW of } 2-4 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}) \\ (\text { Note 32) } \end{gathered}$		0.29	1	$\underset{(\mathrm{rms})}{\mathrm{ps}}$
$\mathrm{t}_{\text {jphPCleG4 }}$		$\begin{gathered} \mathrm{PCle} \mathrm{Gen} 4 \\ (\mathrm{PLL} \text { BW of } 2-4 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}) \end{gathered}$		0.29	0.5	$\begin{gathered} \mathrm{ps} \\ \text { (rms) } \end{gathered}$
${ }_{\text {jphUPI }}$		UPI $(9.6 \mathrm{~Gb} / \mathrm{s}, 10.4 \mathrm{~Gb} / \mathrm{s}$ or $11.2 \mathrm{~Gb} / \mathrm{s}, 100 \mathrm{MHz}, 12 \mathrm{UI})$		0.7	1.0	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$
${ }_{\text {tjphQPI_SMI }}$		QPI \& SMI (100.00 MHz or 133.33 MHz , $4.8 \mathrm{~Gb} / \mathrm{s}, 6.4 \mathrm{~Gb} / \mathrm{s} 12 \mathrm{UI}$) (Note 34)		0.3	0.5	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$
		QPI \& SMI ($100.00 \mathrm{MHz}, 8.0 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI}$) (Note 34)		0.1	0.3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$
		QPI \& SMI $(100.00 \mathrm{MHz}, 9.6 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI})$ (Note 34)		0.08	0.2	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$
$\mathrm{t}_{\text {jphPCleG1 }}$	Additive Phase Jitter, Bypass mode	PCle Gen 1 (Notes 32 and 33)			10	ps (p-p)
$\mathrm{t}_{\text {jphPCleG2 }}$		PCle Gen 2 Lo Band $10 \mathrm{kHz}<\mathrm{f}<1.5 \mathrm{MHz}$ (Notes 32 and 35)			0.3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$
		PCle Gen 2 High Band 1.5 MHz < f < Nyquist (50 MHz) (Notes 32 and 35)			0.7	$\underset{(\mathrm{rms})}{\mathrm{ps}}$
$\mathrm{t}_{\text {jphPCleG3 }}$		$\begin{gathered} \text { PCle Gen } 3 \\ \text { (PLL BW of } 2-4 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz} \text {) } \\ \text { (Notes } 32 \text { and 35) } \end{gathered}$			0.3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$
${ }_{\text {tjphQPI_SMI }}$		QPI \& SMI (100.00 MHz or $133.33 \mathrm{MHz}, 4.8 \mathrm{~Gb} / \mathrm{s}$, $6.4 \mathrm{~Gb} / \mathrm{s} 12 \mathrm{UI}$) (Notes 34 and 35)			0.3	$\underset{(\mathrm{rms})}{\mathrm{ps}}$
		($100.00 \mathrm{MHz}, 8.0 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI}$) (Notes 34 and 35)			0.1	$\underset{(\mathrm{rms})}{\mathrm{ps}}$
		QPI \& SMI ($100.00 \mathrm{MHz}, 9.6 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI}$) (Notes 34 and 35)			0.1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
31. Applies to all outputs.
32. See http://www.pcisig.com for complete specs
33. Sample size of at least 100 K cycles. This figures extrapolates to $108 \mathrm{ps} \mathrm{pk}-\mathrm{pk}$ @ 1 M cycles for a BER of 1-12.
34. Calculated from Intel-supplied Clock Jitter Tool v 1.6.3.
35. For RMS figures, additive jitter is calculated by solving the following equation: $\left(\right.$ Additive jitter) ${ }^{2}=\left(\right.$ total jitter) ${ }^{2}-\left(\right.$ (input jitter) ${ }^{2}$
36. Guaranteed by design and characterization, not tested in production

Table 15. CLOCK PERIODS - DIFFERENTIAL OUTPUTS WITH SPREAD SPECTRUM DISABLED

SSC OFF	Center Freq. MHz	Measurement Window							Unit	Notes
		1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
		-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm LongTerm Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max		
DIF	100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns	$\begin{array}{\|c\|} \hline 37, \\ 38,39 \end{array}$
	133.33	7.44925		7.49925	7.50000	7.50075		7.55075	ns	$\begin{gathered} 37, \\ 38,40 \end{gathered}$

37. Guaranteed by design and characterization, not tested in production.
38. All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy requirements ($\pm 100 \mathrm{ppm}$). The 9ZX21901 itself does not contribute to ppm error.
39. Driven by SRC output of main clock, 100.00 MHz PLL Mode or Bypass mode
40. Driven by CPU output of main clock, 133.33 MHz PLL Mode or Bypass mode

Table 16. CLOCK PERIODS - DIFFERENTIAL OUTPUTS WITH SPREAD SPECTRUM ENABLED

SSC ON	Center Freq. MHz	Measurement Window							Unit	Notes
		1 Clock	1us	0.1s	0.15	0.1s	1us	1 Clock		
		-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max		
DIF	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	$\begin{gathered} 41, \\ 42,43 \end{gathered}$
	133.00	7.44930	7.49930	7.51805	7.51880	7.51955	7.53830	7.58830	ns	$\begin{gathered} 41, \\ 42.44 \end{gathered}$

41. Guaranteed by design and characterization, not tested in production.
42. All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy requirements ($\pm 100 \mathrm{ppm}$). The 9ZX21901 itself does not contribute to ppm error.
43. Driven by SRC output of main clock, 100.00 MHz PLL Mode or Bypass mode
44. Driven by CPU output of main clock, 133.33 MHz PLL Mode or Bypass mode

Table 17. POWER MANAGEMENT TABLE

Inputs		Control Bits/Pins				$\begin{aligned} & \hline \text { Outputs } \\ & \hline \text { FB_OUT / } \\ & \text { FB_OUT\# } \end{aligned}$	PLL State
PWRGD/PWRDN\#	CLK_IN/CLK_IN\#	SMBus EN bit	OE\# Pin	$\begin{aligned} & \hline \operatorname{DIF}(5: 12) / \\ & \operatorname{DIF}(5: 12) \# \end{aligned}$	Other DIF/ DIF\#		
0	X	X	X	Hi-Z (Note 45)	Hi-Z (Note 45)	Hi-Z (Note 45)	OFF
1	Running	0	X	Hi-Z (Note 45)	Hi-Z (Note 45)	Running	ON
		1	0	Running	Running	Running	ON
		1	1	Hi-Z (Note 45)	Running	Running	ON

[^0]
NB3N1900K

Figure 3. NB3N1900K Differential Test Loads

Table 18. DIFFERENTIAL OUTPUT TERMINATION TABLE

DIF Zo ($\boldsymbol{\Omega})$	Iref ($\boldsymbol{\Omega})$	Rs ($\mathbf{\Omega})$	Rp ($\boldsymbol{\Omega})$
100	475	33	50
85	412	27	42.2 or 43.2

PWRGD/PWRDN\#

PWRGD/PWRDN\# is a dual function pin. PWRGD is asserted high and de-asserted low. De-assertion of PWRGD (pulling the signal low) is equivalent to indicating a powerdown condition. PWRGD (assertion) is used by the NB3N1900K to sample initial configurations such as frequency select condition and SA selections.

After PWRGD has been asserted high for the first time, the pin becomes a PWRDN\# (Power Down) pin that can be used to shut off all clocks cleanly and instruct the device to invoke power savings mode. PWRDN\# is a completely asynchronous active low input. When entering power savings mode, PWRDN\# should be asserted low prior to shutting off the input clock or power to ensure all clocks shut down in a glitch free manner. When PWRDN\# is
asserted low by two consecutive rising edges of DIF\#, all differential outputs are held tri-stated on the next DIF\# high to low transition. The assertion and de-assertion of PWRDN\# is absolutely asynchronous.
WARNING: Disabling of the CLK_IN input clock prior to assertion of PWRDN\# is an undefined mode and not recommended. Operation in this mode may result in glitches, excessive frequency shifting, etc.

Table 19. PWRGD/PWRDN\# FUNCTIONALITY

PWRGD/PWRDN\#	DIF	DIF\#
0	Tri-state	Tri-state
1	Running	Running

NB3N1900K

Buffer Power-Up State Machine

Table 20. BUFFER POWER-UP STATE MACHINE

State	Description
0	3.3 V Buffer power off
1	After 3.3 V supply is detected to rise above 3.135 V, the buffer enters State 1 and initiates a $0.1 \mathrm{~ms}-0.3$ ms delay.
2	Buffer waits for a valid clock on the CLK input and PWRDN\# de-assertion (or PWRGD assertion low to high)
3	Once the PLL is locked to the CLK_IN input clock, the buffer enters state 3 and enables outputs for normal operation. (Notes 46, 47)

46. The total power up latency from power on to all outputs active must be less than 1.8 ms (assuming a valid clock is present on CLK_IN input). 47. If power is valid and powerdown is de-asserted (PWRGD asserted) but no input clocks are present on the CLK_IN input, DIF clocks must remain disabled. Only after valid input clocks are detected, valid power, PWRDN\# de-asserted (PWRGD asserted) with the PLL locked/stable and the DIF outputs enabled.

Figure 4. Buffer Power-Up State Diagram

Device Power-Up Sequence

Follow the power-up sequence below for proper device functionality:

1. PWRGD/PWRDN\# pin must be Low.
2. Assign remaining control pins to their required state (100M_133M\#, HBW_BYPASS_LBW\#, SDA, SCL)
3. Apply power to the device.
4. Once the VDD pin has reached a valid VDDmin level (3.3V -5\%), the PWRGD/PWRDN\# pin must be asserted High. See Figure 5.
Note: If no clock is present on the CLK_IN/CLK_IN\# pins when device is powered up, there will be no clock on DIF/DIF\# outputs.

Figure 5. PWRGD and VDD Relationship Diagram

NB3N1900K

GENERAL SMBUS SERIAL INTERFACE INFORMATION FOR THE NB3N1900K

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address $\mathrm{XX}_{(\mathrm{H})}$
- Clock(device) will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- Clock(device) will acknowledge
- Controller (host) sends the data byte count = X
- Clock(device) will acknowledge
- Controller (host) starts sending Byte N through Byte $N+X-1$
- Clock(device) will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

Table 21. INDEX BLOCK WRITE OPERATION

Note: $\mathrm{XX}_{(H)}$ is defined by SMBus address select pins

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address $\mathrm{XX}_{(\mathrm{H})}$
- Clock(device) will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- Clock(device) will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address $\mathrm{YY}_{(\mathrm{H})}$
- Clock(device) will acknowledge
- vclock will send the data byte count $=\mathrm{X}$
- Clock(device) sends Byte $\boldsymbol{N + X} \mathbf{- 1}$
- Clock(device) sends Byte 0 through byte X (if $X_{(H)}$ was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) sends a Stop bit

Table 22. INDEX BLOCK READ OPERATION

Note: $\mathrm{XX}_{(H)}$ is defined by SMBus address select pins

NB3N1900K

Table 23. SMBusTable: PLL MODE, AND FREQUENCY SELECT REGISTER

Byte 0	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	5	PLL Mode 1	PLL Operating Mode Rd back 1	R	See PLL Operating Mode Readback Table		Latch
Bit 6	5	PLL Mode 0	PLL Operating Mode Rd back 0	R			Latch
Bit 5	72/71	DIF_18_En	Output Control overrides OE\# pin	RW	Hi-Z	Enable	1
Bit 4	70/69	DIF_17_En	Output Control overrides OE\# pin	RW	Hi-Z	Enable	1
Bit 3	67/66	DIF_16_En	Output Control overrides OE\# pin	RW	Hi-Z	Enable	1
Bit 2		Reserved					0
Bit 1		Reserved					0
Bit 0	4	100M_133M\#	Frequency Select Readback	R	133 MHz	100 MHz	Latch

Table 24. SMBusTable: OUTPUT CONTROL REGISTER

Byte 1	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	39/38	DIF_7_En	Output Control overrides OE\# pin	RW	Hi-Z	Enable	1
Bit 6	35/36	DIF_6_En	Output Control overrides OE\# pin	RW			1
Bit 5	32/33	DIF_5_En	Output Control overrides OE\# pin	RW			1
Bit 4	29/30	DIF_4_En	Output Control overrides OE\# pin	RW			1
Bit 3	27/28	DIF_3_En	Output Control overrides OE\# pin	RW			1
Bit 2	24/25	DIF_2_En	Output Control overrides OE\# pin	RW			1
Bit 1	22/23	DIF_1_En	Output Control overrides OE\# pin	RW			1
Bit 0	19/20	DIF_0_En	Output Control overrides OE\# pin	RW			1

Table 25. SMBusTable: OUTPUT CONTROL REGISTER

Byte 2	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	65/64	DIF_15_En	Output Control overrides OE\# pin	RW	Hi-Z	Enable	1
Bit 6	62/61	DIF_14_En	Output Control overrides OE\# pin	RW			1
Bit 5	60/59	DIF_13_En	Output Control overrides OE\# pin	RW			1
Bit 4	56/55	DIF_12_En	Output Control overrides OE\# pin	RW			1
Bit 3	53/52	DIF_11_En	Output Control overrides OE\# pin	RW			1
Bit 2	50/49	DIF_10_En	Output Control overrides OE\# pin	RW			1
Bit 1	47/46	DIF_9_En	Output Control overrides OE\# pin	RW			1
Bit 0	42/41	DIF_8_En	Output Control overrides OE\# pin	RW			1

Table 26. SMBusTable: OUTPUT ENABLE PIN STATUS READBACK REGISTER

Byte 3	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	57	OE_RB12	Real Time readback of OE\#12	R	OE\# pin Low	OE\# Pin High	Real time
Bit 6	54	OE_RB11	Real Time readback of OE\#11	R			Real time
Bit 5	51	OE_RB10	Real Time readback of OE\#10	R			Real time
Bit 4	48	OE_RB9	Real Time readback of OE\#9	R			Real time
Bit 3	43	OE_RB8	Real Time readback of OE\#8	R			Real time
Bit 2	40	OE_RB7	Real Time readback of OE\#7	R			Real time
Bit 1	37	OE_RB6	Real Time readback of OE\#6	R			Real time
Bit 0	34	OE_RB5	Real Time readback of OE\#5	R			Real time

NB3N1900K

Table 27. SMBusTable: RESERVED REGISTER

Byte 4	Pin \#	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$
Bit 7		Reserved	Default			
Bit 6		Reserved	0			
Bit 5		Reserved	0			
Bit 4		Reserved	0			
Bit 3		Reserved	0			
Bit 2		Reserved	0			
Bit 1	Reserved	0				
Bit 0	Reserved	0				

Table 28. SMBusTable: VENDOR \& REVISION ID REGISTER

Byte 5	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	-	RID3	REVISION ID	R	-		X
Bit 6	-	RID2		R			X
Bit 5	-	RID1		R			X
Bit 4	-	RID0		R			X
Bit 3	-	VID3	VENDOR ID	R	-	-	1
Bit 2	-	VID2		R	-	-	1
Bit 1	-	VID1		R	-	-	1
Bit 0	-	VID0		R	-	-	1

Table 29. SMBusTable: DEVICE ID

Byte 6	Pin \#	Name	Control Function	Type		0 0 1	Default
Bit 7	-		Device ID 7 (MSB)	R	Device ID is 120 decimal or 78 hex.		1
Bit 6	-		Device ID 6	R			1
Bit 5	-		Device ID 5	R			0
Bit 4	-		Device ID 4	R			1
Bit 3	-		Device ID 3	R			1
Bit 2	-		Device ID 2	R			0
Bit 1	-		Device ID 1	R			1
Bit 0	-		Device ID 0	R			1

Table 30. SMBusTable: BYTE COUNT REGISTER

Byte 7	Pin \#	Name	Control Function	Type	0 1	Default
Bit 7		Reserved				0
Bit 6		Reserved				0
Bit 5		Reserved				0
Bit 4	-	BC4	Writing to this register configures how many bytes will be read back.	RW	Default value is 8 hex, so 9 bytes (0 to 8) will be read back by default.	0
Bit 3	-	BC3		RW		1
Bit 2	-	BC2		RW		0
Bit 1	-	BC1		RW		0
Bit 0	-	BC0		RW		0

NB3N1900K

Table 31. SMBusTable: RESERVED REGISTER

Byte 8	Pin \#	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$
Bit 7		Reserved	Default			
Bit 6		Reserved	0			
Bit 5		Reserved	0			
Bit 4		Reserved	0			
Bit 3		Reserved	0			
Bit 2	Reserved	0				
Bit 1	Reserved	0				
Bit 0	Reserved	0				

DIF Reference Clock		
Common Recommendations for Differential Routing	Dimension or Value	Unit
L1 length, route as non-coupled 50Ω trace (Figure 6)	0.5 max	inch
L2 length, route as non-coupled 50Ω trace (Figure 6)	0.2 max	inch
L3 length, route as non-coupled 50Ω trace (Figure 6)	0.2 max	inch
Rs (Figure 6)	33	Ω
Rt (Figure 6)	49.9	Ω

Down Device Differential Routing		
L4 length, route as coupled microstrip 100Ω differential trace (Figure 6)	2 min to 16 max	inch
L4 length, route as coupled stripline 100Ω differential trace (Figure 6)	1.8 min to 14.4 max	inch

Differential Routing to PCI Express Connector		
L4 length, route as coupled microstrip 100Ω differential trace (Figure 7)	0.25 to 14 max	inch
L4 length, route as coupled stripline 100Ω differential trace (Figure 7)	0.225 min to 12.6 max	inch

Figure 6. Down Device Routing

NB3N1900K

Figure 7. PCI Express Connector Routing

Table 32. ALTERNATIVE TERMINATION FOR LVDS AND OTHER COMMON DIFFERENTIAL SIGNALS (Figure 8)

Vdiff (V)	Vpp (V)	Vcm (V)	R1 ($\boldsymbol{\Omega})$	R2 $(\boldsymbol{\Omega})$	R3 $(\boldsymbol{\Omega})$	R4 $(\boldsymbol{\Omega})$	Note
0.45	0.22	1.08	33	150	100	100	
0.58	0.28	0.6	33	78.7	137	100	
0.60	0.3	1.2	33	174	140	100	Standard LVDS

$R 1 a=R 1 b=R 1$
$R 2 a=R 2 b=R 2$

Figure 8. Alternate Termination for LVDS

Table 33. CABLE CONNECTED AC COUPLED APPLICATION (Figure 9)

Component	Value	Note
R5a, R5b	$8.2 \mathrm{k} 5 \%$	
R6a, R6b	$1 \mathrm{k} 5 \%$	
Cc	$0.1 \mu \mathrm{~F}$	
Vcm	0.350 V	

NB3N1900K

Figure 9. Cable-Connected AC Coupled Application

POWER FILTERING EXAMPLE

Ferrite Bead Power Filtering

Recommended ferrite bead filtering equivalent to the following:
600Ω impedance at $100 \mathrm{MHz}, \leq 0.1 \Omega$ DCR max., $\geq 800 \mathrm{~mA}$ current rating.

Figure 10. Schematic Example of the NB3N1900K Power Filtering

Table 34. ORDERING INFORMATION

Device	Package	Shipping †
NB3N1900KMNG	QFN-72 $($ Pb-Free $)$	168 Units / Tray
NB3N1900KMNTXG	QFN-72 (Pb-Free)	$1000 /$ Tape \& Reel
NB3N1900KMNTWG	QFN-72 (Pb-Free)	$1000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
NOTE: Pin 1 orientation for TWG Suffix is Quadrant 1, upper left; Pin 1 orientation for TXG Suffix is Quadrant 2, upper right

NB3N1900K

PACKAGE DIMENSIONS

is a registered trademark of Intel Corporation.
PCle and $\mathrm{PCI}-\mathrm{SIG}$ are registered trademarks of $\mathrm{PCI}-\mathrm{SIG}$.
ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns ine rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

[^0]: 45. Due to external pull down resistors, $\mathrm{HI}-\mathrm{Z}$ results in Low/Low on the True/Complement outputs
