阅读申明

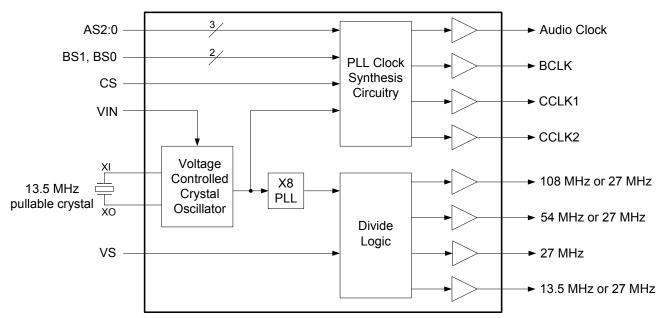
- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

VCXO AND HDTV SET-TOP CLOCK SOURCE

MK3771-17


Description

The MK3771-17 is a low cost, low jitter, high-perfomance VCXO and clock synthesizer designed for set-top boxes and HDTV receivers. The on-chip Voltage Controlled Crystal Oscillator accepts a 0 to 3.3 V input voltage to cause the output clocks to vary by ±100 ppm. Using IDT's patented VCXO and analog Phase-Locked Loop (PLL) techniques, the device uses an inexpensive 13.5 MHz crystal input to produce multiple output clocks including selectable BCLK, a selectable audio clock, two communications clocks, a 13.5 MHz clock, and three 27 MHz clocks. All clocks are frequency locked to the 27 MHz output (and to each other) with zero ppm error, so any output can be used as the VCXO output.

Features

- Packaged in 28-pin SSOP
- Pb (lead) free package
- HDTV frequencies of 74.25 and 74.175824 MHz
- On-chip patented VCXO with pull range of 200 ppm (minimum)
- VCXO tuning voltage of 0 to 3.3 V
- Supports Ethernet with 20 and 25 MHz clocks
- Modem clocks of 11.0592 and 24.576 MHz option
- Audio clocks support 32 kHz, 44.1 kHz, 48 kHz and 96 kHz sampling rates
- Zero ppm synthesis error in all clocks (all exactly track 27MHz VCXO)
- Uses an inexpensive 13.5 MHz crystal
- Full CMOS output swings with 12 mA output
- · drive capability at TTL levels
- · Advanced, low power, sub-micron CMOS process
- 3.3 V ±5% operating supply

Block Diagram

Pin Assignment

BS0	1	28	AS1
X2	2	27	AS0
X1	3	26	VCLK2
VDD	4	25	VCLK1
VDD	5	24	GND
VIN	6	23	VCLK4
VDD	7	22	VDD
VDD	8	21	AS2
CS	9	20	GND
GND	10	19	GND
GND	11	18	VCLK3
BCLK	12	17	CCLK1
VS	13	16	BS1
ACLK	14	15	CCLK2

Audio Clocks (MHz)

AS2	AS1	AS0	ACLK
0	0	0	8.192
0	0	1	11.2896
0	1	0	12.288
0	1	1	16.9344
1	0	0	16.384
1	0	1	22.5792
1	1	0	18.432
1	1	1	24.576

B and C Clocks (MHz)

BS1	BS0	cs	BCLK	CCLK1	CCLK2
0	0	0	74.175	20	25
0	0	1	74.175	11.0592	24.576
0	1	0	74.25	20	25
0	1	1	74.25	11.0592	24.576
М	0	0	5.06	20	25
М	0	1	5.06	11.0592	24.576
М	1	0	10.12	20	25
М	1	1	10.12	11.0592	24.576
1	0	0	48	20	25
1	0	М	48	7.3728	24
1	0	1	48	11.0592	24.576
1	1	0	14.318	20	25
1	1	М	14.318	7.3728	28.636
1	1	1	14.318	11.0592	24.576

VCXO Clocks (MHz)

VS	VCLK1	VCLK2	VCLK3	VCLK4
0	27	27	27	108
М	27	54	13.5	108
1	27	27	27	27

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	BS0	I	B clock select 0.
2	X2	XO	Crystal connection. Connect to a pullable 13.5 MHz crystal.
3	X1	XI	Crystal connection. Connect to a pullable 13.5 MHz crystal.
4, 5, 7, 8, 22	VDD	Р	Connect to +3.3 V.
6	VIN	I	Analog control voltage for VCXO. Pulls outputs ± 100 ppm by varying from 0 to 3.3 V.
9	CS	TI	Communications Clock Select. Selects CCLK 1 and 2 per table above. Internal pull-up.
10, 11, 19, 20, 24	GND	Р	Connect to ground.
12	BCLK	0	B clock output. Determined by status of AS2:0 per table above.
13	VS	TI	VCXO Clock Select. Selects frequencies on VCLK1-VCLK4 per table above.
14	ACLK	0	Audio Clock Output. Determined by status of AS2:0 per table above.
15	CCLK2	0	Communications Clock Output 2. Determined by status of CS per table above.
16	BS1	TI	B Clock Select 1. Selects BCLK frequency. See table above.
17	CCLK1	0	Communications Clock Output 1. Determined by status of CS per table above.
18	VCLK3	0	VCXO Clock output 3. Can be either 27 or 13.5 MHz per table above.
21	AS2	I	Audio Clock Select pin 2. Selects Audio clock on pin 14 per table above. Internal pull-up.
23	VCLK4	0	VCXO Clock output 4. Can be either 27 or 108 MHz per table above.
25	VCLK1	0	VCXO Clock output 1. Always 27 MHz.
26	VCLK2	0	VCXO Clock output 2. Can be either 27 or 54 MHz per table above.
27	AS0	I	Audio Clock Select pin 0. Selects Audio clock on pin 14 per table above. Internal pull-up.
28	AS1	I	Audio Clock Select pin 1. Selects Audio clock on pin 14 per table above. Internal pull-up.

KEY:

I = Input

TI = Tri-level

O = Output

P = Power supply connection

XI, XO= Crystal connections

External Component Selection

The MK3771-17 requires a minimum number of external components for proper operation.

Decoupling Capacitors

Decoupling capacitors of $0.01\mu F$ should be connected between VDD and GND on pins 3 and 6, and on pins 13 and 14, as close to the MK3771-17 as possible. For optimum device performance, the decoupling capacitors should be mounted on the component side of the PCB. Avoid the use of vias in the decoupling circuit.

Series Termination Resistor

When the PCB traces between the clock outputs and the loads are over 1 inch, series termination should be used. To series terminate a 50Ω trace (a commonly used trace impedance) place a 33Ω resistor in series with the clock line, as close to the clock output pin as possible. The nominal impedance of the clock output is 20Ω

Quartz Crystal

The MK3771-17 VCXO function consists of the external crystal and the integrated VCXO oscillator circuit. To assure the best system performance (frequency pull range) and reliability, a crystal device with the recommended parameters must be used, and the layout guidelines discussed in the following section must be followed.

The frequency of oscillation of a quartz crystal is determined by its "cut" and by the load capacitors connected to it. The MK3771-17 incorporates on-chip variable load capacitors that "pull" (change) the frequency of the crystal. The crystal specified for use with the MK3771-17 is designed to have zero frequency error when the total of on-chip + stray capacitance is 14 pF.

The external crystal must be connected as close to the chip as possible and should be on the same side of the PCB as the MK3771-17. There should be no vias between the crystal pins and the X1 and X2 device pins. There should be no signal traces underneath or close to the crystal.

Please see application note MAN05 for recommended crystal parameters and suppliers.

Crystal Tuning Load Capacitors

The crystal traces should include pads for small fixed

capacitors, one between X1 and ground, and another between X2 and ground. Stuffing of these capacitors on the PCB is optional. The need for these capacitors is determined at system prototype evaluation, and is influenced by the particular crystal used (manufacture and frequency) and by PCB layout. The typical required capacitor value is 1 to 4 pF.

To determine the need for and value of the crystal adjustment capacitors, you will need a PC board of your final layout, a frequency counter capable of about 1 ppm resolution and accuracy, two power supplies, and some samples of the crystals which you plan to use in production, along with measured initial accuracy for each crystal at the specified crystal load capacitance, CL.

To determine the value of the crystal capacitors:

- 1. Connect VDD of the MK3771-17 to 3.3 V. Connect pin 4 of the MK3771-17 to the second power supply. Adjust the voltage on pin 4 to 0V. Measure and record the frequency of the CLK output.
- 2. Adjust the voltage on pin 4 to 3.3 V. Measure and record the frequency of the same output.

To calculate the centering error:

$$Error = 10^{6}x \left[\frac{(f_{3.3V} - f_{target}) + (f_{0V} - f_{target})}{f_{target}} \right] - error_{xtal}$$

Where:

 f_{target} = nominal crystal frequency

error_{xtal} =actual initial accuracy (in ppm) of the crystal being measured

If the centering error is less than ± 25 ppm, no adjustment is needed. If the centering error is more than 25ppm negative, the PC board has excessive stray capacitance and a new PCB layout should be considered to reduce stray capacitance. (Alternately, the crystal may be re-specified to a higher load capacitance. Contact IDT for details.) If the centering error is more than 25ppm positive, add identical fixed centering capacitors from each crystal pin to ground. The value for each of these caps (in pF) is given by:

External Capacitor =

2 x (centering error)/(trim sensitivity)

Trim sensitivity is a parameter which can be supplied by your

crystal vendor. If you do not know the value, assume it is 30 ppm/pF. After any changes, repeat the measurement to verify that the remaining error is acceptably low (typically less than ± 25 ppm).

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the MK3771-17. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	7 V
All Inputs and Outputs	-0.5 V to VDD+0.5 V
Ambient Operating Temperature	0 to +70° C
Storage Temperature	-65 to +150° C
Junction Temperature	125° C
Soldering Temperature	260° C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature	0		+70	°C
Power Supply Voltage (measured in respect to GND)	+3.15	+3.3	+3.45	V

DC Electrical Characteristics

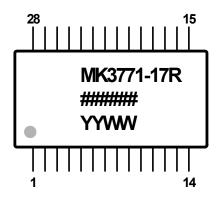
Unless stated otherwise, **VDD = 3.3 V \pm 5\%**, Ambient Temperature 0 to $+70^{\circ}$ C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		3.15	3.3	3.45	V
Input High Voltage	V _{IH}	Except TI pins	2			V
Input Low Voltage	V _{IL}	Except TI pins			0.8	V
Input High Voltage	V _{IH}	All TI pins	VDD-0.5			V
Input Low Voltage	V _{IL}	All TI pins			0.5	V
Output High Voltage	V _{OH}	I _{OH} = -12 mA	2.4			V
Output Low Voltage	V _{OL}	I _{OH} = 12 mA			0.4	V
Output High Voltage	V _{OH}	CMOS level, I _{OH} = -8 mA	VDD-0.4			V
Operating Supply Current	IDD	No load, Note 1		28		mA
Power Down Mode Supply Current				15		μA
Short Circuit Current		Each output		±50		mA
Input Capacitance	C _{IN}			5		pF
Frequency Synthesis Error		All clocks			0	ppm
VIN, VCXO Control Voltage			0		3.3	V

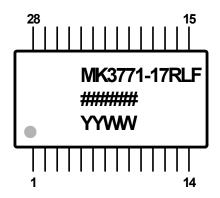
AC Electrical Characteristics

Unless stated otherwise, **VDD = 3.3 V ±5%**, Ambient Temperature 0 to +70° C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency	F _{IN}			13.50000		MHz
Output Clock Rise Time	t _{OR}	0.8 V to 2.0 V			1.5	ns
Output Clock Fall Time	t _{OF}	2.0 V to 0.8 V			1.5	ns
Output Clock Duty Cycle	t _{OD}	At VDD/2	40		60	%
Maximum Absolute Jitter, short term				±250		ps
VCXO Gain		VIN = VDD/2 ±1 V		100		ppm/V
Crystal Pullability		0V ≤ VIN ≤ 3.3 V, Note 2	±100			ppm


Notes: 1. With all clocks at highest MHz.

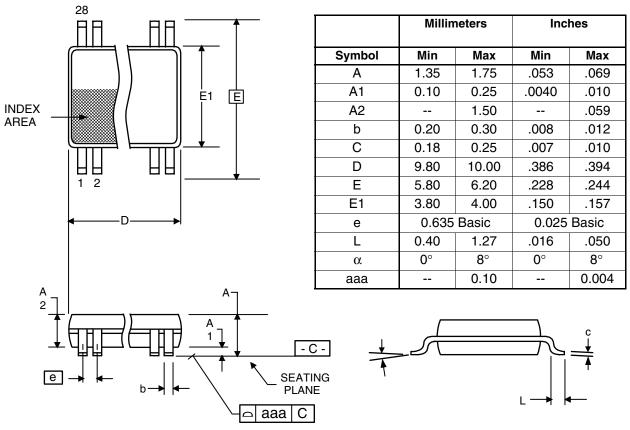
2. With a pullable crystal that conforms to IDT's specifications.


Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		100		° C/W
Ambient	θ_{JA}	1 m/s air flow		80		° C/W
	θ_{JA}	3 m/s air flow		67		° C/W
Thermal Resistance Junction to Case	θ_{JC}			60		° C/W

Marking Diagram

Marking Diagram (Pb free)



Notes:

- 1. ##### is the lot code.
- 2. YYWW is the last two digits of the year, and the week number that the part was assembled.
- 3. "LF" designates Pb free packaging.

Package Outline and Package Dimensions (28-pin SSOP, 150 mil Body, 0.025 mm Pitch)

Package dimensions are kept current with JEDEC Publication No. 95, MO-153

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
MK3771-17RLF	MK3771-17RLF	Tubes	28-pin SSOP	0 to +70° C
MK3771-17RLFTR	MK3771-17RLF	Tape and Reel	28-pin SSOP	0 to +70° C

[&]quot;LF" denotes Pb (lead) free package.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775 For Tech Support

www.idt.com/go/clockhelp

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

