阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

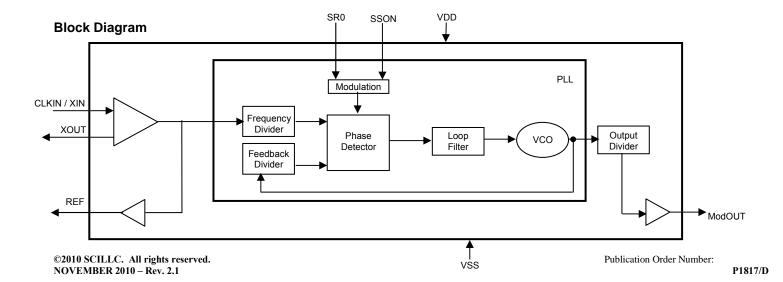
- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

Low-Power Mobile VGA EMI Reduction IC

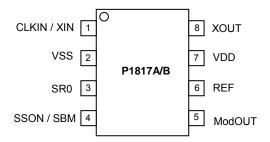
Features

- FCC approved method of EMI attenuation.
- Generates a low EMI spread spectrum clock of the input frequency.
- Optimized for frequency range from:
 P1817A 20 to 32MHz
 P1817B 10 to 20MHz
- Internal loop filter minimizes external components and board space.
- Two selectable spread ranges.
- Low inherent cycle-to-cycle jitter.
- 3.3V or 5V operating voltage range.
- TTL or CMOS compatible inputs and outputs.
- Ultra-low power CMOS design.
 3.17mA @ 3.3V, 10MHz | 6.20mA @ 5.0V, 10MHz
 4.28mA @ 3.3V, 14MHz | 7.50mA @ 5.0V, 14MHz
 5.50mA @ 3.3V, 20MHz | 9.50mA @ 5.0V, 20MHz
- Supports notebook VGA and other LCD timing controller applications.
- SSON / SBM pin for Spread Spectrum On/Off and Standby Mode controls.
- Available in 8-pin SOIC package.

Product Description


The P1817 is a versatile spread spectrum frequency modulator designed specifically for input clock frequencies. The P1817 reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of downstream clock and data dependent signals. The P1817 allows significant system cost savings by reducing the number of circuit board layers, ferrite beads, shielding and other passive components that are traditionally required to pass EMI regulations.

The P1817 modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, and more importantly, decreases the peak amplitudes of its harmonics. This results in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most frequency generators. Lowering EMI by increasing a signal's bandwidth is called 'spread spectrum clock generation.'


The P1817 uses the most efficient and optimized modulation profile approved by the FCC and is implemented in a proprietary all digital method.

Applications

The P1817 is targeted towards notebook LCD displays, and other displays using an LVDS interface, PC peripheral devices, and embedded systems.

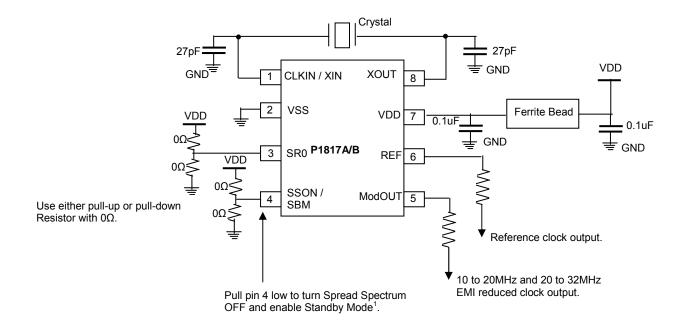
Pin Configuration

Pin Description

Pin#	Pin Name	Туре	Description
1	CLKIN / XIN	I	Crystal connection or external reference frequency input. This pin has dual functions. It can be connected either to an external crystal or an external reference clock. To put the part into standby mode, disable the input clock signal to this pin and pull SSON/SBM (pin4) low. Refer to Standby Mode Selection Table.
2	VSS	Р	Ground Connection. Connect to system ground.
3	SR0	I	Digital logic input used to select Spreading Range. Refer to Spread Spectrum Selection Table. This pin has an internal pull-up resistor.
4	SSON / SBM	I	Spread Spectrum On/Off and standby mode control. Refer to Standby Mode Selection Table.
5	ModOUT	0	Spread spectrum clock output or Reference output. Refer to Standby Mode Selection Table.
6	REF	0	Reference Output.
7	VDD	Р	Connect to +3.3V or 5.0V.
8	XOUT	0	Connect to crystal. No connect if externally generated clock signal is used.

Standby Mode Selection

CLKIN	SSON / SBM	Spread Spectrum	ModOUT	PLL	Mode
Disabled	0	N/A	Disabled	Disabled	Standby
Disabled	1	N/A	Disabled	Free Running	Free Running
Enabled	0	OFF	Reference	Disabled	Buffer out
Enabled	1	ON	Normal	Normal	Normal


Spread Range Selection, VDD = 5V

CLKIN Frequency	SR0	Spreading Range	Modulation Rate	
10MHz	1	±1.50%		
TUIVIE	0	±1.90%		
14.318MHz	1	±1.36%		
14.3 IOIVITZ	0	±1.64%	(CLIXINI/10)*20 92KH -	
15MHz	1	±1.30%	(CLKIN/10)*20.83KHz	
ISIVIEZ	0	±1.50%		
20MHz	1	±0.95%		
ZUIVINZ	0	±1.125%		

Spread Range Selection, VDD = 3.3V

CLKIN Frequency	SR0	Spreading Range	Modulation Rate
10MHz	1	±1.50%	
TOWINZ	0	±1.65%	
44.2400415	1	±1.40%	
14.318MHz	0	±1.70%	(CL KINI/40)*20 02KLI=
15MHz	1	±1.37%	(CLKIN/10)*20.83KHz
IOMIC	0	±1.63%	
20MHz	1	±1.10%	
20ΙΝΙΠΖ	0	±1.28%	

Schematic for Notebook VGA Application

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
VDD, V _{IN}	Voltage on any pin with respect to GND	-0.5 to +7.0	V
T _{STG}	Storage temperature	-65 to +125	${\mathcal C}$
Ts	Max. Soldering Temperature (10 sec)	260	$\mathcal C$
T_J	Junction Temperature	150	${\mathfrak C}$
T_DV	Static Discharge Voltage (As per JEDEC STD22- A114-B)	2	KV

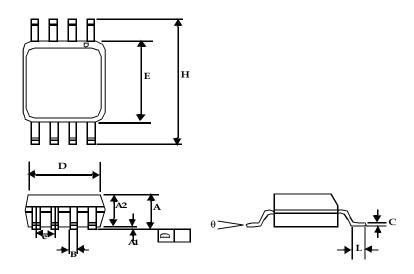
 $^{^{1}}$ To set the P1817 to standby mode, disable the input clock (pin 1, CLKIN) and pull pin 4 SSON / SBM low.

Operating Conditions

Parameter	Description	Min	Max	Unit
VDD	Supply Voltage	2.7	5.5	V
T _A	Operating Temperature (Ambient Temperature)	-40	+85	က
C_L	Load Capacitance		15	pF
C _{IN}	Input Capacitance		7	pF

DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Unit
V _{IL}	Input low voltage		GND-0.3		0.8	V
V _{IH}	Input high voltage	2.0		VDD+0.3	V	
I _{IL}	Input low current (pull-up re / SBM)	esistors on inputs SR0, and SSON			-35	μA
I _{IH}	Input high current (pull-dow SSON / SBM)	n resistors on inputs SR0, and			35	μΑ
	V autout law aurrant	@ 0.4V, VDD = 3.3V		3		m 1
I _{XOL}	X _{OUT} output low current	@ 0.4V, VDD = 5.0V		20		mA
	V sutsut bish susset	@ 2.5V, VDD = 3.3V		3		^
I _{XOH}	X _{OUT} output high current	@ 4.5V, VDD = 5.0V		20		mA
	Output low voltage	VDD = 3.3V, I _{OL} = 20mA			0.4	V
V_{OL}		VDD = 5.0V, I _{OL} = 20mA				
		VDD = 3.3V, I _{OH} = 20mA 2.5	2.5			V
V_{OH}	Output high voltage	VDD = 5.0V, I _{OH} = 20mA	4.5			V
		Normal Mode	f _{IN-min}	f _{IN-typ}	f _{IN-max}	
I_{CC}	Dynamic supply current standby mode	3.3Vand 10pF loading	3.2		7.0	mA
		5.0Vand 10pF loading	6.2		13.6	
I _{DD}	Static supply current stand		0.6		mA	
VDD	Operating voltage	2.7	3.3	5.5	V	
t _{ON}	Power up time (first locked	clock cycle after power up)		0.18		mS
Z _{OUT}	Clock output impedance			50		Ω


P1817A/B

AC Electrical Characteristics

Symbol		Min	Тур	Max	Unit	
f _{IN}	Input frequency (See	device type P1817A or 1817B)	10		32	MHz
f _{OUT}	Output frequency (Se	e device type P1817A or 1817B)	10		32	MHz
t _{LH} ¹	Output rise time	Measured at 0.8V to 2.0V	0.7	0.9	1.1	- nS
ЧН		Measured at 1.2V to 3.75V		0.75		
t _{HL} 1	Output fall time Measured at 0.8V to 2.0V Measured at 1.2V to 3.75V	Measured at 0.8V to 2.0V	0.6	0.8	1.0	, C
ЧL			0.75		nS	
t _{JC}	Jitter (cycle-to-cycle)	Jitter (cycle-to-cycle)			360	pS
t _D	Output duty cycle	45	50	55	%	
Note: 1. t _{LH} and t _{HL} are mo	Note: 1. t _{LH} and t _{HL} are measured into a capacitive load of 15pF.					

Package Information

8-lead (150-mil) SOIC Package

	Dimensions				
Symbol	Inc	hes	Millimeters		
	Min	Max	Min	Max	
A1	0.004	0.010	0.10	0.25	
Α	0.053	0.069	1.35	1.75	
A2	0.049	0.059	1.25	1.50	
В	0.012	0.020	0.31	0.51	
С	0.007	0.010	0.18	0.25	
D	0.193	BSC	4.90 BSC		
Е	0.154	BSC	3.91 BSC		
е	0.050 BSC		1.27 BSC		
Н	0.236 BSC		6.00 BSC		
L	0.016	0.050	0.41	1.27	
θ	0°	8°	0°	8°	

Ordering Code

Part Number	Marking	Package Type	Temperature
P1817AF-08SR	ABA	8-Pin SOIC, Tape & Reel, Pb free	0℃ to 70℃
P1817BF-08SR	ABC	8-Pin SOIC, Tape & Reel, Pb free	0℃ to 70℃

A "microdot" placed at the end of last row of marking or just below the last row toward the center of package indicates Pb-free

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. U.S Patent Pending; Timing-Safe and Active Bead are trademarks of PulseCore Semiconductor, a wholly owned subsidiary of ON Semiconductor. This literature is subject to all applicable copyright laws

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303-675-2175 or 800-344-3860 Toll Free

USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free

USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your

local Sales Representative