阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

PRODUCT DESCRIPTION

The Analog Frequency Multiplier (AFM) is the industry's first 'Balanced Oscillator' utilizing analog multiplication of the fundamental frequency (at quadruple frequency), combined with an attenuation of the fundamental of the reference crystal, without the use of a phase-locked loop (PLL), in CMOS technology.

Micrel's world's best performing AFM products can achieve up to 800 MHz output frequency with little jitter or phase noise deterioration. In addition, the low frequency input crystal requirement makes the AFM the most affordable high-performance timingsource in the market.

PL560-08 and PL565-08 products utilize low-power CMOS technology and are housed in Green / RoHS compliant 16-pin TSSOP, and 16-pin 3x3 QFN packages.

QFN PACKAGE PIN-OUT

DIE SPECIFICATIONS

1.414 mm

PAD/PIN ASSIGNMENT AND DESCRIPTION (The X/Y coordinates indicate pad centers)

Name	Pad Assignment*			$\begin{aligned} & \text { QFN } \\ & \text { Pin \# } \end{aligned}$	Type	Description
	Pad \#	X ($\mu \mathrm{m}$)	$\mathrm{Y}(\mu \mathrm{m})$			
L4X	1	-352	-557	7	I	External inductor connection
VDDOSC	2	-183	-557	8	P	VDD connection
GNDANA	3	+15	-557	9	P	GND connection
GNDANA	4	+144	-557		P	GND connection
GNDBUF	5	+292	-557		P	GND connection
GNDBUF	6	+469	-557		P	GND connection
GNDBUF	7	+502	-365		P	GND connection
PECLB	8	+502	-215	10	0	LVPECL complementary output
PECL	9	+502	-54	11	0	LVPECL output
VDDBUF	10	+502	+79	12	P	VDD connection
VDDBUF	11	+571	+236		P	VDD connection
VDDANA	12	+571	+413	13	P	VDD connection
N.C.	13	+377	+554	-		
OESEL	14	+183	+554	14	1	OE style selection pin
VDDOSC	15	-57	+554	15	P	VDD connection
L2X	16	-214	+554	16	I	External inductor connection
OSCOFFSEL	17	-410	+554	1	I	Oscillator Off selection pin
GNDOSC	18	-572	+554	2	P	GND connection
VCON	19	-572	+394	3	I	Control voltage input
XIN	20	-572	+199	4	1	Crystal Input pad
XOUT	21	-572	-309	5	0	Crystal Output pad
OE	22	-572	-521	6	1	Output Enable input

[^0]

AFM Spectrum at 491.52 MHz , using 122.88MHz crystal
The analog frequency multiplication preserves the low phase noise of the quartz crystal oscillator while keeping unwanted sub harmonics from the multiplication at very low levels. Sub harmonics appear only at large distance from the carrier, far outside the loop bandwidth of a PLL that uses the AFM signal to multiply up further to a multiple GHz network clock. This means the impact of the sub harmonics on the application is negligible.

PHASE NOISE PERFORMANCE

Part Number	Input Freq. Range (MHz)	Output Freq. Range (MHz)	Phase Noise at Frequency Offset From Carrier ($\mathrm{dBc} / \mathrm{Hz}$)								Phase Jitter 12 KHz ~ 20MHz (ps)
			Carrier Freq. (MHz)	$\begin{aligned} & 10 \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{~Hz} \end{aligned}$	$\begin{gathered} \mathbf{1} \\ \text { kHz } \end{gathered}$	$\begin{gathered} 10 \\ \text { kHz } \end{gathered}$	$\begin{aligned} & 100 \\ & \text { kHz } \end{aligned}$	$\stackrel{1}{\mathrm{MHz}}$	$\begin{gathered} 10 \\ \mathrm{MHz} \end{gathered}$	
PL560-08	62.5-150	250-600	491.52	-64	-96	-123	-135	-141	-150	-155	0.05
PL565-08	150-200	600-800	622.08	-56	-87	-113	-134	-143	-149	-153	0.04

Phase noise was measured using Agilent E5052B.

SUB-HARMONIC PERFORMANCE

	Input	Output	Spectral Specifications / Sub-harmonic Content (dBc), Freq. (MHz)						
Number	Frequency (MHz)	Frequency (MHz)	Carrier Freq. (Fc)	$\begin{gathered} @ \\ -75 \% \\ \text { (Fc) } \\ \hline \end{gathered}$	$\begin{gathered} @ \\ -50 \% \\ \text { (Fc) } \\ \hline \hline \end{gathered}$	$\begin{gathered} @ \\ -25 \% \\ \text { (Fc) } \\ \hline \end{gathered}$	$\begin{gathered} \text { @ } \\ +25 \% \\ \text { (Fc) } \\ \hline \hline \end{gathered}$	$\begin{gathered} @ \\ +50 \% \\ \text { (Fc) } \\ \hline \end{gathered}$	$\begin{gathered} \quad @ \\ +75 \% \\ \text { (Fc) } \\ \hline \hline \end{gathered}$
PL560-08	122.88	491.52	491.52	-60	-40	-70	-70	-40	-70
PL565-08	155.52	622.08	622.08	-60	-40	-40	-40	-40	-50

Note: Spectral specifications were obtained using Agilent E7401A

AFM MULTIPLYING TECHNIQUE

The analog frequency multiplication is achieved through a "squaring" operation.
The math is as follows: $\operatorname{SIN}^{2}(x)=0.5-0.5 \times \operatorname{COS}(2 x)$
A very important property of this processing is that the result is a pure sine wave with double frequency. In theory there are no sub harmonics but in practice the squaring operation is not perfect and a low level of sub harmonics is present anyway. The key is that the resulting sub harmonics are very low and simple filtering with only one inductor per squarer is adequate for excellent performance.

AFM DIE APPLICATION CIRCUIT

A $7 \times 5 \mathrm{~mm}$ ceramic substrate was designed to assemble and operate the AFM die at optimum performance:

Please see PL560-08DC and PL565-08DC Tuning Assistant documents for passive component values.

AFM QFN PACKAGE APPLICATION CIRCUIT

RECOMMENDED PCB LAYOUT

- Avoid ground planes underneath the crystal and inductor traces to limit parasitic capacitance.
- Add bypass capacitor close to VDDBUF pin.
- Avoid bypass capacitors near VDDOSC pins to lower cross-talk of unwanted frequencies.
- L1X(a,b) can be used to increase the VCXO pulling range. Using a ferrite core inductor limits the oscillation amplitude which can have a positive effect on phase noise.
- L2X and L4X tune the frequency multiplier tank circuits. They need to be wire wound inductors with high Q-factor, preferably >20.
- The large center pad is the "thermal relief" pad and can be connected to ground.

INDUCTOR VALUE OPTIMIZATION

The required inductor values for the best performance depend on the operating frequency, and the board layout or module specifications. The listed values in this datasheet are based on the calculated parasitic values from Micrel's evaluation board design. These inductor values provide the user with a starting point to determine the optimum inductor values. Additional fine-tuning may be required to determine the optimal solution.

The inductor is recommended to be a high Q small size 0402 or 0603 SMD component, and must be placed between L2X / L4X and adjacent VDDOSC pin. Place inductor as close to the IC as possible to minimize parasitic effects and to maintain inductor Q.

To assist with the inductor value optimization, Micrel has developed AFM "Tuning Assistant" documents. You can download these documents from Micrel's web site (www.micrel.com). The documents consist of tables with recommended inductor values for certain output frequency ranges.

Figure 10: Diagram Representation of the Related System Inductance and Capacitance

DIE SIDE

- Cinternal at $\mathrm{L} 2 \mathrm{X}=7.625 \mathrm{pF}$, at $\mathrm{L} 4 \mathrm{X}=6.25 \mathrm{pF}$
- Cpad $=1.0 \mathrm{pF}$, Bond pad and its ESD circuitry
- C11 $=0.4 \mathrm{pF}$, The following amplifier stage

PCB side

- LWB1 = 2 nH , (2 places), Stray inductance
- Cstray $=0.5 \mathrm{pF}$, Stray capacitance
- L2X (L4X) $=2 x$ or $4 x$ inductor
- C2X (C4X) = range (0.1 to 2.7 pF), Fine tune the tank, if used.

Work out the resonance of this network and you have a good first guess for the required inductor values for optimum performance. Non-linear behavior at large signal amplitudes can shift the tank resonance significantly, especially at the L2X side, to a lower frequency than the calculation suggests. The Tuning Assistant documents are based upon actual lab tests and are corrected for the non-linear behavior.

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage	V_{DD}		4.6	V
Input Voltage, DC	V_{I}	GND-0.5	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
Output Voltage, DC	V_{0}	GND-0.5	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
Storage Temperature	T_{S}	-65	150	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature, Industrial	$\mathrm{T}_{\mathrm{A}_{-1}}$	-40	+85	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature, Commercial	$\mathrm{T}_{\mathrm{A}-\mathrm{C}}$	0	+70	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}		125	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)			260	${ }^{\circ} \mathrm{C}$
Input Static Discharge Voltage Protection (HBM)			2	kV

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permane nt damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied.

VOLTAGE CONTROL SPECIFICATION

PARAMETERS	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
VCXO Stabilization Time	$\mathrm{T}_{\mathrm{vcxostb}}$	From power valid			10	ms
VCXO Tuning Range*		XTAL $\mathrm{C}_{0} / \mathrm{C}_{1}<300$	200			ppm
CLK Output Pullability*		$\begin{aligned} & \mathrm{VCON}=1.65 \mathrm{~V}, \pm 1.65 \mathrm{~V} \\ & \text { XTAL } \mathrm{C}_{0} / \mathrm{C}_{1}<300 \end{aligned}$	± 100	± 120		ppm
Linearity				5	10	\%
VCON Input Impedance			130			k Ω
VCON Modulation BW		OV < VCON < 3.3V, -3dB		40		kHz

[^1]
LVPECL ELECTRICAL CHARACTERISTICS

PARAMETERS	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Current, loaded outputs	Ido	Fout $=622.08 \mathrm{MHz}$		75	80	mA
Operating Voltage	$V_{D D}$		2.97		3.63	V
Output Clock Duty Cycle		@ $\mathrm{V}_{\text {D }}$-1.3V, PL560-08	40	50	60	\%
		@ $\mathrm{V}_{\text {D }}$-1.3V, PL565-08	45	50	55	\%
Short Circuit Current				± 50		mA
Output High Voltage	VOH	$\begin{aligned} & R_{L}=50 \Omega \text { to } \\ & \left(V_{D D}-2 V\right) \end{aligned}$	$V_{\text {DD }}$-1.025			V
Output Low Voltage	VoL				$V_{D D}-1.620$	V
Clock Rise Time	t_{r}	@ 20/80\%		0.25	0.45	ns
Clock Fall Time	t_{f}	@ 80/20\%		0.25	0.45	ns

OE LOGIC SELECTION

OESEL	OE	Output State
0 (Default)	0 (Default)	Enabled
	1	1
Tri-state		
	0	Tri-state

0 (Default): Connect to GND or leave floating to set to " 0 ". Internal pull-down.
1 (Default): Connect to VDD or leave floating to set to "1". Internal pull-up.
0 : Connect to GND to set to "0". 1: Connect to VDD to set to "1".

OSCOFFSEL LOGIC SELECTION

OSCOFFSEL	Functionality description
0	The crystal oscillator shuts down when the output is disabled with OE.
1 (Default)	Only the output will disable with OE. All other circuits, including the crystal
Oscillator are always running.	

[^2] PL560/565-08 VCXO Family

PACKAGE INFORMATION

ORDERING INFORMATION

For part ordering, please contact our Sales Department:
2180 Fortune Drive, San Jose, CA 95131, USA
Tel: (408) 944-0800 Fax: (408) 474-1000
PART NUMBER
The order number for this device is a combination of the following:
Part number, Package type and Operating temperature range
PL56X-08 X X X

PART NUMBER	NONE= TUBE R= TAPE AND REEL
$\begin{aligned} & \text { PACKAGE TYPE } \\ & \text { Q= QFN-16L } \\ & \text { D= Die } \end{aligned}$	TEMPERATURE C=COMMERCIAL I=INDUSTRIAL

Order Number	Marking	Package Option*
PL560/5-08DC	-	Die Only
PL560/5-08QC	P560/5	QFN - Tube
PL560/5-08QC-R	08(I)	QFN - Tape and Reel

[^3][^4]
[^0]: * Note: Pad coordinates referenced to the center of the die.

[^1]: * Note: The VCXO Tuning Range and Pullability can be controlled with the value for inductor L1X. See Tuning Assistant document for a guide to chose the L1X value based upon crystal frequency and motional parameters.

[^2]: 1 (Default): Connect to VDD or leave floating to set to "1". Internal pull-up.
 0 : Connect to GND to set to "0".

[^3]: Marking Notes : "LLL", "LLLLL" represents the production lot number

[^4]: Micrel Inc., reserves the right to make changes in its products or specifications, or both at any time without notice. The in formation furnished by Micrel is believed to be accurate and reliable. However, Micrel makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.
 LIFE SUPPORT POLICY: Micrel's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of Micrel Inc.

