

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

2.5 V/3.3 V, LVPECL **Voltage-Controlled Crystal Oscillator (VCXO) PureEdge™ Product Series**

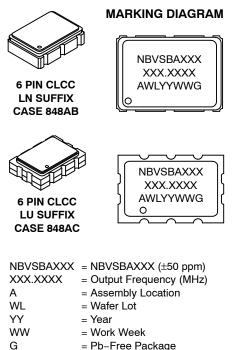
The NBVSBAXXX series voltage-controlled crystal oscillator (VCXO) devices are designed to meet today's requirements for 2.5 V and 3.3 V LVPECL clock generation applications. These devices use a high Q fundamental mode crystal and Phase Locked Loop (PLL) multiplier to provide a wide range of frequencies from 60 MHz to 700 MHz (factory configurable per user specifications) with a pullable range of ± 100 ppm and a frequency stability of ± 50 ppm. The silicon-based PureEdge[™] products design provides users with exceptional frequency stability and reliability. They produce an ultra low jitter and phase noise LVPECL differential output.

The NBVSBAXXX series are members of ON Semiconductor's PureEdge[™] clock family that provides accurate and precision clock generation solutions.

Available in the industry standard 5.0 x 7.0 x 1.8 mm and in a new 3.2 x 5.0 x 1.2 mm SMD (CLCC) package on 16 mm tape and reel in quantities of 1,000.

Features

- LVPECL Differential Output
- Operating Range: 2.5 V ±5%, 3.3 V ±10%
- Ultra Low Jitter and Phase Noise 0.5 ps (12 kHz 20 MHz)
- Factory Configurable Frequencies from 60 MHz to 700 MHz (see Standard Frequencies in the Ordering Information Table in page 6)
- Pullable Range Minimum of ±100 ppm
- Frequency Stability of ±50 ppm
- Control Voltage with Positive Slope
- Voltage Control Linearity of ±10%
- Uses High Q Fundamental Mode Crystal
- Hermetically Sealed Ceramic SMD Package
- These Devices are Pb-Free and RoHS Compliant


Applications

- Networking
- SONET
- 10 Gigabit Ethernet
- Networking Base Stations
- Broadcasting

ON Semiconductor®

http://onsemi.com

= Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

1

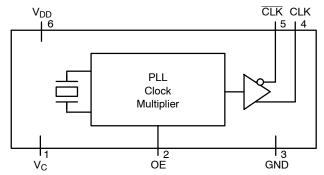


Figure 1. Simplified Logic Diagram

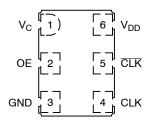


Figure 2. Pin Connections (Top View)

Table	1.	PIN	DESCRIPTIC)N
-------	----	-----	------------	----

Pin No.	Symbol	I/O	Description
1	V _C (Note 1)	Analog Input	Analog control voltage input pin that adjusts output oscillation frequency. f_0 =V_C = 1.65 V
2	OE	LVTTL/LVCMOS Control Input	Output Enable Pin. When left floating pin defaults to logic HIGH and output is active. See OE pin description Table 2.
3	GND	Power Supply	Ground at 0 V. Electrical and Case Ground.
4	CLK	LVPECL Output	Non–Inverted Clock Output. Typically loaded with 50 Ω receiver termination resistor to V_TT = V_DD - 2 V.
5	CLK	LVPECL Output	Inverted Clock Output. Typically loaded with 50 Ω receiver termination resistor to V_{TT} = V_{DD} – 2 V.
6	V _{DD}	Power Supply	Positive Power Supply Voltage. Voltage should not exceed 2.5 V $\pm 5\%$ and 3.3 V $\pm 10\%.$

1. Control voltage has a positive slope with a linearity of $\pm 10\%;$ V_C = 1.65 V \pm 1 V.

Table 2. OUTPUT ENABLE TRI-STATE FUNCTION

OE Pin	Output Pins
Open	Active
HIGH Level	Active
LOW Level	High Z

Table 3. ATTRIBUTES

Chara	acteristic	Value
Internal Default State	Resistor	170 kΩ
ESD Protection Human Body Model Machine Model		2 kV 200 V
Meets or Exceeds JEI	DEC Standard EIA/JESD78	IC Latchup Test

2. For additional Moisture Sensitivity information, refer to Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{DD}	Positive Power Supply	GND = 0 V		4.6	V
V _{IN}	Control Input (V _C and OE)		$\begin{array}{l} V_{IN} \leq V_{DD} + 200 \text{ mV} \\ V_{IN} \geq GND - 200 \text{ mV} \end{array}$		V
l _{out}	LVPECL Output Current	Continuous Surge		25 50	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-55 to +120	°C
T _{sol}	Wave Solder	See Figure 4		260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Symbol	Characteristic		Conditions	Min.	Тур.	Max.	Units
I _{DD}	Power Supply Current				90	110	mA
V _{IH}	Input HIGH Voltage	OE		2000		V _{DD}	mV
V _{IL}	Input LOW Voltage	OE		GND – 200		800	mV
Ι _{ΙΗ}	Input HIGH Current	OE		-100		+100	μA
۱ _{IL}	Input LOW Current	OE		-100		+100	μA
V _{OH}	Output HIGH Voltage			V _{DD} -1195		V _{DD} -945	mV
V _{OL}	Output LOW Voltage			V _{DD} -1945		V _{DD} -1600	mV
V _{OUTPP}	Output Voltage Amplitude				700		mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

3. Measurement taken with outputs terminated with 50 Ω to V_{DD} – 2.0 V. See Figure 3.

Symbol	Characteristic	Conditions	Min.	Тур.	Max.	Units
fclkout	Output Clock Frequency	NBVSBA011		122.88		MHz
		NBVSBA027		148.50		
		NBVSBA018		155.52		
		NBVSBA017		156.25		
		NBVSBA015		200.00		
		NBVSBA024		622.08		
		NBVSBA026		644.53		
		NBVSBA041		693.48		
		NBVSBA037		707.35		
Δf	Frequency Stability	(Note 5)			±50	ppm
t _{jit} (φ)	RMS Phase Jitter	12 kHz to 20 MHz		0.5	0.9	ps
t _{jitter}	Cycle to Cycle, RMS	1000 Cycles		2	8	ps
	Cycle to Cycle, Peak-to-Peak	1000 Cycles		10	30	ps
	Period, RMS	10,000 Cycles		1	4	ps
	Period, Peak-to-Peak	10,000 Cycles		6	20	ps
t _{OE/OD}	Output Enable/Disable Time				200	ns
F _P	Crystal Pullability (Note 4)	$0 \le V_C \le 3.3 V$	±100			ppm
V _{C(bw)}	Control Voltage Bandwidth	- 3 dB	20			KHz
^t DUTY_CYCLE	Output Clock Duty Cycle (Measured at Cross Point)		45	50	55	%
t _R	Output Rise Time (20% and 80%)			245	400	ps
t _F	Output Fall Time (80% and 20%)			245	400	ps
t _{start}	Start-up Time			1	5	ms
	Aging	1 st Year			3	ppm
		Every Year After 1 st			1	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Gain transfer is positive with a rate of 130 ppm/V.
Parameter guarantees 10 years of aging. Includes initial stability at 25°C, shock, vibration and first year aging.

Table 7. PHASE NOISE PERFORMANCE

			011	027	018	017	015	
Parameter	Characteristic	Condition	122.88 MHZ	148.50 MHz	155.52 MHz	156.25 MHZ	200.00 MHz	Units
ΦNOISE	Output Phase-Noise Performance	100 Hz offset	-90	-90	-90	-90	-87	dBc/Hz
		1 kHz offset	-118	-118	-116	-116	-114	dBc/Hz
		10 kHz offset	-127	-127	-126	-126	-125	dBc/Hz
		100 kHz offset	-127	-127	-126	-126	-125	dBc/Hz
		1 MHz offset	-134	-134	-134	-134	-132	dBc/Hz
		10 MHz offset	-160	-160	-160	-160	-158	dBc/Hz

Table 8. PHASE NOISE PERFORMANCE (continued)

			024	026	041	037	
Parameter	Characteristic	Condition	622.08 MHZ	644.53 MHZ	693.48 MHZ	707.35 MHZ	Units
ΦNOISE	Output Phase-Noise Performance	100 Hz offset	-80	-86	-78	-78	dBc/Hz
		1 kHz offset	-106	-107	-105	-105	dBc/Hz
		10 kHz offset	-117	-116	-115	-115	dBc/Hz
		100 kHz offset	-117	-116	-115	-115	dBc/Hz
		1 MHz offset	-122	-125	-124	-124	dBc/Hz
		10 MHz offset	-150	-150	-149	-149	dBc/Hz

Table 9. RELIABILITY COMPLIANCE

Parameter	Standard	Method
Shock	Mechanical	MIL-STD-833, Method 2002, Condition B
Solderability	Mechanical	MIL-STD-833, Method 2003
Vibration	Mechanical	MIL-STD-833, Method 2007, Condition A
Solvent Resistance	Mechanical	MIL-STD-202, Method 215
Thermal Shock	Environment	MIL-STD-833, Method 1011, Condition A
Moisture Level Sensitivity	Environment	MSL1 260°C per IPC/JEDEC J-STD-020D

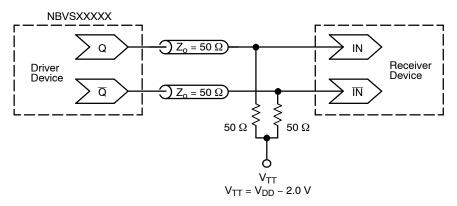


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

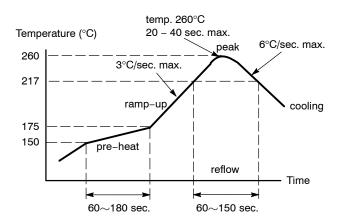
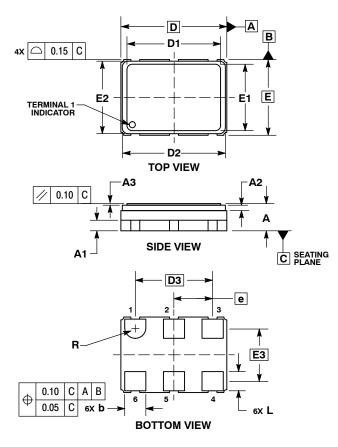


Figure 4. Recommended Reflow Soldering Profile

Table 10. ORDERING INFORMATION

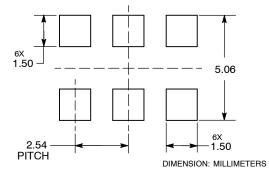
Device	Output Frequency (MHz)	Package	Shipping [†]
	5.0 x 7.0	x 1.8 mm	
NBVSBA011LN1TAG	122.88	CLCC-6, Pb-Free	1000 / Tape & Reel
NBVSBA027LN1TAG	148.50	CLCC-6, Pb-Free	1000 / Tape & Reel
NBVSBA018LN1TAG	155.52	CLCC-6, Pb-Free	1000 / Tape & Reel
NBVSBA017LN1TAG	156.25	CLCC-6, Pb-Free	1000 / Tape & Reel
NBVSBA015LN1TAG	200.00	CLCC-6, Pb-Free	1000 / Tape & Reel
NBVSBA024LN1TAG	622.08	CLCC-6, Pb-Free	1000 / Tape & Reel
NBVSBA026LN1TAG	644.53	CLCC-6, Pb-Free	1000 / Tape & Reel
NBVSBA037LN1TAG	707.35	CLCC-6, Pb-Free	1000 / Tape & Reel
NBVSBA041LN1TAG	693.48	CLCC-6, Pb-Free	1000 / Tape & Reel
	5.0 x 7.0	x 1.8 mm	
NBVSBA011LNHTAG	122.88	CLCC-6, Pb-Free	100 / Tape & Reel
NBVSBA027LNHTAG	148.50	CLCC-6, Pb-Free	100 / Tape & Reel
NBVSBA018LNHTAG	155.52	CLCC-6, Pb-Free	100 / Tape & Reel
NBVSBA017LNHTAG	156.25	CLCC-6, Pb-Free	100 / Tape & Reel
NBVSBA015LNHTAG	200.00	CLCC-6, Pb-Free	100 / Tape & Reel
NBVSBA024LNHTAG	622.08	CLCC-6, Pb-Free	100 / Tape & Reel
NBVSBA026LNHTAG	644.53	CLCC-6, Pb-Free	100 / Tape & Reel
NBVSBA037LNHTAG	707.35	CLCC-6, Pb-Free	100 / Tape & Reel
NBVSBA041LNHTAG	693.48	CLCC-6, Pb-Free	100 / Tape & Reel
	3.2 x 5.0	x 1.2 mm	
NBVSBA011LU1TAG*	122.88	CLCC-6, Pb-Free	1000 / Tape & Reel
NBVSBA027LU1TAG*	148.50	CLCC-6, Pb-Free	1000 / Tape & Reel
NBVSBA018LU1TAG*	155.52	CLCC-6, Pb-Free	1000 / Tape & Reel
NBVSBA017LU1TAG*	156.25	CLCC-6, Pb-Free	1000 / Tape & Reel
NBVSBA015LU1TAG*	200.00	CLCC-6, Pb-Free	1000 / Tape & Reel


Table 10. ORDERING INFORMATION

Device	Output Frequency (MHz)	Package	Shipping [†]
	3.2 x 5.	0 x 1.2 mm	
NBVSBA024LU1TAG*	622.08	CLCC-6, Pb-Free	1000 / Tape & Reel
NBVSBA026LU1TAG*	644.53	CLCC-6, Pb-Free	1000 / Tape & Reel

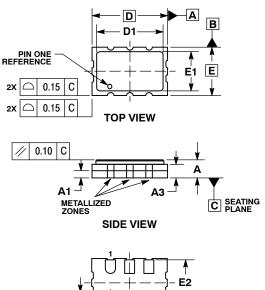
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our tape and Reel Packaging Specification Brochure, BRD8011/D. *Consult factory for availability.

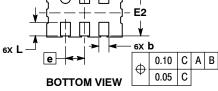
PACKAGE DIMENSIONS


6 PIN CLCC, 7x5, 2.54P CASE 848AB-01 ISSUE O

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.

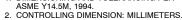
	MILLIMETERS		
DIM	MIN	NOM	MAX
Α	1.70	1.80	1.90
A1	0.70 REF		
A2	0.36 REF		
A3	0.08	0.10	0.12
b	1.30	1.40	1.50
D	7.00 BSC		
D1	6.17	6.20	6.23
D2	6.66	6.81	6.96
D3	5.08 BSC		
Е	5.00 BSC		
E1	4.37	4.40	4.43
E2	4.65	4.80	4.95
E3	3.49 BSC		
е	2.54 BSC		
L	1.17	1.27	1.37
R	0.70 REF		

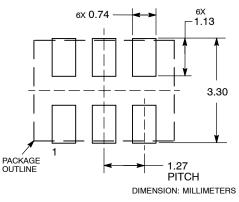

SOLDERING FOOTPRINT*



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


6 PIN CLCC, 5x3.2, 1.27P CASE 848AC-01 ISSUE O


NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

	MILLIMETERS		
DIM	MIN	MAX	
Α	1.05	1.35	
A1	0.35	0.65	
A3	0.90 REF		
b	0.50	0.80	
D	5.00 BSC		
D1	4.25	4.55	
E	3.20 BSC		
E1	2.45	2.75	
E2	2.90	3.20	
е	1.27 BSC		
L	0.75	1.05	

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product culd create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850

Sales Representative