阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

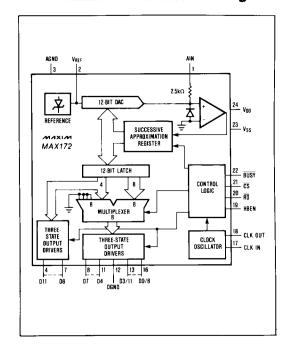
- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

NIXIN

Complete 10µs CMOS 12-Bit ADC

General Description

The MAX172 is a complete 12-Bit analog-to-digital converter (ADC) that combines high speed, low power consumption, and an on-chip voltage reference. The conversion time is 10 μ s. The buried zener reference provides low drift and low noise performance.


External component requirements are limited to only decoupling capacitors for the power supply and reference voltages. On-chip clock circuitry is also included which can either be driven from an external source, or in stand-alone applications, can be used with a crystal.

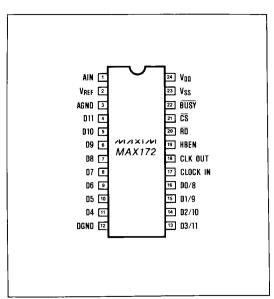
The MAX172 uses a standard microprocessor interface architecture. Three-state data outputs are controlled by Read (RD) and Chip Select (CS) inputs. Data access and bus release times of 90 and 75ns respectively ensure compatibility with most popular microprocessors without resorting to wait states.

Applications

Digital Signal Processing (DSP) High Accuracy Process Control High Speed Data Acquisition Electro-Mechanical Systems

Functional Diagram

Features


- ♦ 12-Bit Resolution and Linearity
- ♦ 10µs Conversion Time
- **♦ No Missing Codes**
- ♦ On-Chip Voltage Reference
- ♦ 90ns Access Time
- ♦ 215mW Max Power Consumption
- ♦ 24-Lead Narrow DIP Package
- ♦ Pin-for-Pin AD7572 Replacement

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	ERROR (LSB)	PKG CODE
MAX172ACNG	0°C to +70°C	24 Plastic DIP	±0.5	N24-3
MAX172BCNG	0°C to +70°C	24 Plastic DIP	±1	N24-3
MAX172ACWG	0°C to +70°C	24 Wide SO	±0.5	W24-1
MAX172BCWG	0°C to +70°C	24 Wide SO	±1	W24-1
MAX172CC/D	0°C to +70°C	Dice*	±1	_
MAX172AENG	-40°C to +85°C	24 Plastic DIP	±0.5	N24-3
MAX172BENG	-40°C to +85°C	24 Plastic DIP	±1	N24-3
MAX172AMRG	-55°C to +125°C	24 CERDIP	±0.5	R24-4
MAX172BMRG	-55°C to +125°C	24 CERDIP	±1	R24-4

* Consult factory for dice specifications

Pin Configuration

MIXIM

Maxim Integrated Products

Complete 10µs CMOS 12-Bit ADC

ABSOLUTE MAXIMUM RATINGS

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (V_{DD} = +5V \pm 5%, V_{SS} = -12V or -15V \pm 5%; Slow Memory Mode; T_A = T_{MIN} to T_{MAX} unless otherwise noted, f_{CLK} = 1.25MHz.)

PARAMETER	SYMBOL	CON	IDITIONS	MIN	TYP	MAX	UNITS
ACCURACY							
Resolution				12			Bits
		MAX172A	T _A = 25°C			+ 1/2	T
Integral NonLinearity	INL	MAX172AC/AE MAX172AM MAX172B				± 1/2 + 3/4 ±1	LSB
Differential NonLinearity	DNL	Guaranteed Monot	onic Over Temp.			+1	LSB
		MAX172B	MAX172B $ T_A = 25^{\circ} C $ $ T_A = T_{MIN} \text{ to } T_{MAX} $			±4 ±6	1.00
Offset Error (Note 1)		MAX172A	T _A = 25°C T _A = T _{MIN} to T _{MAX}			±3 ±4	LSB
	_	MAX172B	T _A = 25°C			+ 15	LSB
Full Scale Error (Note 2)		MAX172A	T _A = 25°C			+ 10	LSB
Full Scale Tempco (Notes 3, 4)						+45	ppm/°(
ANALOG INPUT							
Input Voltage Range				0	_	5	V
Input Current		AIN = 0V to +5V				3.5	rnA
INTERNAL REFERENCE							
V _{REF} Output Voltage		T _A = 25°C		-5.2	-5.25	-5.3	V
V _{REF} Output Tempco (Note 5)					40		ppm/°
Output Current Sink Capability		(Note 6)				500	μΑ
LOGIC INPUTS							
Input Low Voltage	V _{IL}	CS, RD, HBEN, C	LKIN			0.8	V
Input High Voltage	V _{IH}	CS, RD, HBEN, C	LKIN	2.4			V
Input Capacitance (Note 7)	CIN	CS, RD, HBEN, C	LKIN			10	pF
Input Current	I _{IN}	CS, RD, HBEN CLKIN	VIN = 0 to V _{DD}			+ 10 + 20	μΑ
LOGIC OUTPUTS							
Output Low Voltage	V _{OL}	D11-D0/8, BUSY,	CLKOUT I _{SINK} = 1.6mA			0.4	V
Output High Voltage	V _{OH}	D11-D0/8, BUSY,	CLKOUT I _{SOURCE} = 200µA	4			V
Floating State Leakage Current	I _{LKG}	D11-D0/8, V _{OUT} =	0V to V _{DD}			+ 10	μΑ
Floating State Output Capacitance (Note 7)	Соит					15	pF

3

Complete 10 µs CMOS 12-Bit ADC

ELECTRICAL CHARACTERISTICS (Continued) $(V_{DD} = +5V + 5W, V_{SS} = -12V \text{ or } -15V \pm 5W$; Slow Memory Mode; $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted, $f_{CLK} = 1.25MHz$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CONVERSION TIME						
MAX172	t _{CONV}	Synchronous (12.5 clock cycles) Asynchronous (12 to 13 clock cycles)	9.6		10 10.4	μS
POWER SUPPLY REJECT	ION					
V _{DD} Only		FS Change, $V_{SS} = -15V$, $V_{DD} = 4.75V$ to 5.25V		±1/2		LSB
V _{SS} Only		FS Change, V _{DD} = 5V, V _{SS} = -5% to +5%		LSB		
POWER REQUIREMENTS						
V _{DD}		±5% for Specified Performance		5		VV
V _{SS} (Note 8)		±5% for Specified Performance		-12 or -1	5	
I _{DD}		CS = RD = V _{DD} , AIN = 5V		5	7	mA
Iss		CS = RD = V _{DD} , AIN = 5V	$\overline{CS} = \overline{RD} = V_{DD}$, AIN = 5V 8 12			
Power Dissipation		$V_{DD} = +5V, V_{SS} = -15V$ 145 215				mW

Note 1: Typical change over temp is +1 LSB. Note 2: $V_{DD} = +5V$, $V_{SS} = -15V$, FS = +5.000V, Ideal last code transition = FS - 3/2LSB. Note 3: Full Scale TC = Δ FS/ Δ T, where Δ FS is full scale change from $T_A = 25^{\circ}$ C to T_{MIN} or T_{MAX} .

Note 4: Includes internal reference drift.

Note 5: V_{REF} TC = ΔV_{REF}/ΔT, where ΔV_{REF} is reference voltage change from T_A = 25°C to T_{MIN} or T_{MAX}.

Note 6: Output current should not change during conversion.

Note 7: Guaranteed by design, not subject to test.

Note 8: Functional operation at V_{SS} = -12V + 5% is guaranteed by testing offset error and full scale error.

TIMING CHARACTERISTICS (Note 9)

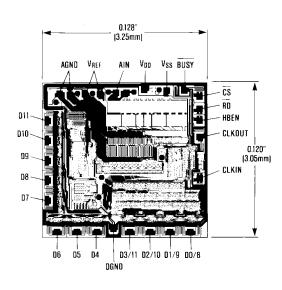
(V_{DD} = +5V, V_{SS} = -12V or -15V; $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted.)

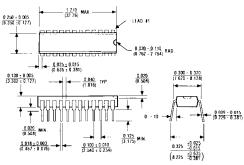
	SYMBOL	CONDITIONS	T _A = 25°C		MAX172C/E		MAX172M		UNITS	
PARAMETER			MIN	TYP	MAX	MIN	MAX	MIN	MAX	DIALLS
CS to RD Setup Time	t ₁		0			0		0		ns
RD to BUSY Delay	t ₂	C _L = 50pF		90	190		230		270	ns
Data Access Time (Note 10)	t ₃	C _L = 20pF C _L = 100pF		60 70	90 125		110 150	_	120 170	ns
RD Pulse Width	t ₄		t ₃			t_3		t ₃		
CS to RD Hold Time	t ₅		0			0		0		ns
Data Setup Time After BUSY Note (10)	t ₆				70	_	90		100	ns
Bus Relinquish Time (Note 11)	t ₇		20		75	20	85	20	90	ns
HBEN to RD Setup Time	t ₈		0			0		0		ns
HBEN to RD Hold Time	t ₉		0			0		0		ns
Delay Between Read Operations	t ₁₀		200			200		200		ns

Timing specifications are sample tested at 25°C to ensure compliance. All input control signals are specified with

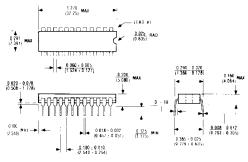
 $t_r = t_1 = 5$ ns (10% to 90% of +5V) and timed from a voltage level of +1.6V. t_3 and t_6 are measured with the load circuits of Figure 1 and defined as the time required for an output to cross Note 10:

Note 11: t₇ is defined as the time required for the data lines to change 0.5V when loaded with the circuits of Figure 2.

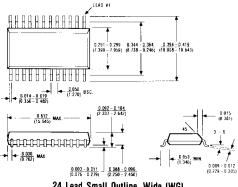

For additional information on using the MAX172 please refer to MAX162 data sheet.


VI/IXI/VI	

Complete 10µs CMOS 12-Bit ADC


Chip Topography

Package Information



24 Lead Plastic Narrow DIP (NG) $\theta_{JA} = 120^{\circ}C/W$ $\theta_{JC} = 60^{\circ}C/W$

24 Lead Narrow CERDIP (RG)

$$\theta_{JA} = 80^{\circ}\text{C/W}$$

 $\theta_{JC} = 40^{\circ}\text{C/W}$

24 Lead Small Outline, Wide (WG)

 $\theta_{JA} = 85^{\circ}\text{C/W}$ $\theta_{JC}^{NA} = 45^{\circ} \text{ C/W}$

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.