阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

General Description

The MAX1421 is a 3.3 V , 12-bit analog-to-digital converter (ADC), featuring a fully-differential input, pipelined, 12-stage ADC architecture with wideband track-and-hold (T/H) and digital error correction incorporating a fully-differential signal path. The MAX1421 is optimized for low-power, high-dynamic performance applications in imaging and digital communications. The converter operates from a single 3.3 V supply, consuming only 188 mW while delivering a typical signal-tonoise ratio (SNR) of 66 dB at an input frequency of 15 MHz and a sampling frequency of 40 Msps . The fullydifferential input stage has a small signal -3dB bandwidth of 400 MHz and may be operated with single-ended inputs.
An internal 2.048 V precision bandgap reference sets the full-scale range of the ADC. A flexible reference structure accommodates an internal or externally applied buffered or unbuffered reference for applications requiring increased accuracy or a different input voltage range.
In addition to low operating power, the MAX1421 features two power-down modes, a reference power-down and a shutdown mode. In reference power-down, the internal bandgap reference is deactivated, resulting in a typical 2 mA supply current reduction. For idle periods, a full shutdown mode is available to maximize power savings.
The MAX1421 provides parallel, offset binary, CMOScompatible three-state outputs.
The MAX1421 is available in a $7 \mathrm{~mm} \times 7 \mathrm{~mm}, 48$-pin TQFP package, and is specified over the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ and the extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$) temperature ranges.
Pin-compatible higher- and lower-speed versions of the MAX1421 are also available. Please refer to the MAX1420 data sheet for a frequency of 60Msps and the MAX1422 data sheet for a frequency of 20Msps.

Applications

Medical Ultrasound Imaging
CCD Pixel Processing
Data Acquisition
Radar
IF and Baseband Digitization

Functional Diagram appears at end of data sheet.

Features

- Single 3.3V Power Supply
- 67dB SNR at fiN $=5 \mathrm{MHz}$
- 66dB SNR at fin $=15 \mathrm{MHz}$
- Internal, 2.048V Precision Bandgap Reference
- Differential, Wideband Input T/H Amplifier
- Power-Down Modes

180mW (Reference Shutdown Mode) 10 WW (Shutdown Mode)

- Space-Saving 48-Pin TQFP Package

Ordering Information

PART*	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX1421CCM	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	48 TQFP	$\mathrm{C} 48-2$
MAX1421ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	$\mathrm{C} 48-2$
MAX1421ECM +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	$\mathrm{C} 48-2$

+Denotes lead-free package.

Pin Configuration

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

ABSOLUTE MAXIMUM RATINGS

$A_{D D}, D_{D D}$ to $A G N D$.. 0.3 V to +4 V
DVDD, AV D to DGND.. 0.3 V to +4 V
DGND to AGND 0.3 V to +0.3 V

INP, INN, REFP, REFN, REFIN,
CML, CLK, $\overline{C L K}$, \qquad
D0-D11, OE, PD
(AGND - 0.3V) to (AVDD +0.3 V)
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
48 -Pin TQFP (derate $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).
..... 1000 mW

Maximum Junction Temperature $+150^{\circ} \mathrm{C}$ Operating Temperature Ranges

MAX1421CCM ..$^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX1421ECM $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{AVDD}}=\mathrm{V}_{\text {DVDD }}=3.3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0, \mathrm{~V}_{\mathrm{IN}}= \pm 1.024 \mathrm{~V}\right.$, differential input voltage at -0.5 dB FS, internal reference, $f_{C L K}=40 \mathrm{MHz}\left(50 \%\right.$ duty cycle), digital output load $C_{L} \approx 10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}} \geq+25^{\circ} \mathrm{C}$ guaranteed by production test, $\mathrm{T}_{\mathrm{A}}<+25^{\circ} \mathrm{C}$ guarnateed by design and characterization. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution	RES			12		Bits
Differential Nonlinearity	DNL	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, no missing codes	-1		+1	LSB
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	± 0.5			
Integral Nonlinearity	INL	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIIN }}$ to $\mathrm{T}_{\text {MAX }}$	± 2			LSB
Midscale Offset	MSO		-3	$\pm .75$	+3	\%FSR
Midscale Offset Temperature Coefficient	MSOTC		3×10^{-4}			\%/ ${ }^{\circ} \mathrm{C}$
Gain Error	GE	Internal reference (Note 1)	-5	+0.1	+5	\%FSR
		External reference applied to REFIN (Note 2)	-5	± 3	+5	
		External reference applied to REFP, CML, and REFN (Note 3)	-1.5	± 0.5	+1.5	
Gain-Error Temperature Coefficient	GETC	External reference applied to REFP, CML, and REFN (Note 3)		15×10^{-6}		\%/ ${ }^{\circ} \mathrm{C}$
DYNAMIC PERFORMANCE (fCLK $=40 \mathrm{MHz}$, 4096-point FFT)						
Signal-to-Noise Ratio	SNR	$\mathrm{fiN}^{\mathrm{N}}=5 \mathrm{MHz}$		67		dB
		$\mathrm{f} / \mathrm{N}=15 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	62	66		
Spurious-Free Dynamic Range	SFDR	$\mathrm{fin}_{\mathrm{I}}=5 \mathrm{MHz}$		73		dBc
		$\mathrm{fin}_{\mathrm{IN}}=15 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	64	70		
Total Harmonic Distortion	THD	$\mathrm{fin}^{\mathrm{N}}=5 \mathrm{MHz}$		-74		dBc
		$\mathrm{fin}_{\mathrm{IN}}=15 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-69	-62	
Signal-To-Noise Plus Distortion	SINAD	$\mathrm{fin}^{\mathrm{N}}=5 \mathrm{MHz}$		66		dB
		$\mathrm{fin}_{\mathrm{IN}}=15 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	60	63.5		
Effective Number of Bits	ENOB	$\mathrm{fin}_{\mathrm{IN}}=5 \mathrm{MHz}$		10.7		Bits
		$\mathrm{fIN}=15 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	60	10.3		
Two-Tone Intermodulation Distortion	IMDTT	$\begin{aligned} & \mathrm{f} / \mathrm{N} 1=11.569 \mathrm{MHz}, \mathrm{f} \mathrm{I} 2=13.445 \mathrm{MHz} \\ & \text { (Note 4) } \end{aligned}$		-80		dBc

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{\text {AVDD }}=V_{D V D D}=3.3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0, \mathrm{~V}_{\mathrm{IN}}= \pm 1.024 \mathrm{~V}\right.$, differential input voltage at -0.5 dB FS, internal reference, ${ }^{f} C L K=40 \mathrm{MHz}$ (50% duty cycle), digital output load $C_{L} \approx 10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}} \geq+25^{\circ} \mathrm{C}$ guaranteed by production test, $\mathrm{T}_{\mathrm{A}}<+25^{\circ} \mathrm{C}$ guarnateed by design and characterization. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Differential Gain	DG			± 1		\%
Differential Phase	DP			± 0.25		degrees
ANALOG INPUTS (INP, INN, CML)						
Input Resistance	RIN	Either input to ground		32.5		k Ω
Input Capacitance	CIN	Either input to ground		4		pF
Common-Mode Input Level (Note 5)	VCML			$\begin{aligned} & \text { VAVDD } \\ & \times 0.5 \end{aligned}$		V
Common-Mode Input Voltage Range (Note 5)	Vcmvr			$\begin{aligned} & V_{C M L} \\ & \pm 5 \% \end{aligned}$		V
Differential Input Range	VIN	VINP - V INN (Note 6)		$\pm \mathrm{V}_{\text {DIFF }}$		V
Small-Signal Bandwidth	BW-3dB	(Note 7)		400		MHz
Large-Signal Bandwidth	FPBW-3dB	(Note 7)		150		MHz
Overvoltage Recovery	OVR	$1.5 \times$ FS input		1		Clock Cycle
INTERNAL REFERENCE (REFIN bypassed with $0.22 \mu \mathrm{~F}$ in parallel with 1 nF)						
Common-Mode Reference Input Voltage	VCML	At CML		$\begin{aligned} & V_{\text {AVDD }} \\ & \times 0.5 \end{aligned}$		V
Positive Reference Voltage Range	$V_{\text {REFP }}$	At REFP		$\begin{gathered} V_{C M L} \\ +0.512 \end{gathered}$		V
Negative Reference Voltage Range	$V_{\text {Refn }}$	At REFN		$\begin{gathered} V_{\mathrm{CML}} \\ -0.512 \end{gathered}$		V
Differential Reference Voltage Range	V DIFF	(Note 6)		$\begin{aligned} & 1.024 \\ & \pm 5 \% \end{aligned}$		V
Differential Reference Temperature Coefficient	REFTC			± 100		ppm/ ${ }^{\circ} \mathrm{C}$
EXTERNAL REFERENCE (VREFIN $=2.048 \mathrm{~V}$)						
REFIN Input Resistance	RIN	(Note 8)	5			$\mathrm{k} \Omega$
REFIN Input Capacitance	CIN			10		pF
REFIN Reference Input Voltage	VREFIN			$\begin{aligned} & 2.048 \\ & \pm 10 \% \end{aligned}$		V
Differential Reference Voltage	V DIFF	(Note 6)	$0.92 \times$ VREFIN / 2	VREFIN / 2	$1.08 \times$ VREFIN / 2	V
EXTERNAL REFERENCE (VREFIN = AGND, reference voltage applied to REFP, REFN, and CML)						
REFP, REFN, CML Input Current	İN		-200		+200	$\mu \mathrm{A}$
REFP, REFN, CML Input Capacitance	Cin			15		pF

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{\text {AVDD }}=V_{D V D D}=3.3 V, A G N D=D G N D=0, V_{I N}= \pm 1.024 \mathrm{~V}\right.$, differential input voltage at -0.5 dB FS, internal reference, $\mathrm{f}_{\mathrm{CLK}}=40 \mathrm{MHz}$ (50% duty cycle), digital output load $\mathrm{C}_{L} \approx 10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}} \geq+25^{\circ} \mathrm{C}$ guaranteed by production test, $\mathrm{T}_{\mathrm{A}}<+25^{\circ} \mathrm{C}$ guarnateed by design and characterization. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

DIGITAL INPUTS (CLK, $\overline{\text { CLK }}, \overline{O E}$, PD)

Input Logic-High	V_{IH}		$\begin{gathered} 0.7 \times \\ \text { VDVDt } \end{gathered}$		V
Input Logic-Low	VIL			$\begin{gathered} 0.3 \times \\ \text { VDVDD } \end{gathered}$	V
Input Current		CLK, $\overline{\text { CLK }}$	± 330		$\mu \mathrm{A}$
		PD	-20	+20	
		$\overline{\mathrm{OE}}$	-20	+20	
Input Capacitance			10		pF

Output Logic-High	VOH	$\mathrm{IOH}=200 \mu \mathrm{~A}$	$\begin{gathered} \text { VDVDD } \\ -0.5 \end{gathered}$	VDVDD	V
Output Logic-Low	VOL	$\mathrm{IOL}=-200 \mu \mathrm{~A}$	0	0.5	V
Three-State Leakage			-10	+10	$\mu \mathrm{A}$
Three-State Capacitance			2		pF

Analog Supply Voltage	$V_{\text {AVDD }}$		3.135	3.3	3.465	V
Digital Supply Voltage	V ${ }_{\text {dVDD }}$		2.7	3.3	3.6	V
Analog Supply Current	IAVDD			52	65	mA
Analog Supply Current with Internal Reference in Shutdown		REFIN = AGND		50	63	mA
Analog Shutdown Current		$P D=D V_{D D}$			20	$\mu \mathrm{A}$
Digital Supply Current	IDVDD			5.5		mA
Digital Shutdown Current		$\mathrm{PD}=\mathrm{DV} \mathrm{DD}$			20	$\mu \mathrm{A}$
Power Dissipation	PDISS	Analog power		188	214	mW
Power-Supply Rejection Ratio	PSRR	(Note 9)		± 1		mV / V
TIMING CHARACTERISTICS						
Clock Frequency	fCLK	Figure 5	0.1		40.0	MHz
Clock High	tch	Figure 5, clock period 25ns		12.5		ns
Clock Low	tCL	Figure 5, clock period 25ns		12.5		ns

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{\text {AVDD }}=V_{D V D D}=3.3 V, A G N D=D G N D=0, V_{I N}= \pm 1.024 \mathrm{~V}\right.$, differential input voltage at -0.5 dB FS, internal reference, $f_{C L K}=40 \mathrm{MHz}\left(50 \%\right.$ duty cycle), digital output load $C_{L} \approx 10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}} \geq+25^{\circ} \mathrm{C}$ guaranteed by production test, $\mathrm{T}_{\mathrm{A}}<+25^{\circ} \mathrm{C}$ guarnateed by design and characterization. Typical values are at $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP					
Pipeline Delay (Latency)		Figure 5	7	UNITS					
Aperture Delay	tAD	Figure 9	2	fCLK					
cycles					$	$	ns		
:---:	:---:	:---:							
Aperture Jitter	tAJ	Figure 9							
Data Output Delay	tOD	Figure 5							
Bus Enable Time	tBE	Figure 4							
Bus Disable Time	tBD	Figure 4							

Note 1: Internal reference, REFIN bypassed to AGND with a combination of $0.22 \mu \mathrm{~F}$ in parallel with 1 nF capacitor.
Note 2: External 2.048 V reference applied to REFIN.
Note 3: Internal reference disabled. $\mathrm{V}_{\text {REFIN }}=0, \mathrm{~V}_{\text {REFP }}=2.162 \mathrm{~V}, \mathrm{~V}_{\mathrm{CML}}=1.65 \mathrm{~V}$, and $\mathrm{V}_{\text {REFN }}=1.138 \mathrm{~V}$.
Note 4: IMD is measured with respect to either of the fundamental tones.
Note 5: Specifies the common-mode range of the differential input signal supplied to the MAX1421.
Note 6: $V_{\text {DIFF }}=V_{\text {REFP }}-V_{\text {REFN }}$.
Note 7: Input bandwidth is measured at a 3dB level.
Note 8: $\mathrm{V}_{\text {REFIN }}$ is internally biased to 2.048 V through a $10 \mathrm{k} \Omega$ resistor.
Note 9: Measured as the ratio of the change in mid-scale offset voltage for $a \pm 5 \%$ change in $V_{\text {AVDD }}$ using the internal reference.
$\left(V_{\text {AVDD }}=V_{D V D D}=3.3 \mathrm{~V}, \mathrm{AGND}=\operatorname{DGND}=0, \mathrm{VIN}= \pm 1.024 \mathrm{~V}\right.$, differential input voltage, fCLK $=40 \mathrm{MHz}(50 \%$ duty cycle), digital output load $C_{L}=10 \mathrm{pF}, \mathrm{T}_{A}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\text {AVDD }}=\mathrm{V}_{\text {DVDD }}=3.3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0, \mathrm{~V}\right.$ IN $= \pm 1.024 \mathrm{~V}$, differential input voltage, fCLK $=40 \mathrm{MHz}$ (50% duty cycle), digital output load $C_{L}=10 p F, T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.)

TWO-TONE IMD, 8192-POINT RECORD, DIFFERENTIAL INPUT

TOTAL HARMONIC DISTORTION vs. ANALOG INPUT FREQUENCY

SIGNAL-TO-NOISE RATIO
vs. ANALOG INPUT POWER (fin = 15MHz)

SPURIOUS-FREE DYNAMIC RANGE vs. ANALOG INPUT FREQUENCY

SIGNAL-TO-NOISE PLUS DISTORTION vs. ANALOG INPUT FREQUENCY

TOTAL HARMONIC DISTORTION
vs. ANALOG INPUT POWER ($\mathbf{f} / \mathrm{N}=15 \mathrm{MHz}$)

SIGNAL-TO-NOISE RATIO vs. ANALOG INPUT FREQUENCY

SPURIOUS-FREE DYNAMIC RANGE vs. ANALOG INPUT POWER ($\mathbf{f} / \mathrm{N}=15 \mathrm{MHz}$)

SIGNAL-TO-NOISE PLUS DISTORTION vs. ANALOG INPUT POWER ($\mathrm{f}_{\mathrm{IN}}=15 \mathrm{MHz}$)

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

Typical Operating Characteristics (continued)
$\left(V_{\text {AVDD }}=\mathrm{V}_{\text {DVDD }}=3.3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0, \mathrm{~V}\right.$ IN $= \pm 1.024 \mathrm{~V}$, differential input voltage, fCLK $=40 \mathrm{MHz}$ (50% duty cycle), digital output load $C_{L}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

SIGNAL-TO-NOISE PLUS DISTORTION vs. TEMPERATURE

GAIN ERROR vs. TEMPERATURE, EXTERNAL REFERENCE (VREFIN = 2.048V)

SIGNAL-TO-NOISE RATIO
vs. TEMPERATURE

INTEGRAL NONLINEARITY
vs. DIGITAL OUTPUT CODE

ANALOG SUPPLY CURRENT vs. TEMPERATURE

TOTAL HARMONIC DISTORTION
vs. TEMPERATURE

DIFFERENTIAL NONLINEARITY vs. DIGITAL OUTPUT CODE

DIGITAL SUPPLY CURRENT vs. TEMPERATURE

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

$\left(V_{\text {AVDD }}=\mathrm{V}_{\mathrm{DVDD}}=3.3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0, \mathrm{~V} \operatorname{IN}= \pm 1.024 \mathrm{~V}\right.$, differential input voltage, fCLK $=40 \mathrm{MHz}$ (50% duty cycle), digital output load $C_{L}=10 p F, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.)

INTERNAL REFERENCE VOLTAGE
vs. TEMPERATURE

INTERNAL REFERENCE VOLTAGE vs. ANALOG SUPPLY VOLTAGE

12－Bit，40Msps，3．3V，Low－Power ADC with Internal Reference

Pin Description

PIN	NAME	
$1,4,5,8$, $9,12,13$, $16,19,41$, 48	AGND	FUNCTION
$2,3,10$, $11,14,15$, $20,42,47$	AVDD Ground．Connect all return paths for analog signals to AGND．	
6	INP	Analog Supply Voltage．For optimum performance bypass each pin to the closest AGND with a parallel combination of a 0．1 $\mu \mathrm{F}$ and a 1nF capacitor．Connect a single 10 comb and 1 $1 \mu \mathrm{~F}$ capacitor between AVDD and AGND．
7	INN	Positive Analog Signal Input

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

Detailed Description

The MAX1421 uses a 12-stage, fully-differential, pipelined architecture (Figure 1) that allows for high-speed conversion while minimizing power consumption. Each sample moves through a pipeline stage every half-clock-cycle. Including the delay through the output latch, the latency is seven clock cycles.
A 2-bit (2-comparator) flash ADC converts the heldinput voltage into a digital code. The following digital-toanalog converter (DAC) converts the digitized result back into an analog voltage, which is then subtracted from the original held-input signal. The resulting error signal is then multiplied by two, and the product is passed along to the next pipeline stage. This process is repeated until the signal has been processed by all 12 stages. Each stage provides a 1-bit resolution. Digital error correction compensates for ADC comparator offsets in each pipeline stage and ensures no missing codes.

Input Track-and-Hold Circuit

Figure 2 displays a simplified functional diagram of the input T/H circuit in both track-and-hold modes. In track mode, switches S1, S2a, S2b, S4a, S4b, S5a, and S5b are closed. The fully differential circuit passes the input signal to the two capacitors (C2a and C2b) throughswitches (S4a and S4b). Switches S2a and S2b set the common mode for the transconductance amplifier
(OTA) input, and open simultaneously with S 1 , sampling the input waveform. The resulting differential voltage is held on capacitors C2a and C2b. Switches S4a and S4b are then opened before switches S3a and S3b, connecting capacitors C 1 a and C 1 b to the output of the amplifier, and switch S4c is closed. The OTA is used to charge capacitors C1a and C1b to the same values originally held on C2a and C2b. This value is then presented to the first-stage quantizer and isolates the pipeline from the fast-changing input. The wide-input bandwidth, T/H amplifier allows the MAX1421 to track and sample/hold analog inputs of high frequencies beyond Nyquist. The analog inputs INP and INN can be driven either differentially or single-ended. Match the impedance of INP and INN and set the common-mode voltage to midsupply (AVDD / 2) for optimum performance.

Analog Input and Reference Configuration

The full-scale range of the MAX1421 is determined by the internally generated voltage difference between REFP (AVDD / $2+\mathrm{V}_{\text {REFIN }} / 4$) and REFN (AVDD / 2 Vrefin / 4). The MAX1421's full-scale range is adjustable through REFIN, which provides a high input impedance for this purpose. REFP, CML (AVDD / 2), and REFN are internally buffered low impedance outputs.

Figure 2. Internal Track-and-Hold Circuit

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

Figure 3. Unbuffered External Reference Drive—Internal Reference Disabled

The MAX1421 provides three modes of reference operation:

- Internal reference mode
- Buffered external reference mode
- Unbuffered external reference mode

In internal reference mode, the on-chip +2.048 V bandgap reference is active and REFIN, REFP, CML, and REFN are left floating. For stability purposes, bypass REFIN, REFP, REFN, and CML with a capacitor network of $0.22 \mu \mathrm{~F}$, in parallel with a 1 nF capacitor to AGND.
In buffered external reference mode, the reference voltage levels can be adjusted externally by applying a stable and accurate voltage at REFIN.
In unbuffered external reference mode, REFIN is connected to AGND, which deactivates the on-chip buffers of REFP, CML, and REFN. With their buffers shut down, these nodes become high impedance and can be driven by external reference sources, as shown in Figure 3.

Clock Inputs (CLK, $\overline{\text { CLK }}$)
The MAX1421's CLK and CLK inputs accept both sin-gle-ended and differential input operation, and accept CMOS-compatible clock signals. If CLK is driven with a
single-ended clock signal, bypass CLK with a $0.1 \mu \mathrm{~F}$ capacitor to AGND. Since the interstage conversion of the device depends on the repeatability of the rising and falling edges of the external clock, use a clock with low jitter and fast rise and fall times (<2ns). In particular, sampling occurs on the rising edge of the clock signal, requiring this edge to have the lowest possible jitter. Any significant aperture jitter limits the SNR performance of the ADC according to the following relationship:

$$
\mathrm{SNR}_{\mathrm{dB}}=20 \times \log _{10}\left(\frac{1}{2 \pi \times f_{\mathrm{IN}} \times \mathrm{t}_{\mathrm{AJ}}}\right)
$$

where fin represents the analog input frequency and tas is the aperture jitter.
Clock jitter is especially critical for high input frequency applications. The clock input should always be considered as an analog input and routed away from any analog or digital signal lines.
The MAX1421 clock input operates with a voltage threshold set to AVDD / 2. Clock inputs must meet the specifications for high and low periods, as stated in the Electrical Characteristics.

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

Figure 4. Simplified Clock Input Circuit

Figure 4 shows a simplified model of the clock input circuit. This circuit consists of two 10k Ω resistors to bias the common-mode level of each input. This circuit may be used to AC-couple the system clock signal to the MAX1421 clock input.

Output Enable ($\overline{O E}$), Power-Down (PD), and Output Data (D0-D11)

With $\overline{O E}$ high, the digital outputs enter a high-impedance state. If $\overline{\mathrm{OE}}$ is held low with PD high, the outputs are latched at the last value prior to the power-down. All data outputs, D0 (LSB) through D11 (MSB), are TTL/CMOS-logic compatible. There is a seven clock-

Table 1. MAX1421 Output Code for Differential Inputs

DIFFERENTIAL INPUT VOLTAGE	DIFFERENTIAL INPUT	OFFSET BINARY
$V_{\text {REF }} \times 2047 / 2048$	+FULL SCALE 1LSB	111111111111
$V_{\text {REF }} \times 2046 / 2048$	+FULL SCALE 2LSB	111111111110
$V_{\text {REF }} \times 1 / 2048$	+1 LSB	100000000001
0	Bipolar Zero	100000000000
$-V_{\text {REF }} \times 1 / 2048$	-1 LSB	01111111111
$-V_{\text {REF }} \times 2046 / 2048$	-FULL SCALE 1 LSB	000000000001
$-V_{R E F} \times 2047 / 2048$	-FULL SCALE	000000000000

[^0]

Figure 5. Output Enable Timing
cycle latency between any particular sample and its valid output data. The output coding is in offset binary format (Table 1).
The capacitive load on the digital outputs DO through D11 should be kept as low as possible ($\leq 10 \mathrm{pF}$), to avoid large digital currents that could feed back into the analog portion of the MAX1421, thereby degrading its dynamic performance. The use of digital buffers (e.g., 74LVCH16244) on the digital outputs of the ADC can further isolate the digital outputs from heavy capacitive loads. To further improve the dynamic performance of the MAX1421, add small-series resistors of 100Ω to the digital output paths, close to the ADC. Figure 5 displays the timing relationship between output enable and data output.

System Timing Requirements

Figure 6 depicts the relationship between the clock input, analog input, and data output. The MAX1421 samples at the rising edge of CLK (falling edge of $\overline{C L K}$) and output data is valid seven clock cycles (latency) later. Figure 6 also displays the relationship between the input clock parameters and the valid output data.

Applications Information

Figure 7 depicts a typical application circuit containing a single-ended to differential converter. The internal reference provides an AVDD / 2 output voltage for levelshifting purposes. The input is buffered and then split to a voltage follower and inverter. A lowpass filter at the input suppresses some of the wideband noise associated with high-speed op amps. Select the Riso and CIN values to optimize the filter performance and to suit a particular application. For the application in Figure 7, a RISO of 50Ω is placed before the capacitive load to prevent ringing and oscillation. The 22 pF CIN capacitor acts as a small bypassing capacitor.
Connecting CIN from INN to INP may further improve dynamic performance.

12－Bit，40Msps，3．3V，Low－Power ADC with Internal Reference

Figure 6．System and Output Timing Diagram

Using Transformer Coupling

An RF transformer（Figure 8）provides an excellent solu－ tion to convert a single－ended signal to a fully differen－ tial signal，required by the MAX1421 for optimum performance．Connecting the center tap of the trans－ former to CML provides an AVDD／ 2 DC level shift to the input．Although a 1：1 transformer is shown，a $1: 2$ or $1: 4$ step－up transformer may be selected to reduce the drive requirements．
In general，the MAX1421 provides better SFDR and THD with fully differential input signals over single－ ended input signals，especially for very high input fre－ quencies．In differential input mode，even－order harmonics are suppressed and each of the inputs requires only half the signal swing compared to single－ ended mode．

Single－Ended AC－Coupled Input Signal

 Figure 9 shows an AC－coupled，single－ended applica－ tion，using a MAX4108 op amp．This configuration pro－ vides high－speed，high－bandwidth，low noise，and low distortion to maintain the integrity of the input signal．network of a $10 \mu \mathrm{~F}$ bipolar capacitor in parallel with two ceramic capacitors of 1 nF and $0.1 \mu \mathrm{~F}$ ．Follow the same rules to bypass the digital supply DVDD to DGND． Multilayer boards with separate ground and power planes produce the highest level of signal integrity． Consider the use of a split ground plane arrangement to match the physical location of the analog ground （AGND）and the digital output driver ground（DGND）on the ADCs package．The two ground planes should be joined at a single point so that the noisy digital ground currents do not interfere with the analog ground plane． Alternatively，all ground pins could share the same ground plane，if the ground plane is sufficiently isolated from any noisy，digital systems ground plane（e．g．， downstream output buffer，DSP ground plane）．Route high－speed digital signal traces away from sensitive analog traces and remove digital ground and power planes from underneath digital outputs．Keep all signal lines short and free of 90 degree turns．

Static Parameter Definitions

Integral Nonlinearity（INL）

Grounding，Bypassing，and Board Layout

The MAX1421 requires high－speed board layout design techniques．Locate all bypass capacitors as close to the device as possible，preferably on the same side of the board as the ADC，using surface－mount devices for minimum inductance．Bypass REFP，REFN，REFIN，and CML with a parallel network of $0.22 \mu \mathrm{~F}$ capacitors and 1 nF to $A G N D$ ．AVDD should be bypassed with a similar

Integral nonlinearity is the deviation of the values on an actual transfer function from a straight line．This straight－ line can be either a best straight－line fit or a line drawn between the endpoints of the transfer function，once off－ set and gain errors have been nullified．The static lin－ earity parameters for the MAX1421 are measured using the best straight－line fit method．

Differential Nonlinearity（DNL） Differential nonlinearity is the difference between an actual step－width and the ideal value of 1LSB．A DNL

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

Figure 7. Typical Application Circuit for Single-Ended to Differential Conversion
error specification of less than 1LSB guarantees no missing codes.

Dynamic Parameter Definitions
 Aperture Jitter

Figure 10 depicts the aperture jitter ($\mathrm{t} A \mathrm{~A}^{\mathrm{I}}$, which is the sample-to-sample variation in the aperture delay.

Aperture Delay

Aperture delay (tAD) is the time defined between the falling edge of the sampling clock and the instant when an actual sample is taken (Figure 10).

Signal-to-Noise Ratio (SNR)
For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR is the ratio of
the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal theoretical minimum analog-to-digital noise is caused by quantization error only and results directly from the ADCs resoIution (N -bits):

$$
\operatorname{SNR}(\operatorname{MAX})=(6.02 \times N+1.76) \mathrm{dB}
$$

In reality, there are other noise sources besides quantization noise e.g., thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first four harmonics, and the DC offset.

12－Bit，40Msps，3．3V，Low－Power ADC with Internal Reference

Figure 8．Using a Transformer for AC－Coupling

Figure 9．Single－Ended AC－Coupled Input Signal

Figure 10．Track－and－Hold Aperture Timing

Signal－to－Noise Plus Distortion（SINAD）
SINAD is computed by taking the ratio of the RMS sig－ nal to all spectral components minus the fundamental and the DC offset．

Effective Number of Bits（ENOB）
ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate．An ideal ADC＇s error consists of quantization noise only．ENOB is computed from：

$$
\mathrm{ENOB}=\frac{\text { SINAD-1.76 }}{6.02}
$$

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

Total Harmonic Distortion (THD)
THD is typically the ratio of the RMS sum of the first four harmonics of the input signal to the fundamental itself. This is expressed as:

$$
\mathrm{THD}=20 \times \log _{10}\left(\frac{\sqrt{\left(\mathrm{~V}_{2}^{2}+\mathrm{V}_{3}^{2}+\mathrm{V}_{4}^{2}+\mathrm{V}_{5}^{2}\right)}}{\mathrm{V}_{1}}\right)
$$

where V_{1} is the fundamental amplitude, and V_{2} through V_{5} are the amplitudes of the 2nd- through 5th-order harmonics.

Spurious-Free Dynamic Range (SFDR)
SFDR is the ratio expressed in decibels of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest spurious component, excluding DC offset.

Intermodulation Distortion (IMD)

The two-tone IMD is the ratio expressed in decibels of either input tone to the worst 3rd-order (or higher) intermodulation products. The individual input tone levels are at -6.5 dB full scale and their envelope is at -0.5 dB full scale.

Functional Diagram

12－Bit，40Msps，3．3V，Low－Power ADC with Internal Reference

Package Information
（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information go to www．maxim－ic．com／packages．）

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product．No circuit patent licenses are implied．Maxim reserves the right to change the circuitry and specifications without notice at any time．

[^0]: ${ }^{*} V_{\text {REF }}=V_{\text {REFP }}-V_{\text {REFN }}$

