

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

General Description

The MAX11212 is an ultra-low power (< 300µA max active current), high-resolution, serial-output ADC. This device provides the highest resolution per unit power in the industry, and is optimized for applications that require very high dynamic range with low power such as sensors on a 4mA to 20mA industrial control loop. The MAX11212 provides a high-accuracy internal oscillator that requires no external components.

When used with the specified data rates, the internal digital filter provides more than 80dB rejection of 50Hz or 60Hz line noise. The MAX11212 provides a simple 2-wire serial interface in the space-saving, 10-pin μ MAX[®] package. The MAX11212 operates over the -40°C to +85°C temperature range.

Applications

Sensor Measurement (Temperature and Pressure) Portable Instrumentation Battery Applications

Weigh Scales

_Features

- ♦ 18-Bit Full-Scale Resolution
- 720nV_{RMS} Noise (MAX11212B)
- 3ppm INL
- No Missing Codes
- ♦ Ultra-Low-Power Dissipation Operating-Mode Current Drain < 300µA (max) Sleep-Mode Current Drain < 0.1µA
- ♦ 2.7V to 3.6V Analog Supply Voltage Range
- ♦ 1.7V to 3.6V Digital and I/O Supply Voltage Range
- Fully Differential Signal Inputs
- Fully Differential Reference Inputs
- Internal System Clock
 2.4576MHz (MAX11212A)
 2.2528MHz (MAX11212B)
- External Clock
- Serial 2-Wire Interface (Clock Input and Data Output)
- On-Demand Offset and Gain Self-Calibration
- ◆ -40°C to +85°C Operating Temperature Range
- ±2kV ESD Protection
- ♦ Lead(Pb)-Free and RoHS-Compliant µMAX Package

Ordering Information

PART	PIN-PACKAGE	OUTPUT RATE (sps)
MAX11212AEUB+*	10 µMAX	120
MAX11212BEUB+	10 µMAX	13.75

Note: All devices are specified over the -40°C to +85°C operating temperature range.

+Denotes a lead(Pb)-free/RoHS-compliant package.

*Future product—contact factory for availability.

Selector Guide

RESOLUTION (BITS)	4-WIRE SPI, 16-PIN QSOP, PROGRAMMABLE GAIN	4-WIRE SPI, 16-PIN QSOP	2-WIRE SERIAL, 10-PIN μMAX
24	MAX11210	MAX11200	MAX11201 (with buffers) MAX11202 (without buffers)
20	MAX11206	MAX11207	MAX11208
18	MAX11209	MAX11211	MAX11212
16	MAX11213	MAX11203	MAX11205

 μ MAX is a registered trademark of Maxim Integrated Products, Inc.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

ABSOLUTE MAXIMUM RATINGS

AVDD to GND
DVDD to GND0.3V to +3.9V
Analog Inputs (AINP, AINN, REFP, REFN)
to GND0.3V to (V _{AVDD} + 0.3V)
Digital Inputs and Digital Outputs
to GND0.3V to (V _{DVDD} + 0.3V)
ESDHB (AVDD, AINP, AINN, REFP, REFN, DVDD, CLK, SCLK,
RDY/DOUT, GND) ±2kV (Note 1)

Continuous Power Dissipation ($T_A = +70^{\circ}C$)

10-Pin µMAX (derate 5.6mW/°C above +70)°C)444mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	55°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Note 1: Human Body Model to specification MIL-STD-883 Method 3015.7.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{AVDD} = +3.6V, V_{DVDD} = +1.8V, V_{REFP} - V_{REFN} = V_{AVDD}$; internal clock, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$ under normal conditions, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ADC PERFORMANCE						•
Noise-Free Resolution	NFR	(Notes 2, 3)		18		Bits
Thermal Noise (Notes 2, 3)	VN	MAX11212A		2.1		
merma noise (notes 2, 3)	۷N	MAX11212B		0.72		μVRMS
Integral Nonlinearity	INL	(Note 4)	-10		+10	ppmFSR
Zero Error	Voff	After calibration, VREFP - VREFN = 2.5V	-20	1	+20	ppmFSR
Zero Drift				50		nV/°C
Full-Scale Error		After calibration, $V_{REFP} - V_{REFN} = 2.5V$ (Note 5)	-35	3	+35	ppmFSR
Full-Scale Error Drift				0.05		ppmFSR/°C
Dower Cupply Dejection		AVDD DC rejection	70	80		
Power-Supply Rejection		DVDD DC rejection	90	100		dB
ANALOG INPUTS/REFERENCE	INPUTS					
	CMR	DC rejection	90	123		dB
Common-Mode Rejection		50Hz/60Hz rejection MAX11212A	90			
		50Hz/60Hz rejection MAX11212B	144			
Normal-Mode 50Hz Rejection	NMR ₅₀	MAX11212B (Note 6)	65	80.5		dB
Normal-Mode 60Hz Rejection	NMR ₆₀	MAX11212B (Note 6)	73	87		dB
Common-Mode Voltage Range			GND		Vavdd	V
Absolute Input Voltage		Low input voltage		GND - 30mV		- V
Absolute input voltage		High input voltage	VAVDD + 30mV			
DC Input Leakage		Sleep mode (Note 2)		±1		μA
AIN Dynamic Input Current				5		μA
REF Dynamic Input Current				7.5		μA
AIN Input Capacitance				10		pF

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = +3.6V, V_{DVDD} = +1.8V, V_{REFP} - V_{REFN} = V_{AVDD}$; internal clock, TA = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at TA = +25°C under normal conditions, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
REF Input Capacitance				15		pF
AIN Voltage Range		Vainp - Vainn	-VREF		+VREF	V
REF Voltage Range					Vavdd	V
Input Sampling Rate	fo	MAX11212A		246		
input Sampling Rate	fS	MAX11212B		225		kHz
REF Sampling Rate		MAX11212A		246		kHz
		MAX11212B		225		KI IZ
LOGIC INPUTS (SCLK, CLK)						
Input Current		Input leakage current		±1		μA
Input Low Voltage	VIL				0.3 x Vdvdd	V
Input High Voltage	Viн		0.7 x Vdvdd			V
Input Hysteresis	VHYS			200		mV
		MAX11212A		2.4576		
External Clock		MAX11212B		2.2528		MHz
LOGIC OUTPUTS (RDY/DOUT)	1					
Output Low Level	VOL	I _{OL} = 1mA; also tested for V _{DVDD} = 3.6V			0.4	V
Output High Level	VOH	I _{OH} = 1mA; also tested for V _{DVDD} = 3.6V	0.9 x Vdvdd			V
Floating State Leakage Current		Output leakage current		±10		μA
Floating State Output Capacitance				9		pF
POWER REQUIREMENTS					I	
Analog Supply Voltage	AVDD		2.7		3.6	V
Digital Supply Voltage	DVDD		1.7		3.6	V
Total Operating Current		AVDD + DVDD		230	300	μA
DVDD Operating Current				45	60	μA
AVDD Operating Current				185	245	μA
AVDD Sleep Current				0.4	2	μA
DVDD Sleep Current				0.35	2	μA
2-WIRE SERIAL-INTERFACE TIM	ING CHAR	ACTERISITCS				
SCLK Frequency	f SCLK				5	MHz
SCLK Pulse Width Low	t1	60/40 duty cycle 5MHz clock	80			ns
SCLK Pulse Width High	t2	40/60 duty cycle 5MHz clock	80			ns
SCLK Rising Edge to Data Valid						

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

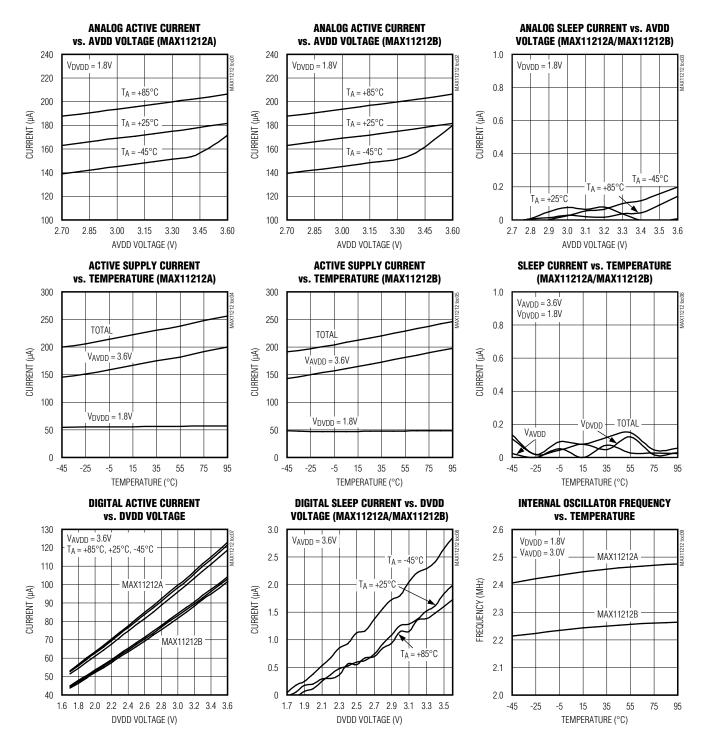
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = +3.6V, V_{DVDD} = +1.8V, V_{REFP} - V_{REFN} = V_{AVDD}$; internal clock, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$ under normal conditions, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	МАХ	UNITS	
SCLK Rising Edge Data Hold Time	t4	Allows for positive edge data read	3			ns	
RDY/DOUT Fall to SCLK Rising Edge	t5		0			ns	
Next Data Update Time; No Read	t6	MAX11212A		155		110	
Allowed	40	MAX11212B		169		μs	
Data Conversion Time	+	MAX11212A		8.6			
Data Conversion Time	t7	MAX11212B		73		ms	
Data Ready Time After Calibration	t8	MAX11212A		208.3			
Starts (CAL + CNV)		MAX11212B		256.1		ms	
SCLK High After RDY/DOUT	tg	MAX11212A	0		8.6	ms	
Goes Low to Activate Sleep Mode		MAX11212B	0		73		
Time From RDY/DOUT Low to SCLK High for Sleep Mode	t10	MAX11212A	0		8.6	ms	
Activation	110	MAX11212B	0		73	1115	
Data Ready Time After Wake-Up	÷	MAX11212A		8.6		m 0	
from Sleep Mode	t11	MAX11212B		73		- ms	
Data Ready Time After Calibration from Sleep Mode Wake-Up (CAL	t12	MAX11212A		208.4		ms	
+ CNV)	12	MAX11212B		256.2		1115	

Note 2: These specifications are not fully tested and are guaranteed by design and/or characterization.

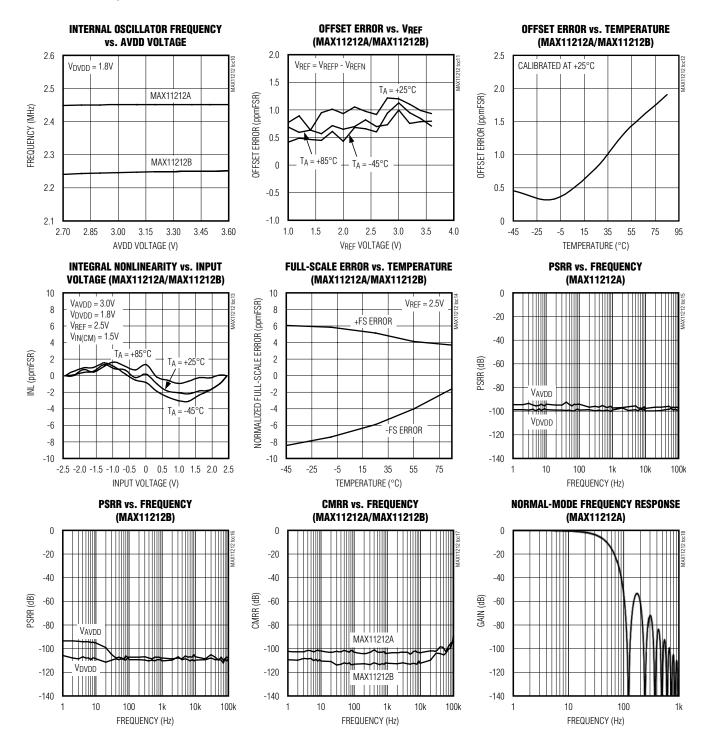
Note 3: VAINP = VAINN.


Note 4: ppmFSR is parts per million of full-scale range.

Note 5: Positive full-scale error includes zero-scale errors.

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

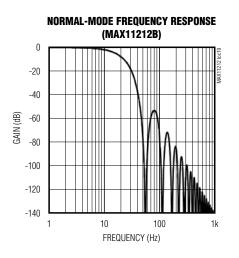
Typical Operating Characteristics

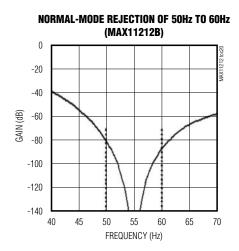

 $(V_{AVDD} = 3.6V, V_{DVDD} = 1.8V, V_{REFP} - V_{REFN} = V_{AVDD}$; internal clock; $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

Typical Operating Characteristics (continued)

 $(V_{AVDD} = 3.6V, V_{DVDD} = 1.8V, V_{REFP} - V_{REFN} = V_{AVDD}$; internal clock; $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

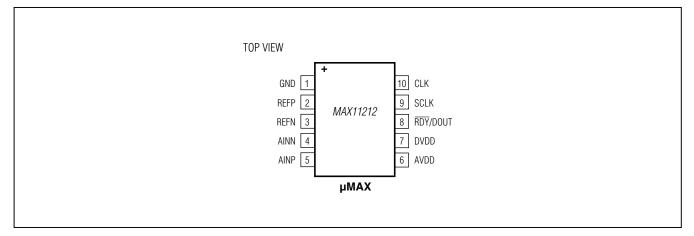



Maxim Integrated

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

Typical Operating Characteristics (continued)

 $(V_{AVDD} = 3.6V, V_{DVDD} = 1.8V, V_{REFP} - V_{REFN} = V_{AVDD}$; internal clock; $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)



Functional Diagram

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	GND	Ground. Ground reference for analog and digital circuitry.
2	REFP	Differential Reference Positive Input. REFP must be more positive than REFN. Connect REFP to a voltage between AVDD and GND.
3	REFN	Differential Reference Negative Input. REFN must be more negative than REFP. Connect REFN to a voltage between AVDD and GND.
4	AINN	Negative Fully Differential Analog Input
5	AINP	Positive Fully Differential Analog Input
6	AVDD	Analog Supply Voltage. Connect a supply voltage between +2.7V to +3.6V with respect to GND.
7	DVDD	Digital Supply Voltage. Connect a digital supply voltage between +1.7V to +3.6V with respect to GND.
8	RDY/DOUT	Data-Ready Output/Serial-Data Output. This output serves a dual function. In addition to the serial-data output function, the $\overline{\text{RDY}}$ /DOUT also indicates that the data is ready when the $\overline{\text{RDY}}$ is logic-low. $\overline{\text{RDY}}$ /DOUT changes on the falling edge of SCLK.
9	SCLK	Serial-Clock Input. Apply an external serial clock to SCLK.
10	CLK	External Clock Signal Input. The internal clock shuts down when CLK is driven by an external clock. Use a 2.4576MHz oscillator (MAX11212A) or a 2.2528MHz oscillator (MAX11212B).

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

Detailed Description

The MAX11212 is an ultra-low-power (< 240μ A active), high-resolution, low-speed, serial-output ADC. This device provides the highest resolution per unit power in the industry, and is optimized for applications that require very high dynamic range with low power such as sensors on a 4mA to 20mA industrial control loop. The MAX11212 provides a high-accuracy internal oscillator, which requires no external components. When used with the specified data rates, the internal digital filter provides more than 80dB rejection of 50Hz or 60Hz line noise. The MAX11212 provides a simple, system-friendly, 2-wire serial interface in the space-saving, 10-pin μ MAX package.

Power-On Reset (POR)

The MAX11212 utilizes power-on reset (POR) supplymonitoring circuitry on both the digital supply (DVDD) and the analog supply (AVDD). The POR circuitry ensures proper device default conditions after either a digital or analog power-sequencing event.

The MAX11212 performs a self-calibration operation as part of the startup initialization sequence whenever a digital POR is triggered. It is important to have a stable reference voltage available at the REFP and REFN pins to ensure an accurate calibration cycle. If the reference voltage is not stable during a POR event, the part should be calibrated once the reference has stabilized. The part can be programmed for calibration by using 26 SCLKs as shown in Figure 3.

The digital POR trigger threshold is approximately 1.2V and has 100mV of hysteresis. The analog POR trigger threshold is approximately 1.25V and has 100mV of hysteresis. Both POR circuits have lowpass filters that prevent high-frequency supply glitches from triggering the POR. The analog supply (AVDD) and the digital supply (DVDD) pins should be bypassed using 0.1 μ F capacitors placed as close as possible to the package pin.

Analog Inputs

The MAX11212 accepts two analog inputs (AINP and AINN). The modulator input range is bipolar (-VREF to $+V_{REF}$).

Internal Oscillator

The MAX11212 incorporates a highly stable internal oscillator that provides the system clock. The system clock runs the internal state machine and is trimmed to

2.4576MHz (MAX11212A) or 2.2528MHz (MAX11212B). The internal oscillator clock is divided down to run the digital and analog timing.

Reference

The MAX11212 provides differential inputs REFP and REFN for an external reference voltage. Connect the external reference directly across REFP and REFN to obtain the differential reference voltage. The common-mode voltage range for VREFP and VREFN is between 0 and VAVDD. The differential voltage range for REFP and REFN is 1V to VAVDD.

Digital Filter

The MAX11212 contains an on-chip, digital lowpass filter that processes the 1-bit data stream from the modulator using a SINC⁴ (sinx/x)⁴ response. When the device is operating in single-cycle conversion mode, the filter is reset at the end of the conversion cycle. When operating in continuous conversion latent mode, the filter is not reset. The SINC⁴ filter has a -3dB frequency equal to 24% of the data rate.

Serial-Digital Interface

The MAX11212 communicates through a 2-wire serial interface with a clock input and data output. The output rate is predetermined based on the package option (MAX11212A at 120sps and MAX11212B at 13.75sps).

2-Wire Interface

The MAX11212 is compatible with the 2-wire interface and uses SCLK and $\overline{\text{RDY}}$ /DOUT for serial communications. In this mode, all controls are implemented by timing the high or low phase of the SCLK. The 2-wire serial interface only allows for data to be read out through the $\overline{\text{RDY}}$ /DOUT output. Supply the serial clock to SCLK to shift the conversion data out.

The RDY/DOUT is used to signal data ready, as well as reading the data out when SCLK pulses are applied. RDY/DOUT is high by default. The MAX11212 pulls RDY/DOUT low when data is available at the end of conversion, and stays low until clock pulses are applied at SCLK input; on applying the clock pulses at SCLK, the RDY/DOUT outputs the conversion data on every SCLK positive edge. To monitor data availability, pull RDY/DOUT high after reading the 18 bits of data by supplying a 25th SCLK pulse.

The different operational modes using this 2-wire interface are described in the following sections.

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

Data Read Following Every Conversion

The MAX11212 indicates conversion data availability as well as allows the retrieval of data through the RDY/DOUT output. The RDY/DOUT output idles at the value of the last bit read unless a 25th SCLK pulse is provided, causing RDY/DOUT to idle high. RDY/DOUT is pulled low when the conversion data is available.

Figure 1 shows the timing diagram for the data read. Once a low is detected on $\overline{RDY}/DOUT$, clock pulses at SCLK clock out the data. Data is shifted out MSB first and is in binary two's complement format. Once all the data has been shifted out, a 25th SCLK is required to pull the $\overline{RDY}/DOUT$ output back to the idle high state. See Figure 2.

If the data is not read before the next conversion data is updated, the old data is lost, as the new data overwrites the old value.

Data Read Followed by Self-Calibration

To initiate self-calibration at the end of a data read, provide a 26th SCLK pulse. After reading the 16 bits of conversion data, a 25th positive edge on SCLK pulls the $\overline{\text{RDY}}$ /DOUT output back high, indicating end of data read. Provide a 26th SCLK pulse to initiate a self-calibration routine starting on the falling edge of the 26th SCLK. A subsequent falling edge of $\overline{\text{RDY}}$ /DOUT indicates data availability at the end of calibration. The timing is illustrated in Figure 3.

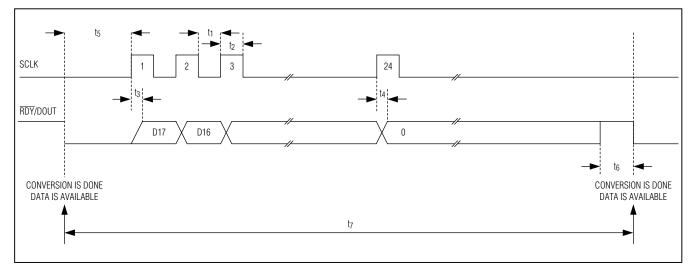


Figure 1. Timing Diagram for Data Read After Conversion

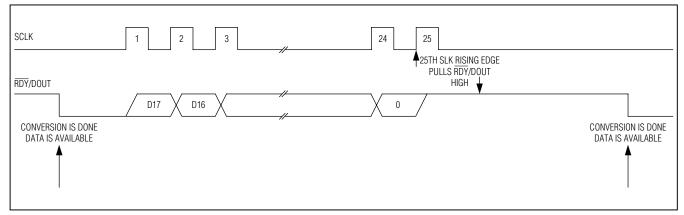


Figure 2. Timing Diagram for Data Read Followed by RDY/DOUT Being Asserted High Using 25th SCLK

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

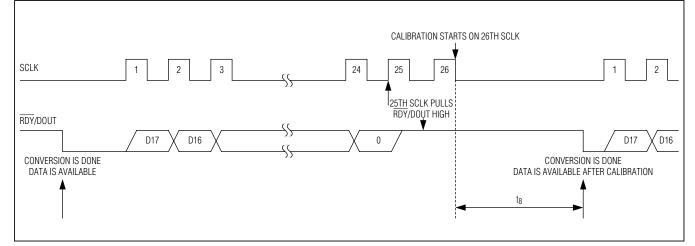


Figure 3. Timing Diagram for Data Read Followed by Two Extra Clock Cycles for Self-Calibration

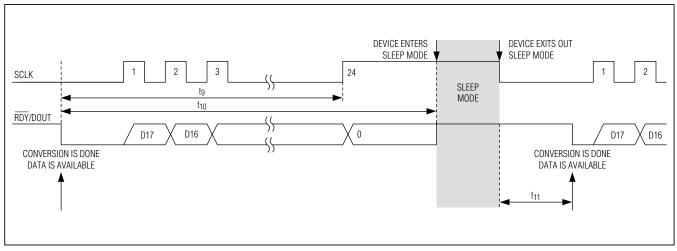


Figure 4. Timing Diagram for Data Read Followed by Sleep Mode Activation; Single-Conversion Timing

Data Read Followed by Sleep Mode

The MAX11212 can be put into sleep mode to save power between conversions. To activate the sleep mode, idle the SCLK high any time after the RDY/DOUT output goes low (that is, after conversion data is available). It is not required to read out all 18 bits before putting the part in sleep mode. Sleep mode is activated after the SCLK is held high (see Figure 4). The RDY/DOUT output is pulled high once the device enters sleep mode. To come out of sleep mode, pull SCLK low. After the sleep mode is deactivated (when the device wakes up), conversion starts again and RDY/DOUT goes low, indicating the next conversion data is available. See Figure 4.

Single-Conversion Mode

For operating the MAX11212 in single-conversion mode, activate and deactivate sleep mode between conversions as described in the *Data Read Followed by Sleep Mode* section). Single-conversion mode reduces power consumption by shutting down the device when idle between conversions. See Figure 4.

Single-Conversion Mode with

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

Self-Calibration at Wake-Up

The MAX11212 can be put in self-calibration mode immediately after wake-up from sleep mode. Selfcalibration at wake-up helps to compensate for temperature or supply changes if the device is shut down for extensive periods. To automatically start self-calibration at the end of sleep mode, all the data bits must be shifted out followed by 25th SCLK edge to pull RDY/DOUT high, and then on the 26th SCLK keep it high for as long as shutdown is desired. Once SCLK is pulled back low, the device automatically performs a self-calibration and, when the data is ready, the RDY/DOUT output goes low. See Figure 5. This also achieves the purpose of single conversions with self-calibration.

Figure 5. Timing Diagram for Sleep Mode Activation Followed by Self-Calibration at Wake-Up

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

Applications Information

See Figure 6 for the RTD temperature measurement circuit and Figure 7 for a resistive bridge measurement circuit.

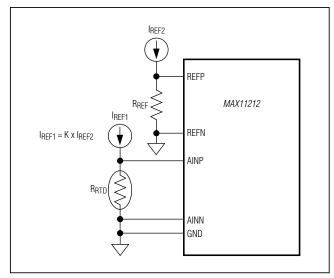


Figure 6. RTD Temperature Measurement Circuit

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns, go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
10 µMAX	U10+2	<u>21-0061</u>

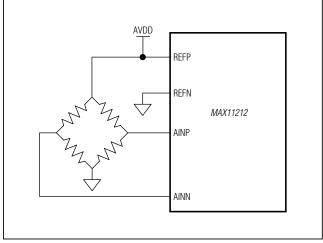


Figure 7. Resistive Bridge Measurement Circuit

18-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	4/10	Initial release	—

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

14

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2010 Maxim Integrated Products, Inc.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.