阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

Abstract

General Description The MAX1449 3.3V, 10-bit analog-to-digital converter (ADC) features a fully differential input, a pipelined 10stage ADC architecture with wideband track-and-hold (T/H), and digital error correction incorporating a fully differential signal path. The ADC is optimized for lowpower, high-dynamic performance in imaging and digital communications applications. The converter operates from a single 2.7 V to 3.6 V supply, consuming only 186 mW while delivering a 58.5 dB (typ) signal-to-noise ratio (SNR) at a 20 MHz input frequency. The fully differential input stage has a -3 dB 400 MHz bandwidth and may be operated with single-ended inputs. In addition to low operating power, the MAX1449 features a $5 \mu \mathrm{~A}$ power-down mode for idle periods. An internal 2.048 V precision bandgap reference is used to set the ADC's full-scale range. A flexible reference structure allow's the user to supply a buffered, direct, or externally derived reference for applications requiring increased accuracy or a different input voltage range. Lower speed, pin-compatible versions of the MAX1449 are also available. Refer to the MAX1444 data sheet for a 40 Msps version, the MAX1446 data sheet for a 60 Msps version, and the MAX1448 data sheet for 80Msps. The MAX1449 has parallel, offset binary, CMOS-compatible, three-state outputs that can be operated from 1.7 V to 3.6 V to allow flexible interfacing. The device is available in a $5 \mathrm{~mm} \times 5 \mathrm{~mm} 32$-pin TQFP package and is specified over the extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range.

Applications

Ultrasound Imaging
CCD Imaging
Baseband and IF Digitization
Digital Set-Top Boxes
Video Digitizing Applications

- Single 3.3V Operation
- Excellent Dynamic Performance
58.5 dB SNR at $\mathrm{f} \mathrm{fN}=20 \mathrm{MHz}$

72 dBc SFDR at $\mathrm{f} \mathrm{IN}=20 \mathrm{MHz}$

- Low Power

62mA (Normal Operation)
$5 \mu \mathrm{~A}$ (Shutdown Mode)

- Fully Differential Analog Input
- Wide 2Vp-p Differential Input Voltage Range
- 400MHz -3dB Input Bandwidth
- On-Chip 2.048V Precision Bandgap Reference
- CMOS-Compatible Three-State Outputs
- 32-Pin TQFP Package
- Evaluation Kit Available (MAX1448 EV Kit)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1449EHJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP

Pin-Compatible, Lower Speed Selection Table

PART	SAMPLING SPEED (Msps)
MAX1444	40
MAX1446	60
MAX1448	80

Functional Diagram

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

ABSOLUTE MAXIMUM RATINGS

$V_{D D}$, OV ${ }_{\text {DD }}$ to	,
OGND to GND	-0.3V to +0.3V
IN+, IN- to GND	-0.3V to VDD
REFIN, REFOUT, REFP, REFN, and COM to GND	.-0.3V to (VDD +0.3 V)
	-0.3V to ($\left.\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
D9-D0 to GND.	0.3V to (OV DD +0.3 V)

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
32-Pin TQFP (derate $18.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..... 1495.3 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{OV}\right.$ DD $=2 \mathrm{~V}, 0.1 \mu \mathrm{~F}$ and $1 \mu \mathrm{~F}$ capacitors from REFP, REFN, and COM to GND, $\mathrm{V}_{\text {REFIN }}=2.048 \mathrm{~V}$, REFOUT connected to REFIN through a $10 \mathrm{k} \Omega$ resistor, $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\text {P-P }}$ (differential with respect to $C O M$), $\mathrm{C}_{L}=10 \mathrm{pF}$ at digital outputs, $\mathrm{f}_{\mathrm{CLK}}=105 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. $\geq+25^{\circ} \mathrm{C}$ guaranteed by production test, $<+25^{\circ} \mathrm{C}$ guaranteed by design and characterization; typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution			10			Bits
Integral Nonlinearity	INL	$\mathrm{fiN}^{\prime}=7.5 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}} \geq+25^{\circ} \mathrm{C}$		± 0.75	± 2.4	LSB
Differential Nonlinearity	DNL	$\mathrm{f} / \mathrm{N}=7.5 \mathrm{MHz}$, no missing codes guaranteed, $\mathrm{T}_{\mathrm{A}} \geq+25^{\circ} \mathrm{C}$		± 0.5	± 1.0	LSB
Offset Error				$< \pm 1$	± 1.7	\% FS
Gain Error		$\mathrm{T}_{\mathrm{A}} \geq+25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}} \geq+25^{\circ} \mathrm{C}$		0	± 2	\% FS
ANALOG INPUT						
Input Differential Range	VIIFF	Differential or single-ended inputs		± 1.0		V
Common-Mode Voltage Range	$V_{\text {com }}$			$\begin{aligned} & V_{D D / 2} \\ & \pm 0.5 \end{aligned}$		V
Input Resistance	RIN	Switched capacitor load		20		k Ω
Input Capacitance	CIN			5		pF
CONVERSION RATE						
Maximum Clock Frequency	fCLK		105			MHz
Data Latency				5.5		Cycles
DYNAMIC CHARACTERISTICS (fCLK $=105.26 \mathrm{MHz}$, 4096-point FFT)						
Signal-to-Noise Ratio (Note 1)	SNR	$\mathrm{fIN}=7.5 \mathrm{MHz}$	55.9	58.5		dB
		$\mathrm{f} \mathrm{IN}=20 \mathrm{MHz}$	55.5	58.5		
		$\mathrm{fIN}=50 \mathrm{MHz}$		58		
Signal-to-Noise + Distortion (Up to 5th Harmonic) (Note 1)	SINAD	$\mathrm{fiN}_{\mathrm{I}}=7.5 \mathrm{MHz}$	55.3	58.2		dB
		$\mathrm{f} \mathrm{IN}=20 \mathrm{MHz}$	54.5	58.1		
		$\mathrm{f} \mathrm{IN}=50 \mathrm{MHz}$		57.6		
Spurious-Free Dynamic Range (Note 1)	SFDR	$\mathrm{fIN}=7.5 \mathrm{MHz}$	62	72		dBc
		$\mathrm{f} / \mathrm{N}=20 \mathrm{MHz}$	61	72		
		$\mathrm{f} \mathrm{IN}=50 \mathrm{MHz}$		70		

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=3.3 \mathrm{~V}, O V_{D D}=2 \mathrm{~V}, 0.1 \mu \mathrm{~F}\right.$ and $1 \mu \mathrm{~F}$ capacitors from REFP, REFN, and COM to GND, $\mathrm{V}_{\text {REFIN }}=2.048 \mathrm{~V}$, REFOUT connected to REFIN through a $10 \mathrm{k} \Omega$ resistor, $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ (differential with respect to COM), $\mathrm{CL}_{\mathrm{L}}=10 \mathrm{pF}$ at digital outputs, $\mathrm{f} C L K=105 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. $\geq+25^{\circ} \mathrm{C}$ guaranteed by production test, $<+25^{\circ} \mathrm{C}$ guaranteed by design and characterization; typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Third-Harmonic Distortion (Note 1)	HD3	$\mathrm{fiN}^{\mathrm{I}}=7.5 \mathrm{MHz}$		-72		dBc
		$\mathrm{f} / \mathrm{N}=20 \mathrm{MHz}$		-72		
		$\mathrm{f} \mathrm{N}=50 \mathrm{MHz}$		-70		
Intermodulation Distortion (First 5 Odd-Order IMDs) (Note 2)	IMD	$\begin{aligned} & \mathrm{f}_{1}=38 \mathrm{MHz} \text { at }-6.5 \mathrm{~dB} \text { FS } \\ & \mathrm{f}_{2}=42 \mathrm{MHz} \text { at }-6.5 \mathrm{~dB} \text { FS } \end{aligned}$		-76		dBc
Third-Order Intermodulation Distortion (Note 2)	IM3	$\begin{aligned} & \mathrm{f}_{1}=38 \mathrm{MHz} \text { at }-6.5 \mathrm{~dB} \mathrm{FS} \\ & \mathrm{f}_{2}=42 \mathrm{MHz} \text { at }-6.5 \mathrm{~dB} \mathrm{FS} \end{aligned}$		-76		dBc
Total Harmonic Distortion (First 5 Harmonics) (Note 1)	THD	$\mathrm{fIN}=7.5 \mathrm{MHz}$		-70	-62	dBc
		$\mathrm{f} / \mathrm{N}=20 \mathrm{MHz}$		-70	-60	
		$\mathrm{f} / \mathrm{N}=50 \mathrm{MHz}$		-70		
Small-Signal Bandwidth		Input at -20dB FS, differential inputs		500		MHz
Full-Power Bandwidth	FPBW	Input at -0.5dB FS, differential inputs		400		MHz
Aperture Delay	$t_{\text {AD }}$			1		ns
Aperture Jitter	$t_{\text {AJ }}$			2		pSRMS
Overdrive Recovery Time		For $1.5 \times$ full-scale input		2		ns
Differential Gain				± 1		\%
Differential Phase				± 0.25		Degrees
Output Noise		$\mathrm{IN}+=\mathrm{IN}-=\mathrm{COM}$		0.2		LSBRMS
INTERNAL REFERENCE						
Reference Output Voltage	REFOUT			$\begin{aligned} & 2.048 \\ & \pm 1 \% \end{aligned}$		V
Reference Temperature Coefficient	TCref			60		ppm/ ${ }^{\circ} \mathrm{C}$
Load Regulation				1.25		$\mathrm{mV} / \mathrm{mA}$
BUFFERED EXTERNAL REFERENCE (VREFIN $=2.048 \mathrm{~V}$)						
REFIN Input Voltage				2.048		
Positive Reference Output Voltage				2.012		V
Negative Reference Output Voltage				0.988		V
Common-Mode Level				VDD/2		V
Differential Reference Output Voltage Range	VREFIN	$\Delta \mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REFP }}-\mathrm{V}_{\text {REFN }}, \mathrm{T}_{\mathrm{A}} \geq+25^{\circ} \mathrm{C}$	0.98	1.024	1.07	V
REFIN Resistance	$V_{\text {REFP }}$			>50		$\mathrm{M} \Omega$

10-Bit, 105Msps, Single 3.3V, Low-Power
 ADC with Internal Reference

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, O V_{D D}=2 \mathrm{~V}, 0.1 \mu \mathrm{~F}\right.$ and $1 \mu \mathrm{~F}$ capacitors from REFP, REFN, and COM to GND, $\mathrm{V}_{\text {REFIN }}=2.048 \mathrm{~V}$, REFOUT connected to REFIN through a $10 \mathrm{k} \Omega$ resistor, $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ (differential with respect to $C O M$), $C_{L}=10 \mathrm{pF}$ at digital outputs, $\mathrm{fCLK}=105 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. $\geq+25^{\circ} \mathrm{C}$ guaranteed by production test, $<+25^{\circ} \mathrm{C}$ guaranteed by design and characterization; typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Maximum REFP, COM Source Current	$V_{\text {Ref }}$		5		mA
Maximum REFP, COM Sink Current	VCOM		-250		$\mu \mathrm{A}$
Maximum REFN Source Current	Isource		250		$\mu \mathrm{A}$
Maximum REFN Sink Current	ISINK		-5		mA
UNBUFFERED EXTERNAL REFERENCE (VREFIN = AGND, reference voltage applied to REFP, REFN, and COM)					
REFP, REFN Input Resistance	Rrefp, Rrefn	Measured between REFP and COM and REFN and COM	4		k Ω
REFP, REFN, COM Input Capacitance	Cin		15		pF
Differential Reference Input Voltage Range	$\Delta \mathrm{V}_{\text {REF }}$	$\Delta \mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REFP }}-\mathrm{V}_{\text {REF }}$	$\begin{array}{r} 1.024 \\ \pm 10 \% \end{array}$		V
COM Input Voltage Range	VCOM		VDD 2 $\pm 10 \%$		V
REFP Input Voltage	$V_{\text {REFP }}$		$\begin{gathered} \mathrm{V}_{\mathrm{COM}}+ \\ \Delta \mathrm{V}_{\text {REF }} / 2 \end{gathered}$		V
REFN Input Voltage	$V_{\text {REF }}$		$\begin{gathered} \mathrm{V}_{\mathrm{COM}}- \\ \Delta \mathrm{V}_{\text {REF }} / 2 \end{gathered}$		V
DIGITAL INPUTS (CLK, PD, $\overline{\mathrm{OE}})$					
Input High Threshold	V_{IH}	CLK	$\begin{aligned} & 0.8 x \\ & V_{D D} \end{aligned}$		V
		PD, $\overline{O E}$	$\begin{aligned} & 0.8 x \\ & V_{D D} \end{aligned}$		
Input Low Threshold	VIL	CLK		$\begin{aligned} & 0.2 x \\ & V_{D D} \end{aligned}$	V
		PD, $\overline{O E}$		$\begin{aligned} & 0.2 x \\ & V_{D D} \end{aligned}$	
Input Hysteresis	VHYST		0.1		V
Input Leakage	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}=O \mathrm{~V}_{\mathrm{DD}}$		± 5	$\mu \mathrm{A}$
	IIL	$\mathrm{V}_{\text {IL }}=0$	± 5		
Input Capacitance	CIN		5		pF

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=3.3 \mathrm{~V}, O V_{D D}=2 \mathrm{~V}, 0.1 \mu \mathrm{~F}\right.$ and $1 \mu \mathrm{~F}$ capacitors from REFP, REFN, and COM to GND, $\mathrm{V}_{\text {REFIN }}=2.048 \mathrm{~V}$, REFOUT connected to REFIN through a $10 \mathrm{k} \Omega$ resistor, $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ (differential with respect to COM), $\mathrm{CL}_{L}=10 \mathrm{pF}$ at digital outputs, $\mathrm{f}_{\mathrm{CLK}}=105 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $T_{\text {MAX }}$, unless otherwise noted. $\geq+25^{\circ} \mathrm{C}$ guaranteed by production test, $<+25^{\circ} \mathrm{C}$ guaranteed by design and characterization; typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL OUTPUTS (D9-D0)						
Output Voltage Low	VOL	ISINK $=200 \mu \mathrm{~A}$			0.2	V
Output Voltage High	VOH	IsOURCE $=200 \mu \mathrm{~A}$	$\begin{aligned} & O V_{D D} \\ & -0.2 \end{aligned}$			V
Three-State Leakage Current	ILEAK	$\overline{\mathrm{OE}}=0 V_{\mathrm{DD}}$			± 10	$\mu \mathrm{A}$
Three-State Output Capacitance	Cout	$\overline{\mathrm{OE}}=\mathrm{OV}_{\mathrm{DD}}$		5		pF
POWER REQUIREMENTS						
Analog Supply Voltage	VDD		2.7	3.3	3.6	V
Output Supply Voltage	OVDD		1.7	3.3	3.6	V
Analog Supply Current	IVDD	Operating, $\mathrm{f}_{\mathrm{I}} \mathrm{N}=20 \mathrm{MHz}$ at -0.5 dB FS		58	74	mA
		Shutdown, clock idle, PD $=\overline{\mathrm{OE}}=\mathrm{OV}$ DD		4	15	$\mu \mathrm{A}$
Output Supply Current	IovDD	Operating, $C_{L}=15 \mathrm{pF}, \mathrm{f} / \mathrm{N}=20 \mathrm{MHz}$ at -0.5dB FS		10		mA
		Shutdown, clock idle, $\mathrm{PD}=\overline{\mathrm{OE}}=\mathrm{OV} \mathrm{DD}$		1	20	$\mu \mathrm{A}$
Power Supply Rejection	PSRR	Offset		± 0.1		mV / V
		Gain		± 0.1		\%/V
TIMING CHARACTERISTICS						
CLK Rise-to-Output Data Valid	tDO	Figure 6 (Note 3)		5	8	ns
$\overline{\text { OE Fall-to-Output Enable }}$	tenable	Figure 5		10		ns
$\overline{\mathrm{OE}}$ Rise-to-Output Disable	tDISABLE	Figure 5		15		ns
CLK Pulse Width High	tch	Figure 6, clock period 9.52ns		$\begin{gathered} 4.76 \\ \pm 0.47 \end{gathered}$		ns
CLK Pulse Width Low	tcL	Figure 6, clock period 9.52ns		$\begin{gathered} 4.76 \\ \pm 0.47 \end{gathered}$		ns
Wake-Up Time	twake	(Note 4)		1.5		$\mu \mathrm{s}$

Note 1: SNR, SINAD, THD, SFDR, and HD3 are based on an analog input voltage of -0.5 dB FS referenced to a 1.024 V full-scale input voltage range.
Note 2: Intermodulation distortion is the total power of the intermodulation products relative to the individual carrier. This number is 6 dB better if referenced to the two-tone envelope.
Note 3: Digital outputs settle to $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$.
Note 4: With REFIN driven externally, REFP, COM, and REFN are left floating while powered down.

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

Typical Operating Characteristics
$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{OV} D \mathrm{DD}=2.0 \mathrm{~V}\right.$, internal reference, differential input at $-0.5 \mathrm{~dB} F \mathrm{FS}, \mathrm{fCLK}=106.2345 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}} \approx 10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

FFT PLOT (fin = 7.5MHz,
8192-POINT FFT, DIFFERENTIAL INPUT)

FFT PLOT ($\mathrm{f} / \mathrm{N}=7.5 \mathrm{MHz}$, 8192-POINT FFT, SINGLE-ENDED INPUT)

FFT PLOT (fiN = 19.99MHz,
8192-POINT FFT, DIFFERENTIAL INPUT)

FFT PLOT (fiN = 19.99MHz, 8192-POINT FFT, SINGLE-ENDED INPUT)

SIGNAL-TO-NOISE RATIO vs. ANALOG INPUT FREQUENCY

Analog input frequency (MHz)

FFT PLOT (fin $=50.12 \mathrm{MHz}$, 8192-POINT FFT, DIFFERENTIAL INPUT)

twu-tune intermudulation (8192-POINT IMD, DIFFERENTIAL INPUT)

TOTAL HARMONIC DISTORTION vs. ANALOG INPUT FREQUENCY

ANALOG INPUT FREQUENCY (MHz)

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

Typical Operating Characteristics (continued)
$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{OV}\right.$ DD $=2.0 \mathrm{~V}$, internal reference, differential input at $-0.5 \mathrm{~dB} F \mathrm{FS}, \mathrm{fCLK}=106.2345 \mathrm{MHz}, \mathrm{CL}_{\mathrm{L}} \approx 10 \mathrm{PF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SPURIOUS-FREE DYNAMIC RANGE vs. ANALOG INPUT POWER ($\mathbf{f} / \mathrm{N}=19 \mathrm{MHz}$)

FULL-POWER INPUT BANDWIDTH vs. ANALOG INPUT FREQUENCY, SINGLE ENDED

SIGNAL-TO-NOISE RATIO
vs. ANALOG INPUT POWER (fin = 19MHz)

SPURIOUS-FREE DYNAMIC RANGE
vs. TEMPERATURE

SMALL-SIGNAL INPUT BANDWIDTH vs. ANALOG INPUT FREQUENCY, SINGLE ENDED

TOTAL HARMONIC DISTORTION
vs. ANALOG INPUT POWER (fin = 19MHz)

SIGNAL-TO-NOISE vs. TEMPERATURE

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{OV} D \mathrm{DD}=2.0 \mathrm{~V}\right.$, internal reference, differential input at $-0.5 \mathrm{~dB} F S, \mathrm{f}_{\mathrm{CLK}}=106.2345 \mathrm{MHz}, \mathrm{CL}_{\mathrm{L}} \approx 10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

Typical Operating Characteristics (continued)
$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{OV}\right.$ DD $=2.0 \mathrm{~V}$, internal reference, differential input at $-0.5 \mathrm{~dB} F \mathrm{~F}, \mathrm{f}_{\mathrm{CLK}}=106.2345 \mathrm{MHz}, \mathrm{CL}_{\mathrm{L}} \approx 10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

10-Bit, 105Msps, Single 3.3V, Low-Power
 ADC with Internal Reference

Pin Description

PIN	NAME	FUNCTION
1	REFN	Lower Reference. Conversion range is $\pm\left(\mathrm{V}_{\text {REFP }}-\mathrm{V}_{\text {REFN }}\right)$. Bypass to GND with a $>0.1 \mu \mathrm{~F}$ capacitor.
2	COM	Common-Mode Voltage Output. Bypass to GND with a > $0.1 \mu \mathrm{~F}$ capacitor.
3, 9, 10	VDD	Analog Supply Voltage. Bypass to GND with a capacitor combination of $2.2 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$.
$\begin{gathered} 4,5,8,11 \\ 14,30 \end{gathered}$	GND	Analog Ground
6	$\mathrm{IN}+$	Positive Analog Input. For single-ended operation connect signal source to IN+.
7	IN-	Negative Analog Input. For single-ended operation connect IN- to COM.
12	CLK	Conversion Clock Input
13	PD	Power Down Input. High: Power-down mode Low: Normal operation
15	$\overline{\mathrm{OE}}$	Output Enable Input. High: Digital outputs disabled Low: Digital outputs enabled
16-20	D9-D5	Three-State Digital Outputs D9-D5. D9 is the MSB.
21	OVDD	Output Driver Supply Voltage. Bypass to GND with a capacitor combination of $2.2 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$.
22	T.P.	Test Point. Do not connect.
23	OGND	Output Driver Ground
24-28	D4-D0	Three-State Digital Outputs D4-D0. D0 is the LSB.
29	REFOUT	Internal Reference Voltage Output. May be connected to REFIN through a resistor or a resistordivider.
31	REFIN	Reference Input. $\mathrm{V}_{\text {REFIN }}=2 \times\left(\mathrm{V}_{\text {REFP }}-\mathrm{V}_{\text {REF }}\right)$. Bypass to GND with a $>0.1 \mu \mathrm{~F}$ capacitor.
32	REFP	Upper Reference. Conversion range is \pm (VREFP - $\mathrm{V}_{\text {REFN }}$). Bypass to GND with $\mathrm{a}>0.1 \mu \mathrm{~F}$ capacitor.

10-Bit, 105Msps, Single 3.3V, Low-Power
 ADC with Internal Reference

Detailed Description

The MAX1449 uses a 10-stage, fully differential, pipelined architecture (Figure 1), that allows for highspeed conversion while minimizing power consumption. Each sample moves through a pipeline stage every half-clock cycle. Counting the delay through the output latch, the clock-cycle latency is 5.5 .
A 1.5-bit (2-comparator) flash ADC converts the held input voltage into a digital code. The following digital-to-analog converter (DAC) converts the digitized result back into an analog voltage, which is then subtracted from the original held input signal. The resulting error signal is then multiplied by two, and the product is passed along to the next pipeline stage where the process is repeated until the signal has been processed by all 10 stages. Each stage provides a 1bit resolution. Digital error-correction compensates for ADC comparator offsets in each pipeline stage and ensures no missing codes.

Input Track-and-Hold (T/H) Circuit

Figure 2 displays a simplified functional diagram of the input track-and-hold (T/H) circuit in both track and hold mode. In track mode, switches S1, S2a, S2b, S4a, S4b, S5a, and S5b are closed. The fully differential circuit samples the input signal onto the two capacitors C2a and C2b through switches S4a and S4b. Switches S2a and S2b set the common mode for the amplifier input,

Figure 1. Pipelined Architecture-Stage Blocks
and open simultaneously with S 1 , sampling the input waveform. Switches S4a and S4b are then opened before switches S3a and S3b connect capacitors C1a and C1b to the output of the amplifier and switch S4c is closed. The resulting differential voltage is held on capacitors C2a and C2b. The amplifier is used to charge capacitors C1a and C1b to the same values originally held on C2a and C2b. This value is then presented to the first stage quantizer and isolates the pipeline from the fast-changing input. The wide input bandwidth T/H amplifier allows the MAX1449 to track and sample/hold analog inputs of high frequencies beyond Nyquist. The analog inputs $\mathrm{IN}+$ and IN - can be driven either differentially or single-ended. It is recommended to match the impedance of $\mathrm{IN}+$ and IN - and set the common-mode voltage to mid-supply (VDD/2) for optimum performance.

Analog Input and Reference Configuration

The full-scale range of the MAX1449 is determined by the internally generated voltage difference between REFP ($\mathrm{V}_{\mathrm{DD}} / 2+\mathrm{V}_{\mathrm{REFI}} / 4$) and REFN (VDD/2 - $\mathrm{V}_{\text {REFIN }} / 4$). The ADC's full-scale range is user-adjustable through the REFIN pin, which provides a high input impedance for this purpose. REFOUT, REFP, COM (VDD/2), and REFN are internally buffered low-impedance outputs.

Figure 2. Internal T/H Circuit

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

The MAX1449 provides three modes of reference operation:

- Internal reference mode
- Buffered external reference mode
- Unbuffered external reference mode

In internal reference mode, the internal reference output REFOUT can be tied to the REFIN pin through a resistor (e.g., $10 \mathrm{k} \Omega$) or resistor-divider, if an application requires a reduced full-scale range. For stability purposes it is recommended to bypass REFIN with a $>10 n F$ capacitor to GND.
In buffered external reference mode, the reference voltage levels can be adjusted externally by applying a stable and accurate voltage at REFIN. In this mode, REFOUT may be left open or connected to REFIN through $\mathrm{a}>10 \mathrm{k} \Omega$ resistor.
In unbuffered external reference mode, REFIN is connected to GND thereby deactivating the on-chip buffers of REFP, COM, and REFN. With their buffers shut down, these pins become high impedance and can be driven by external reference sources.

Clock Input (CLK)

The MAX1449's CLK input accepts CMOS-compatible clock signals. Since the inter-stage conversion of the device depends on the repeatability of the rising and falling edges of the external clock, use a clock with low jitter and fast rise and fall times (<2ns). In particular, sampling occurs on the falling edge of the clock signal, mandating this edge to provide lowest possible jitter. Any significant aperture jitter would limit the SNR performance of the ADC as follows:

$$
S N R=20 \times \log \left(\frac{1}{2 \times \pi \times f_{I N} \times t A J}\right)
$$

where fin represents the analog input frequency and tAJ is the time of the aperture jitter.

Clock jitter is especially critical for undersampling applications. The clock input should always be considered as an analog input and routed away from any analog input or other digital signal lines.
The MAX1449 clock input operates with a voltage threshold set to $\mathrm{V}_{\mathrm{DD}} / 2$. Clock inputs with a duty cycle other than 50% must meet the specifications for high and low periods as stated in the Electrical Characteristics. (See Figures 3 (3a, 3b) and 4 (4a, 4b) for the relationship between spurious-free dynamic range (SFDR), signal-to-noise ratio (SNR), total harmonic distortion (THD), or signal-to-noise plus distortion (SINAD) vs. duty cycle.)

Output Enable ($\overline{O E}$), Power Down (PD), and Output Data (D0-D9)

 All data outputs, D0 (LSB) through D9 (MSB), are TTL/CMOS logic-compatible. There is a 5.5 clock-cycle latency between any particular sample and its valid output data. The output coding is straight offset binary (Table 1). With $\overline{O E}$ and PD high, the digital outputs enter a high-impedance state. If $\overline{\mathrm{OE}}$ is held low with PD high, the outputs are latched at the last value prior to the power down.The capacitive load on the digital outputs D0 through D9 should be kept as low as possible ($<15 \mathrm{pF}$), to avoid large digital currents that could feed back into the analog portion of the MAX1449, thereby degrading its dynamic performance. The use of buffers on the digital outputs of the ADC can further isolate the digital outputs from heavy capacitive loads. To further improve the dynamic performance of the MAX1449, small series resistors (e.g., 100 Ω) may be added to the digital output paths, close to the ADC. Figure 5 displays the timing relationship between output enable and data output valid as well as power-down/wake-up and data output valid.

Table 1. MAX1449 Output Code for Differential Inputs

DIFFERENTIAL INPUT VOLTAGE*	DIFFERENTIAL INPUT	STRAIGHT OFFSET BINARY
V $_{\text {REF }} \times 511 / 512$	+ Full Scale -1LSB	1111111111
V REF $^{*} \times 510 / 512$	+ Full Scale -2LSB	1111111110
$V_{\text {REF }} \times 1 / 512$	+1 LSB	1000000001
0	Bipolar Zero	1000000000
$-V_{\text {REF }} \times 1 / 512$	-1 LSB	0111111111
$-V_{\text {REF }} \times 511 / 512$	Negative Full Scale +1 LSB	0000000001
$-V_{\text {REF }} \times 512 / 512$	Negative Full Scale	0000000000

[^0]
10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

Figure 3a. Spurious Free Dynamic Range vs. Clock Duty Cycle (Differential Input)

Figure 3b. Signal-to-Noise Ratio vs. Clock Duty Cycle (Differential Input)

$\frac{3}{2}$

Figure 4a. Total Harmonic Distortion vs. Clock Duty Cycle (Differential Input)

Figure 4b. Signal-to-Noise Plus Distortion vs. Clock Duty Cycle (Differential Input)

Figure 5. Output Enable Timing

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

System Timing Requirements

Figure 6 depicts the relationship between the clock input, analog input, and data output. The MAX1449 samples at the falling edge of the input clock. Output data is valid on the rising edge of the input clock. The output data has an internal latency of 5.5 clock cycles. Figure 6 also determines the relationship between the input clock parameters and the valid output data.

Applications Information

Figure 7 depicts a typical application circuit containing a single-ended to differential converter. The internal reference provides a VDD/2 output voltage for level shifting purposes. The input is buffered and then split to a voltage follower and inverter. A low-pass filter, to suppress some of the wideband noise associated with high-speed op amps, follows the op amps. The user may select the RISO and CIN values to optimize the filter performance, to suit a particular application. For the application in Figure 7, a RISO of 50Ω is placed before the capacitive load to prevent ringing and oscillation. The 22pF CIN capacitor acts as a small bypassing capacitor.

Using Transformer Coupling

An RF transformer (Figure 8) provides an excellent solution to convert a single-ended source signal to a fully differential signal, required by the MAX1449 for optimum performance. Connecting the center tap of the transformer to COM provides a VDD/2 DC level shift to the input. Although a 1:1 transformer is shown, a stepup transformer may be selected to reduce the drive requirements. A reduced signal swing from the input driver, such as an op amp, may also improve the overall distortion.
In general, the MAX1449 provides better SFDR and THD with fully differential input signals than singleended drive, especially for very high input frequencies. In differential input mode, even-order harmonics are lower as both inputs (IN+, IN-) are balanced, and each of the inputs only requires half the signal swing compared to single-ended mode.

Single-Ended AC-Coupled Input Signal Figure 9 shows an AC-coupled, single-ended application. The MAX4108 op amp provides high speed, high bandwidth, low-noise, and low-distortion to maintain the integrity of the input signal.

Figure 6. System and Output Timing Diagram

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

Figure 7. Typical Application Circuit Using the Internal Reference

Figure 8. Using a Transformer for AC-Coupling

Figure 9. Single-Ended AC-Coupled Input

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

NOTE: ONE FRONT-END REFERENCE CIRCUIT DESIGN MAY BE USED WITH UP TO 1000 ADCs.

Figure 10. Buffered External Reference Drives Up to 1000 ADCs

Buffered External Reference Drives

 Multiple ADCsMultiple-converter systems based on the MAX1449 are well suited for use with a common reference voltage. The REFIN pin of those converters can be connected directly to an external reference source. A precision bandgap reference like the MAX6062 generates an external DC level of 2.048V (Figure 10), and exhibits a noise voltage density of $150 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. Its output passes through a 1-pole lowpass filter (with 10 Hz cutoff fre-
quency) to the MAX4250, which buffers the reference before its output is applied to a second 10 Hz lowpass filter. The MAX4250 provides a low offset voltage (for high-gain accuracy) and a low noise level. The passive 10 Hz filter following the buffer attenuates noise produced in the voltage reference and buffer stages. This filtered noise density, which decreases for higher frequencies, meets the noise levels specified for precision ADC operation.

10－Bit，105Msps，Single 3．3V，Low－Power ADC with Internal Reference

Figure 11．Unbuffered External Reference Drives Up to 32 ADCs

Unbuffered External Reference Drives

 Multiple ADCsConnecting each REFIN to analog ground disables the internal reference of each device，allowing the internal reference ladders to be driven directly by a set of external reference sources．Followed by a 10 Hz lowpass filter and precision voltage－divider（Figure 11），the MAX6066 gen－ erates a DC level of 2.500 V ．The buffered outputs of this divider are set to $2.0 \mathrm{~V}, 1.5 \mathrm{~V}$ ，and 1.0 V ，with an accuracy that depends on the tolerance of the divider resistors．The three voltages are buffered by the MAX4252，which pro－ vides low noise and low DC offset．The individual voltage followers are connected to 10 Hz lowpass filters，which fil－
ter both the reference voltage and amplifier noise to a level of $3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ ．The 2.0 V and 1.0 V reference voltages set the differential full－scale range of the associated ADCs at $2 \mathrm{VP-P}$ ．The 2.0 V and 1.0 V buffers drive the ADC＇s internal ladder resistances between them．Note that the common power supply for all active components removes any concern regarding power－supply sequenc－ ing when powering up or down．With the outputs of the MAX4252 matching better than 0.1% ，the buffers and subsequent lowpass filters can be replicated to support as many as 32 ADCs．For applications that require more than 32 matched ADCs，a voltage reference and divider string common to all converters is highly recommended．

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

Grounding, Bypassing, and Board Layout

The MAX1449 requires high-speed board layout design techniques. Locate all bypass capacitors as close to the device as possible, preferably on the same side as the ADC, using surface mount devices for minimum inductance. Bypass VDD, REFP, REFN, and COM with two parallel $0.1 \mu \mathrm{~F}$ ceramic capacitors and a $2.2 \mu \mathrm{~F}$ bipolar capacitor to GND. Follow the same rules to bypass the digital supply (OVDD) to OGND. Multi-layer boards with separated ground and power planes produce the highest level of signal integrity. Consider the use of a split ground plane arranged to match the physical location of the analog ground (GND) and the digital output driver ground (OGND) on the ADC's package. The two ground planes should be joined at a single point, such that the noisy digital ground currents do not interfere with the analog ground plane. The ideal location of this connection can be determined experimentally at a point along the gap between the two ground planes, which produces optimum results. Make this connection with a low-value, surface-mount resistor (1Ω to 5Ω), a ferrite bead or a direct short. Alternatively, all ground pins could share the same ground plane, if the ground plane is sufficiently isolated from any noisy digital systems ground plane (e.g., downstream output buffer or DSP ground plane). Route high-speed digital signal traces away from sensitive analog traces. Keep all signal lines short and free of 90° turns.

Static Parameter Definitions

Integral Nonlinearity (INL)
Integral nonlinearity is the deviation of the values on an actual transfer function from a straight line. This straight line can be either a best straight-line fit or a line drawn between the endpoints of the transfer function, once offset and gain errors have been nullified. The static linearity parameters for the MAX1449 are measured using the best straight-line fit method.

Differential Nonlinearity (DNL)

Differential nonlinearity is the difference between an actual step width and the ideal value of 1LSB. A DNL error specification of less than 1LSB guarantees no missing codes and a monotonic transfer function.

Dynamic Parameter Definitions
Aperture Jitter

Figure 12 depicts the aperture jitter (t_{AJ}), which is the sample-to-sample variation in the aperture delay.

Aperture Delay
Aperture delay (t_{AD}) is the time defined between the falling-edge of the sampling clock and the instant when an actual sample is taken (Figure 12)

Signal-to-Noise Ratio (SNR)
For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR is the ratio of the fullscale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum ana-log-to-digital noise is caused by quantization error only and results directly from the ADC's resolution (N Bits):

$$
\operatorname{SNR}(\mathrm{MAX})=6.02 \times \mathrm{N}+1.76
$$

In reality, there are other noise sources besides quantization noise: thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset.

Signal-to-Noise Plus Distortion (SINAD)
SINAD is computed by taking the ratio of the RMS signal to all spectral components minus the fundamental and the DC offset.

Effective Number of Bits (ENOB)
ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quantization noise only. ENOB is computed from:

Total Harmonic Distortion (THD)
THD is typically the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as:

$$
T H D=20 \times \log \left(\frac{\sqrt{\left(V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}\right)}}{V_{1}}\right)
$$

where V_{1} is the fundamental amplitude, and V_{2} through V_{5} are the amplitudes of the 2nd- through 5th-order harmonics.

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

Figure 12. T/H Aperture Timing
Spurious-Free Dynamic Range (SFDR)
SFDR is the ratio expressed in decibels of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest spurious component, excluding DC offset.

Intermodulation Distortion (IMD)
The two-tone IMD is the ratio expressed in decibels of either input tone to the worst 3rd-order (or higher) intermodulation products. The individual input tone levels are at -6.5 dB full scale and their envelope is at -0.5 dB full scale.

Pin Configuration

Chip Information
TRANSISTOR COUNT: 5684
PROCESS: CMOS

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

10-Bit, 105Msps, Single 3.3V, Low-Power ADC with Internal Reference

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NDTES:

1. ALL DIMENSIONING AND TQLERANCING CONFIRM TI ANSI Y14.5-1982.
. DATUM PLANE EH- IS LICATED AT MILD PARTING LINE AND CIINCIDENT WITH LEAD, WHERE LEAD EXITS PLAStic body at bottam af parting Line.
2. DIMENSIINS DI AND E1 DO NOT INCLUDE MILD PROTRUSION. ALLOWABLE MILD PROTRUSION IS 0.25 MM ON D1 AND E1 DIMENSIONS.
3. THE TOP OF PACKAGE IS SMALLER THAN THE BOTTOM DF PACKAGE BY 0.15 MILLIMETERS.
4. DIMENSIIN b DOES NDT INCLUDE DAMBAR PROTRUSION. ALLIDWABLE DAMBAR PROTRUSIDN SHALL BE 0.08 MM TDTAL IN EXCESS DF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION.
5. ALL DIMENSIONS ARE IN MILLIMETERS.
6. THIS OUTLINE CINFORMS TO JEDEC PUBLICATION 95, REGISTRATION MS-026.
7. LEADS SHALL BE CDPLANAR WITHIN .004 INCH.
8. TOPMARK SHOWN IS FIR PACKAGE DRIENTATION REFERENCE \quad INLY.

	JEDEC VARIATIDNS DDMENSIDNS IN MILLIMETERS	
	AAA	
	$5 \times 5 \times 1.0 \mathrm{MM}$	
	MIN.	MAX.
A	$-X$	1.20
A_{1}	0.05	0.15
A_{2}	0.95	1.05
D	6.80	7.20
D_{1}	4.80	5.20
E	6.80	7.20
E_{1}	4.80	5.20
L	0.45	0.75
N	32	
e	0.50	
b	0.17	BSC.
b1	0.17	0.27
c	0.09	0.23
c1	0.09	0.16

[^1]
[^0]: ${ }^{*} V_{\text {REF }}=V_{\text {REFP }}=V_{\text {REFN }}$

[^1]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

