阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

Abstract

General Description The MAX1206 is a 3.3V, 12-bit analog-to-digital converter (ADC) featuring a fully differential wideband track-andhold (T/H) input, driving the internal quantizer. The MAX1206 is optimized for low power, small size, and high dynamic performance. This ADC operates from a single 3.0 V to 3.6 V supply, consuming only 159 mW , while delivering a typical signal-to-noise ratio (SNR) performance of 68.6 dB at a 20 MHz input frequency. The T/H-driven input stage accepts single-ended or differential inputs. In addition to low operating power, the MAX1206 features a 0.15 mW power-down mode to conserve power during idle periods. A flexible reference structure allows the MAX1206 to use its internal precision bandgap reference or accept an externally applied reference. A common-mode reference is provided to simplify design and reduce external component count in differential analog input circuits.

The MAX1206 supports both a single-ended and differential input clock drive. Wide variations in the clock duty cycle are compensated with the ADC's internal duty-cycle equalizer. The MAX1206 features parallel, CMOS-compatible outputs. The digital output format is pin selectable to be either two's complement or Gray code. A data-valid indicator eliminates external components that are normally required for reliable digital interfacing. A separate power input for the digital outputs accepts a voltage from 1.7 V to 3.6 V for flexible interfacing with various logic levels. The MAX1206 is available in a $6 \mathrm{~mm} \times 6 \mathrm{~mm} \times 0.8 \mathrm{~mm}, 40-$ pin thin QFN package with exposed paddle (EP), and is specified for the extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range. Refer to the MAX1209 and MAX1211 (see Pin-Compatible Higher/Speed Versions table) for applications that require high dynamic performance for IF input frequencies.

Applications
Communication Receivers
Cellular, LMDS, Point-to-Point Microwave, MMDS, HFC, WLAN
Ultrasound and Medical Imaging
Portable Instrumentation
Low-Power Data Acquisition

Features

- Excellent Dynamic Performance
68.6dB SNR at $\mathrm{f} / \mathrm{N}=20 \mathrm{MHz}$

90 dBc SFDR at $\mathrm{fIN}=20 \mathrm{MHz}$

- Low-Power Operation

159mW at 3.0V (Single-Ended Clock)
181 mW at 3.3V (Single-Ended Clock)
198mW at 3.3V (Differential Clock)

- Differential or Single-Ended Clock
- Accepts 20\% to 80\% Clock Duty Cycle
- Fully Differential or Single-Ended Analog Input
- Adjustable Full-Scale Analog Input Range
- Common-Mode Reference
- Power-Down Mode
- CMOS-Compatible Outputs in Two’s Complement or Gray Code
- Data-Valid Indicator Simplifies Digital Design
- Out-of-Range and Data-Valid Indicators
- Miniature, 40-Pin Thin QFN Package with Exposed Paddle
- Pin-Compatible, IF Sampling ADC Available (MAX1211ETL)
- Evaluation Kit Available (Order MAX1211EVKIT)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1206ETL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Thin QFN $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$

Pin-Compatible Higher Speed Versions

PART	SPEED GRADE (Msps)	TARGET APPLICATION
MAX1206	40	Baseband
MAX1207	65	Baseband
MAX1208	80	Baseband
MAX1211	65	IF
MAX1209	80	IF

Pin Configuration appears at end of data sheet.

40Msps, 12-Bit ADC

ABSOLUTE MAXIMUM RATINGS

VDD to GND \qquad $-0.3 V$ to the lower of (VDD +0. ..-0.3 V to +3.6 V
OV DD to $G N D$........-0.3V to the lower of ($\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$) and +3.6 V INP, INN to GND ...-0.3V to the lower of ($\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$) and +3.6 V REFIN, REFOUT, REFP, REFN,

COM to GND.....-0.3V to the lower of ($\mathrm{V} D \mathrm{DD}+0.3 \mathrm{~V}$) and +3.6 V CLKP, CLKN, CLKTYP, G/T, DCE,

PD to GND-0.3V to the lower of ($\mathrm{V} D \mathrm{DD}+0.3 \mathrm{~V}$) and +3.6 V D11-D0, I.C., DAV, DOR to GND-0.3V to (OVDD + 0.3V)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OV}_{\mathrm{DD}}=2.0 \mathrm{~V}, \mathrm{GND}=0$, REFIN $=$ REFOUT (internal reference), $\mathrm{C}_{\text {REFOUT }}=0.1 \mu \mathrm{~F}, \mathrm{CL}^{2} \approx 5 \mathrm{pF}$ at digital outputs, $\mathrm{V}_{\mathrm{IN}}=$ $-0.5 \mathrm{dBFS}, \mathrm{CLKTYP}=$ high, $\mathrm{DCE}=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \mathrm{T}=10 w, \mathrm{fCLK}=40 \mathrm{MHz}\left(50 \%\right.$ duty cycle), CREFP $=\mathrm{C}_{\text {REFN }}=0.1 \mu \mathrm{~F}$ to GND, $1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and REFN, $\mathrm{CCOM}=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution			12			Bits
Integral Nonlinearity	INL	$\mathrm{fIN}=20 \mathrm{MHz}$ (Note 2)		± 0.3	± 0.7	LSB
Differential Nonlinearity	DNL	fin $=20 \mathrm{MHz}$, no missing codes over temperature (Note 2)		± 0.3	± 0.7	LSB
Offset Error		$\mathrm{V}_{\text {REFIN }}=2.048 \mathrm{~V}$		± 0.2	± 1.1	\%FS
Gain Error		$\mathrm{V}_{\text {REFIN }}=2.048 \mathrm{~V}$		± 0.3	± 4.8	\%FS
ANALOG INPUT (INP, INN)						
Differential Input Voltage Range	V DIFF	Differential or single-ended inputs		± 1.024		V
Common-Mode Input Voltage				$\mathrm{V}_{\mathrm{DD}} / 2$		V
Input Resistance	RIN	Switched capacitor load		24		k Ω
Input Capacitance	CIN			4		pF
CONVERSION RATE						
Maximum Clock Frequency	fCLK		40			MHz
Minimum Clock Frequency					5	MHz
Data Latency		Figure 5		8.5		Clock cycles
DYNAMIC CHARACTERISTICS (Differential inputs, 4096-point FFT)						
Signal-to-Noise Ratio	SNR	$\mathrm{fIN}=3 \mathrm{MHz}$ at -0.5 dBFS		68.4		dB
		$\mathrm{fin}^{\mathrm{N}}=20 \mathrm{MHz}$ at -0.5 dBFS (Note 2)	67.0	68.6		
Signal-to-Noise and Distortion	SINAD	$\mathrm{f} \mathrm{IN}=3 \mathrm{MHz}$ at -0.5 dBFS		68.3		dB
		$\mathrm{f} / \mathrm{N}=20 \mathrm{MHz}$ at -0.5 dBFS (Note 2)	66.9	68.5		
Single-Tone Spurious-Free Dynamic Range	SFDR	$\mathrm{fIN}=3 \mathrm{MHz}$ at -0.5 dBFS		89.5		dBc
		$\mathrm{fin}^{\mathrm{N}}=20 \mathrm{MHz}$ at -0.5 dBFS (Note 2)	83.2	90		
Total Harmonic Distortion	THD	$\mathrm{fiN}^{\mathrm{I}}=3 \mathrm{MHz}$ at -0.5 dBFS		-88.4		dBc
		$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$ at -0.5 dBFS (Note 2)		-88.4	-81	

40Msps, 12-Bit ADC

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{OV} D \mathrm{DD}=2.0 \mathrm{~V}, \mathrm{GND}=0\right.$, REFIN $=$ REFOUT (internal reference), CREFOUT $=0.1 \mu \mathrm{~F}, \mathrm{CL}^{2} \approx 5 \mathrm{pF}$ at digital outputs, $\mathrm{V}_{\mathrm{IN}}=$ $-0.5 \mathrm{dBFS}, \mathrm{CLKTYP}=$ high, $\mathrm{DCE}=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \bar{T}=$ low, $\mathrm{fCLK}=40 \mathrm{MHz}\left(50 \%\right.$ duty cycle), CREFP $=$ C REFN $^{2}=0.1 \mu \mathrm{~F}$ to $\mathrm{GND}, 1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and REFN, CCOM $=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Second Harmonic	HD2	$\mathrm{f} \mid \mathrm{N}=3 \mathrm{MHz}$ at -0.5 dBFS		-92.5		dBc
		$\mathrm{fIN}=20 \mathrm{MHz}$ at -0.5 dBFS (Note 3)		-96.3	-84.9	
		$\mathrm{fIN}=3 \mathrm{MHz}$ at -0.5 dBFS		-93.8		

INTERNAL REFERENCE (REFIN = REFOUT; VREFP, VREFN, and $\mathrm{V}_{\text {COM }}$ are generated internally)

REFOUT Output Voltage	$V_{\text {REFOUT }}$		1.988	2.048	2.080
COM Output Voltage	$V_{\text {COM }}$	$V_{\text {DD }} / 2$	1.65	V	
Differential Reference Output Voltage	$V_{\text {REF }}$	$V_{\text {REF }}=V_{\text {REFP }}-V_{\text {REFN }}$		1.024	V
REFOUT Load Regulation			V		
REFOUT Temperature Coefficient	TCREF		35	$\mathrm{mV} / \mathrm{mA}$	
REFOUT Short-Circuit Current		Short to VDD	+100	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
		Short to GND	0.24	mA	

BUFFERED EXTERNAL REFERENCE (REFIN driven externally, $\mathrm{V}_{\text {REFIN }}=2.048 \mathrm{~V}, \mathrm{~V}_{\text {REFP, }} \mathrm{V}_{\text {REFN }}$, and $\mathrm{V}_{\text {COM }}$ are generated internally)

REFIN Input Voltage	$V_{\text {REFIN }}$		2.048			V
REFP Output Voltage	$V_{\text {REFP }}$	$\left(\mathrm{V}_{\mathrm{DD}} / 2\right)+\left(\mathrm{V}_{\text {REFIN }} / 4\right)$	2.162			V
REFN Output Voltage	VREFN	$\left(V_{\text {DD }} / 2\right)-\left(V_{\text {REFIN }} / 4\right)$	1.138			V
COM Output Voltage	VCOM	VDD / 2	1.60	1.65	1.70	V
Differential Reference Output Voltage	Vref	$V_{\text {REF }}=V_{\text {REFP }}-V_{\text {REF }}$	0.970	1.024	1.070	V
Differential Reference Temperature Coefficient				+12.5		ppm/ ${ }^{\circ} \mathrm{C}$
Maximum REFP Current	IREFP	Source		0.4		mA
		Sink		1.4		
Maximum REFN Current	IREFN	Source		1.0		mA
		Sink		1.0		
Maximum COM Current	ICOM	Source		1.0		mA
		Sink		0.4		
REFIN Input Resistance				>50		$\mathrm{M} \Omega$

40Msps, 12-Bit ADC

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{OV}_{\mathrm{DD}}=2.0 \mathrm{~V}, \mathrm{GND}=0\right.$, REFIN $=$ REFOUT (internal reference), $\mathrm{C}_{\text {REFOUT }}=0.1 \mu \mathrm{~F}, \mathrm{CL}^{2} \approx 5 \mathrm{pF}$ at digital outputs, $\mathrm{V}_{\mathrm{IN}}=$ $-0.5 \mathrm{dBFS}, \mathrm{CLKTYP}=$ high, $\mathrm{DCE}=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \mathrm{T}=$ low, $\mathrm{fCLK}=40 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{C}_{\text {REFP }}=\mathrm{C}_{\text {REFN }}=0.1 \mu \mathrm{~F}$ to $\mathrm{GND}, 1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and REFN, $\mathrm{C} C O M=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
UNBUFFERED EXTERNAL REFERENCE (REFIN = GND, VREFP, V ${ }_{\text {REFN }}$, and VCOM are applied externally)					
COM Input Voltage	$\mathrm{V}_{\text {COM }}$	VDD $/ 2$	1.65		V
REFP Input Voltage		VREFP - VCOM	0.512		V
REFN Input Voltage		VREFN - VCOM	-0.512		V
Differential Reference Input Voltage	VREF	$V_{\text {REF }}=\mathrm{V}_{\text {REFP }}-\mathrm{V}_{\text {REF }}$	1.024		V
REFP Sink Current	IREFP	$V_{\text {REFP }}=2.162 \mathrm{~V}$	1.1		mA
REFN Source Current	IREFN	$V_{\text {REFN }}=1.138 \mathrm{~V}$	1.1		mA
COM Sink Current	ICOM		0.3		mA
REFP, REFN, Capacitance			13		pF
COM Capacitance			6		pF
CLOCK INPUTS (CLKP, CLKN)					
Single-Ended Input High Threshold	V_{IH}	CLKTYP = GND, CLKN = GND	$\begin{aligned} & 0.8 x \\ & V_{D D} \end{aligned}$		V
Single-Ended Input Low Threshold	VIL	CLKTYP = GND, CLKN = GND		$\begin{aligned} & 0.2 x \\ & V_{D D} \end{aligned}$	V
Differential Input Voltage Swing		CLKTYP = high	1.4		VP-P
Differential Input Common-Mode Voltage		CLKTYP = high	VDD $/ 2$		V
Minimum Clock Duty Cycle		DCE $=$ OVDD	20		\%
		DCE = GND	45		
Maximum Clock Duty Cycle		DCE $=$ OVDD	80		\%
		DCE = GND	60		
Input Resistance	RCLK	Figure 4	5		k Ω
Input Capacitance	CCLK		2		pF
DIGITAL INPUTS (CLKTYP, G/历, PD)					
Input High Threshold	V_{IH}		$\begin{aligned} & 0.8 x \\ & \text { OVDD } \end{aligned}$		V
Input Low Threshold	VIL			$\begin{aligned} & 0.2 x \\ & O V_{D D} \end{aligned}$	V
Input Leakage Current		$\mathrm{V}_{\mathrm{IH}}=O \mathrm{~V}_{\mathrm{DD}}$		± 5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IL}}=0$		± 5	
Input Capacitance	CDIN		5		pF

40Msps, 12-Bit ADC

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{OV}_{D D}=2.0 \mathrm{~V}, \mathrm{GND}=0\right.$, REFIN $=$ REFOUT (internal reference), $\mathrm{C}_{\text {REFOUT }}=0.1 \mu \mathrm{~F}, \mathrm{CL} \approx 5 \mathrm{pF}$ at digital outputs, $\mathrm{V}_{\mathrm{IN}}=$ $-0.5 \mathrm{dBFS}, \mathrm{CLKTYP}=$ high, $\mathrm{DCE}=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \bar{T}=$ low, f CLK $=40 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{C}_{\text {REFP }}=\mathrm{C}_{\text {REFN }}=0.1 \mu \mathrm{~F}$ to $\mathrm{GND}, 1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and REFN, CCOM $=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL OUTPUTS (D0-D11, DAV, DOR)						
Output-Voltage Low	Vol	D0-D11, DOR, ISINK = 200 $\mu \mathrm{A}$			0.2	V
		DAV, ISINK $=600 \mu \mathrm{~A}$			0.2	
Output-Voltage High	VOH	D0-D11, DOR, ISOURCE $=200 \mu \mathrm{~A}$	$\begin{aligned} & \text { OVDD } \\ & -0.2 \end{aligned}$			V
		DAV, ISOURCE $=600 \mu \mathrm{~A}$	$\begin{aligned} & \text { OVDD } \\ & -0.2 \end{aligned}$			
Tri-State Leakage Current	ILEAK	(Note 4)			± 5	$\mu \mathrm{A}$
D11-D0, DOR Tri-State Output Capacitance	Cout	(Note 4)		3		pF
DAV Tri-State Output Capacitance	CDAV	(Note 4)		6		pF
POWER REQUIREMENTS						
Analog Supply Voltage	VDD		3.0	3.3	3.6	V
Digital Output Supply Voltage	OV ${ }_{\text {DD }}$		1.7	2.0	$\begin{gathered} V_{D D} \\ +0.3 V \end{gathered}$	V
Analog Supply Current	IVDD	Normal operating mode, $\mathrm{f}_{\mathrm{I}} \mathrm{N}=20 \mathrm{MHz}$ at -0.5 dBFS , CLKTYP = GND, single-ended clock		54.7		mA
		Normal operating mode, $\mathrm{f} / \mathrm{N}=20 \mathrm{MHz}$ at -0.5 dBFS , CLKTYP $=$ OVDD, differential clock		60.1	66	
		Power-down mode; clock idle, $P D=O V_{D D}$		0.045		
Analog Power Dissipation	Pdiss	Normal operating mode, $\mathrm{f}_{\mathrm{I}} \mathrm{N}=20 \mathrm{MHz}$ at -0.5 dBFS , CLKTYP = GND, single-ended clock		181		mW
		Normal operating mode, $\mathrm{f}_{\mathrm{I}} \mathrm{N}=20 \mathrm{MHz}$ at -0.5 dBFS , CLKTYP $=$ OVDD, differential clock		198	218	
		Power-down mode, clock idle, $P D=O V_{D D}$		0.15		

40Msps, 12-Bit ADC

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OV} D \mathrm{DD}=2.0 \mathrm{~V}, \mathrm{GND}=0\right.$, REFIN $=$ REFOUT (internal reference), $\mathrm{C}_{\text {REFOUT }}=0.1 \mu \mathrm{~F}, \mathrm{CL}^{2} \approx 5 \mathrm{pF}$ at digital outputs, $\mathrm{V}_{\mathrm{IN}}=$ $-0.5 \mathrm{dBFS}, \mathrm{CLKTYP}=$ high, $\mathrm{DCE}=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \mathrm{T}=$ low, $\mathrm{fCLK}=40 \mathrm{MHz}$ (50% duty cycle), $\mathrm{C}_{\text {REFP }}=\mathrm{C}_{\text {REFN }}=0.1 \mu \mathrm{~F}$ to $\mathrm{GND}, 1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and REFN, $\mathrm{C} C O M=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Digital Output Supply Current	IovDd	Normal operating mode, $\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$ at -0.5 dBFS , $\mathrm{OV}_{\mathrm{DD}}=2.0 \mathrm{~V}, \mathrm{CL}_{\mathrm{L}} \approx 5 \mathrm{pF}$	6.1			mA
		Power-down mode; clock idle, $P D=O V_{D D}$		6		$\mu \mathrm{A}$
TIMING CHARACTERISTICS (Figure 5)						
Clock Pulse-Width High	tch			12.5		ns
Clock Pulse-Width Low	tcL			12.5		ns
Data Valid Delay	tDAV	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ (Note 5)		6.4		ns
Data Setup Time Before Rising Edge of DAV	tsetup	$C L=5 p F($ Notes 3, 5)	13.9			ns
Data Hold Time After Rising Edge of DAV	thold	$C L=5 p F($ Notes 3, 5)	10.7			ns
Wake-Up Time from Power-Down	twake	$\mathrm{V}_{\text {REFIN }}=2.048 \mathrm{~V}$		10		ms

Note 1: Specifications $\geq+25^{\circ} \mathrm{C}$ guaranteed by production test, $<+25^{\circ} \mathrm{C}$ guaranteed by design and characterization.
Note 2: Specifications guaranteed by design and characterization. Devices tested for performance during production test.
Note 3: Guaranteed by design and characterization.
Note 4: During power-down, D11-D0, DOR, and DAV are high impedance.
Note 5: Digital outputs settle to V_{IH} or V_{IL}.

40Msps, 12-Bit ADC

Typical Operating Characteristics

$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{OV} \mathrm{DD}=2.0 \mathrm{~V}, \mathrm{GND}=0, \mathrm{REFIN}=\right.$ REFOUT (internal reference), $\mathrm{CREFOUT}=0.1 \mu F, \mathrm{CL}^{2} \approx 5 \mathrm{pF}$ at digital outputs, $\mathrm{V}_{\mathrm{IN}}=-0.5 \mathrm{dBFS}$ differential input, $\mathrm{DCE}=$ high, $\mathrm{CLKTYP}=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \overline{\mathrm{T}}=$ low, $\mathrm{fCLK}=40 \mathrm{MHz}$ (50% duty cycle), CREFP $=$ CREFN $=0.1 \mu \mathrm{~F}$ to $\mathrm{GND}, 1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and $\mathrm{REFN}, \mathrm{C} C O M=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

40Msps, 12-Bit ADC

($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OV}_{\mathrm{DD}}=2.0 \mathrm{~V}, \mathrm{GND}=0, \operatorname{REFIN}=$ REFOUT (internal reference), $\mathrm{C}_{\text {REFOUT }}=0.1 \mu \mathrm{~F}, \mathrm{CL} \approx 5 \mathrm{pF}$ at digital outputs, $\mathrm{V}_{\mathrm{IN}}=-0.5 \mathrm{dBFS}$ differential input, $\mathrm{DCE}=$ high, CLKTYP $=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \bar{T}=$ low, f CLK $=40 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{C}_{\text {REFP }}=\mathrm{C}_{\text {REFN }}=0.1 \mu \mathrm{~F}$ to $\mathrm{GND}, 1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and REFN, CCOM $=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

TOTAL HARMONIC DISTORTION
vs. SAMPLING RATE

SIGNAL-TO-NOISE + DISTORTION
vs. SAMPLING RATE

40Msps, 12-Bit ADC

Typical Operating Characteristics (continued)

($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OV} D \mathrm{D}=2.0 \mathrm{~V}, \mathrm{GND}=0, \operatorname{REFIN}=$ REFOUT (internal reference), $\mathrm{C}_{\text {REFOUT }}=0.1 \mu \mathrm{~F}, \mathrm{CL} \approx 5 \mathrm{pF}$ at digital outputs, V IN $=-0.5 \mathrm{dBFS}$ differential input, $\mathrm{DCE}=$ high, CLKTYP $=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \bar{T}=$ low, $\mathrm{fCLK}=40 \mathrm{MHz}$ (50% duty cycle), CREFP $=$ CREFN $=0.1 \mu \mathrm{~F}$ to $\mathrm{GND}, 1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and $\mathrm{REFN}, \mathrm{CCOM}=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

40Msps, 12-Bit ADC

Typical Operating Characteristics (continued)
($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OV}$ DD $=2.0 \mathrm{~V}, \mathrm{GND}=0, \operatorname{REFIN}=$ REFOUT (internal reference), $\mathrm{C}_{\text {REFOUT }}=0.1 \mu \mathrm{~F}, \mathrm{CL} \approx 5 \mathrm{pF}$ at digital outputs, $\mathrm{V}_{\mathrm{IN}}=-0.5 \mathrm{dBFS}$ differential input, $\mathrm{DCE}=$ high, CLKTYP $=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \bar{T}=$ low, $\mathrm{fCLK}=40 \mathrm{MHz}\left(50 \%\right.$ duty cycle), CREFP $=\mathrm{C}_{\text {REFN }}=0.1 \mu \mathrm{~F}$ to GND, $1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and REFN, CCOM $=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

TOTAL HARMONIC DISTORTION

SIGNAL-TO-NOISE + DISTORTION vs. ANALOG INPUT FREQUENCY

40Msps, 12-Bit ADC

Typical Operating Characteristics (continued)

($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OV} D \mathrm{D}=2.0 \mathrm{~V}, \mathrm{GND}=0, \operatorname{REFIN}=$ REFOUT (internal reference), $\mathrm{C}_{\text {REFOUT }}=0.1 \mu \mathrm{~F}, \mathrm{CL} \approx 5 \mathrm{pF}$ at digital outputs, V IN $=-0.5 \mathrm{dBFS}$ differential input, $\mathrm{DCE}=$ high, CLKTYP $=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \bar{T}=$ low, $\mathrm{fCLK}=40 \mathrm{MHz}$ (50% duty cycle), CREFP $=$ CREFN $=0.1 \mu \mathrm{~F}$ to $\mathrm{GND}, 1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and $\mathrm{REFN}, \mathrm{CCOM}=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

40Msps, 12-Bit ADC

($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OV}_{\mathrm{DD}}=2.0 \mathrm{~V}, \mathrm{GND}=0, \operatorname{REFIN}=$ REFOUT (internal reference), $\mathrm{C}_{\text {REFOUT }}=0.1 \mu \mathrm{~F}, \mathrm{CL} \approx 5 \mathrm{pF}$ at digital outputs, $\mathrm{V}_{\mathrm{IN}}=-0.5 \mathrm{dBFS}$ differential input, $\mathrm{DCE}=$ high, CLKTYP $=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \bar{T}=$ low, f CLK $=40 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{C}_{\text {REFP }}=\mathrm{C}_{\text {REFN }}=0.1 \mu \mathrm{~F}$ to $\mathrm{GND}, 1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and REFN, CCOM $=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

TOTAL HARMONIC DISTORTION vs. CLOCK DUTY CYCLE

SIGNAL-TO-NOISE + DISTORTION vs. CLOCK DUTY CYCLE

40Msps, 12-Bit ADC

Typical Operating Characteristics (continued)

($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OV} D \mathrm{D}=2.0 \mathrm{~V}, \mathrm{GND}=0, \operatorname{REFIN}=$ REFOUT (internal reference), $\mathrm{C}_{\text {REFOUT }}=0.1 \mu \mathrm{~F}, \mathrm{CL} \approx 5 \mathrm{pF}$ at digital outputs, V IN $=-0.5 \mathrm{dBFS}$ differential input, $\mathrm{DCE}=$ high, CLKTYP $=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \bar{T}=$ low, $\mathrm{fCLK}=40 \mathrm{MHz}$ (50% duty cycle), CREFP $=$ CREFN $=0.1 \mu \mathrm{~F}$ to $\mathrm{GND}, 1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and $\mathrm{REFN}, \mathrm{CCOM}=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

40Msps, 12-Bit ADC

($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OV}$ DD $=2.0 \mathrm{~V}, \mathrm{GND}=0, \operatorname{REFIN}=$ REFOUT (internal reference), $\mathrm{C}_{\text {REFOUT }}=0.1 \mu \mathrm{~F}, \mathrm{CL} \approx 5 \mathrm{pF}$ at digital outputs, $\mathrm{V}_{\mathrm{IN}}=-0.5 \mathrm{dBFS}$ differential input, $\mathrm{DCE}=$ high, CLKTYP $=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \bar{T}=$ low, $\mathrm{fCLK}=40 \mathrm{MHz}\left(50 \%\right.$ duty cycle), CREFP $=\mathrm{C}_{\text {REFN }}=0.1 \mu \mathrm{~F}$ to GND, $1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and REFN, CCOM $=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

TOTAL HARMONIC DISTORTION vs. TEMPERATURE

SIGNAL-TO-NOISE + DISTORTION vs. TEMPERATURE

SPURIOUS-FREE DYNAMIC RANGE vs. TEMPERATURE

40Msps, 12-Bit ADC

Typical Operating Characteristics (continued)

($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OV}_{\mathrm{DD}}=2.0 \mathrm{~V}, \mathrm{GND}=0, \mathrm{REFIN}=$ REFOUT (internal reference), $\mathrm{C}_{\text {REFOUT }}=0.1 \mu \mathrm{~F}, \mathrm{CL} \approx 5 \mathrm{pF}$ at digital outputs, $\mathrm{V}_{\mathrm{IN}}=-0.5 \mathrm{dBFS}$ differential input, $\mathrm{DCE}=$ high, $\mathrm{CLKTYP}=$ high, $\mathrm{PD}=$ low, $\mathrm{G} / \mathrm{T}=$ low, f CLK $=40 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{C}_{\text {REFP }}=$ Crefn $^{2}=0.1 \mu \mathrm{~F}$ to $\mathrm{GND}, 1 \mu \mathrm{~F}$ in parallel with $10 \mu \mathrm{~F}$ between REFP and REFN, $\mathrm{C} C O M=0.1 \mu \mathrm{~F}$ in parallel with $2.2 \mu \mathrm{~F}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	REFP	Positive Reference I/O. Conversion range is $\pm\left(V_{\text {REFP }}-V_{\text {REFN }}\right)$. Bypass REFP to GND with a $0.1 \mu \mathrm{~F}$ capacitor. Connect a $1 \mu \mathrm{~F}$ capacitor in parallel with a $10 \mu \mathrm{~F}$ capacitor between REFP and REFN.
2	REFN	Negative Reference I/O. Conversion range is $\pm\left(V_{\text {REFP }}-V_{\text {REFN }}\right)$. Bypass REFN to GND with a $0.1 \mu F$ capacitor. Connect a $1 \mu \mathrm{~F}$ capacitor in parallel with a $10 \mu \mathrm{~F}$ capacitor between REFP and REFN.
3	COM	Common-Mode Voltage I/O. Bypass COM to GND with a $\geq 2.2 \mu \mathrm{~F}$ capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor.
4, 7, 16, 35	GND	Ground. Connect all ground pins and the EP together.
5	INP	Positive Analog Input. For single-ended input operation, connect signal source to INP and connect INN to COM. For differential operation, connect the input signal between INP and INN.
6	INN	Negative Analog Input. For single-ended input operation, connect INN to COM. For differential operation, connect the input signal between INP and INN.
8	DCE	Duty-Cycle Equalizer Input. Connect DCE low (GND) to disable the internal duty-cycle equalizer. Connect DCE high (OV ${ }_{D D}$ or $V_{D D}$) to enable the internal duty-cycle equalizer.
9	CLKN	Negative Clock Input. In differential clock input mode (CLKTYP = OVDD or VDD), connect the clock signal between CLKP and CLKN. In single-ended clock mode (CLKTYP = GND), apply the clock signal to CLKP and tie CLKN to GND.
10	CLKP	Positive Clock Input. In differential clock input mode (CLKTYP = OV ${ }_{D D}$ or $V_{D D}$), connect the differential clock signal between CLKP and CLKN. In single-ended clock mode (CLKTYP = GND), apply the singleended clock signal to CLKP and connect CLKN to GND.

40Msps, 12-Bit ADC

Pin Description (continued)

PIN	NAME	FUNCTION
11	CLKTYP	Clock Type Definition Input. Connect CLKTYP to GND to define the single-ended clock input. Connect CLKTYP to OV D d or $V_{D D}$ to define the differential clock input.
12-15, 36	$V_{D D}$	Analog Power Input. Connect $V_{D D}$ to a 3.0 V to 3.6 V power supply. Bypass V_{DD} to $G N D$ with a parallel capacitor combination of $\geq 2.2 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. Connect all V_{DD} pins to the same potential.
17, 34	OVDD	Output Driver Power Input. Connect OVDD to a 1.7 V to $V_{D D}$ power supply. Bypass OVDD to GND with a parallel capacitor combination of $\geq 2.2 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$.
18	DOR	Data Out-of-Range Indicator. The DOR digital output indicates when the analog input voltage is out of range. When DOR is high, the analog input is beyond its full-scale range. When DOR is low, the analog input is within its full-scale range.
19	D11	CMOS Digital Output, Bit 11 (MSB)
20	D10	CMOS Digital Output, Bit 10
21	D9	CMOS Digital Output, Bit 9
22	D8	CMOS Digital Output, Bit 8
23	D7	CMOS Digital Output, Bit 7
24	D6	CMOS Digital Output, Bit 6
25	D5	CMOS Digital Output, Bit 5
26	D4	CMOS Digital Output, Bit 4
27	D3	CMOS Digital Output, Bit 3
28	D2	CMOS Digital Output, Bit 2
29	D1	CMOS Digital Output, Bit 1
30	D0	CMOS Digital Output, Bit 0 (LSB)
31, 32	I.C.	Internally Connected. Leave I.C. unconnected.
33	DAV	Data Valid Output. The DAV is a single-ended version of the input clock that is compensated to correct for any input clock duty-cycle variations. The MAX1211 evaluation kit (MAX1211EVKIT) utilizes DAV to latch data (D0-D11) into external back-end digital circuitry.
37	PD	Power-Down Input. Force PD high for power-down mode. Force PD low for normal operation.
38	REFOUT	Internal Reference Voltage Output. For internal reference operation, connect REFOUT directly to REFIN or use a resistive-divider from REFOUT to set the voltage at REFIN. Bypass REFOUT to GND with a $\geq 0.1 \mu \mathrm{~F}$ capacitor.
39	REFIN	Reference Input. $\mathrm{V}_{\text {REFIN }}=2 \times\left(\mathrm{V}_{\text {REFP }}-\mathrm{V}_{\text {REFN }}\right)$. Bypass REFIN to GND with $\mathrm{a} \geq 0.1 \mu \mathrm{~F}$ capacitor.
40	G / \bar{T}	Output Format Select Input. Connect G/T to GND for the two's complement digital output format. Connect G / T to $O_{D D}$ or $V_{D D}$ for the Gray code digital output format.
-	EP	Exposed Paddle. EP is internally connected to GND. Externally connect EP to GND to achieve specified performance.

40Msps, 12-Bit ADC

Detailed Description

The MAX1206 uses a 10-stage, fully differential, pipelined architecture (Figure 1) that allows for highspeed conversion while minimizing power consumption. Samples taken at the inputs move progressively through the pipeline stages every half clock cycle. From input to output, the total clock-cycle latency is 8.5 clock cycles.
Each pipeline converter stage converts its input voltage into a digital output code. At every stage, except the last, the error between the input voltage and the digital output code is multiplied and passed along to the next pipeline stage. Digital error correction compensates for ADC comparator offsets in each pipeline stage and ensures no missing codes. Figure 2 shows the MAX1206 functional diagram.

Input Track-and-Hold (T/H) Circuit

Figure 3 displays a simplified functional diagram of the input T/H circuits. In track mode, switches S1, S2a, S2b, S4a, S4b, S5a, and S5b are closed. The fully differential circuits sample the input signals onto the two capacitors (C2a and C2b) through switches S4a and S4b. S2a and S2b set the common mode for the operational transconductance amplifier (OTA), and open simultaneously with S1, sampling the input waveform. Switches S4a, S4b, S5a, and S5b are then opened before switches S3a and S3b connect capacitors C1a and C 1 b to the output of the amplifier and switch S 4 c is closed. The resulting differential voltages are held on capacitors C2a and C2b. The amplifiers charge capacitors C1a and C1b to the same values originally held on

Figure 1. Pipeline Architecture-Stage Blocks

C2a and C2b. These values are then presented to the first-stage quantizers and isolate the pipelines from the fast-changing inputs. The wide input-bandwidth T/H amplifier allows the MAX1206 to track and sample/hold analog inputs of high frequencies well beyond Nyquist. Analog input INP to INN can be driven either differentially or single ended. For differential inputs, balance the input impedance of INP and INN and set the com-mon-mode voltage to midsupply (VDD / 2) for optimum performance.

Figure 2. Functional Diagram

Figure 3. Internal T/H Circuit

40Msps, 12-Bit ADC

Table 1. Reference Modes

VREFIN	REFERENCE MODE
$35 \% V_{\text {REFOUT }}$ to $100 \% V_{\text {REFOUT }}$	Internal reference mode. REFIN is driven by REFOUT either through a direct short or a resistive divider. $V_{C O M}=V_{D D} / 2, V_{\text {REFP }}=V_{D D} / 2+V_{\text {REFIN }} / 4$, and $V_{\text {REFN }}=V_{D D} / 2-V_{\text {REFIN }} / 4$.
0.7 V to 2.3V	Buffered external reference mode. An external 0.7 V to 2.3 V reference voltage is applied to REFIN. $\mathrm{V}_{\text {COM }}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}} / 2+\mathrm{V}_{\text {REFIN }} / 4$, and $\mathrm{V}_{\text {REFN }}=\mathrm{V}_{\mathrm{DD}} / 2-\mathrm{V}_{\text {REFIN }} / 4$.
<0.5V	Unbuffered external reference mode. REFP, REFN, and COM are driven by external reference sources. $\mathrm{V}_{\text {REF }}$ is the difference between the externally applied $\mathrm{V}_{\text {REFP }}$ and $\mathrm{V}_{\text {REFN }}$.

Reference Output (REFOUT)

An internal bandgap reference is the basis for all the internal voltages and bias currents used in the MAX1206. The power-down logic input (PD) enables and disables the reference circuit. REFOUT has approximately $17 \mathrm{k} \Omega$ to GND when the MAX1206 is in power-down. The reference circuit requires 10 ms to power up and settle when power is applied to the MAX1206 or when PD transitions from high to low.
The internal bandgap reference and buffer generate REFOUT to be 2.048 V with a $+100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient. Connect an external $\geq 0.1 \mu \mathrm{~F}$ bypass capacitor from REFOUT to GND for stability. REFOUT sources up to 1.4 mA and sinks up to $100 \mu \mathrm{~A}$ for external circuits with a load regulation of $35 \mathrm{mV} / \mathrm{mA}$. Short-circuit protection limits Irefout to a 2.1 mA source current when shorted to GND and a $240 \mu \mathrm{~A}$ sink current when shorted to $V_{D D}$.

Analog Inputs and Reference Configurations

The MAX1206 full-scale analog input range is $\pm V_{\text {REF }}$ with a common-mode input range of $\mathrm{V}_{\mathrm{DD}} / 2 \pm 0.8 \mathrm{~V}$. $V_{\text {Ref }}$ is the difference between Vrefp and $V_{\text {refn }}$. The MAX1206 provides three modes of reference operation. The voltage at REFIN (VREFIN) sets the reference operation mode (Table 1).
To operate the MAX1206 with the internal reference, connect REFOUT to REFIN either with a direct short or through a resistive-divider. In this mode, COM, REFP, and REFN are low-impedance outputs with $\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{DD}} / 2$, Vrefp $=V_{\text {dd }} / 2+V_{\text {refin }} / 4$, and $V_{\text {refn }}=V_{\text {dd }} / 2$ $V_{\text {REFIN / 4 }}$. The REFIN input impedance is very large ($>50 \mathrm{M} \Omega$). When driving REFIN through a resistive-divider, use resistances $\geq 10 \mathrm{k} \Omega$ to avoid loading REFOUT.
Buffered external reference mode is virtually identical to internal reference mode except that the reference source is derived from an external reference and not the MAX1206 REFOUT. In buffered external reference mode, apply a stable 0.7 V to 2.3 V source at REFIN. COM, REFP, and REFN are low-impedance outputs
with $V_{c o m}=V_{D D} / 2$, $\operatorname{Vrefp}=V_{D D} / 2+V_{\text {Refin }} / 4$, and VRefn $=V_{\text {DD }} / 2-V_{\text {REFIN }} / 4$.
To operate the MAX1206 in unbuffered external reference mode, connect REFIN to GND. Connecting REFIN to GND deactivates the on-chip reference buffers for COM, REFP, and REFN. With their buffers deactivated, COM, REFP, and REFN inputs must be driven through separate, external reference sources. Drive $\mathrm{V}_{\text {com }}$ to VDD / $2 \pm 5 \%$, and drive REFP and REFN such that $V_{C O M}=\left(V_{\text {REFP }}+V_{\text {REFN }}\right) / 2$. The analog input range is \pm (VRefP - Vrefn).
All three modes of reference operation require the same bypass capacitor combination. Bypass COM with a $0.1 \mu \mathrm{~F}$ capacitor in parallel with $\mathrm{a} \geq 2.2 \mu \mathrm{~F}$ capacitor to GND. Bypass REFP and REFN each with a $0.1 \mu \mathrm{~F}$ capacitor to GND. Bypass REFP to REFN with a $1 \mu \mathrm{~F}$ capacitor in parallel with a $10 \mu \mathrm{~F}$ capacitor. Place the $1 \mu \mathrm{~F}$ capacitor as close to the device as possible. Bypass REFIN and REFOUT to GND with a 0.1μ F capacitor.
For detailed circuit suggestions, see Figures 12 and 13.

Clock Input and Clock Control Lines (CLKP, CLKN, CLKTYP, DCE)

The MAX1206 accepts both differential and singleended clock inputs. For single-ended clock input operation, connect CLKTYP to GND, CLKN to GND, and drive CLKP with the external single-ended clock signal. For differential clock input operation, connect CLKTYP to OVDD or VDD and drive CLKP and CLKN with the external differential clock signal. To reduce clock jitter, the external single-ended clock must have sharp falling edges. Consider the clock input as an analog input and route it away from any other analog inputs and digital signal lines.
CLKP and CLKN are high impedance when the MAX1206 is powered down (Figure 4).
Low clock jitter is required for the specified SNR performance of the MAX1206. Analog input sampling occurs on the falling edge of the clock signal, requiring this

40Msps, 12-Bit ADC

edge to have the lowest possible jitter. Jitter limits the maximum SNR performance of any ADC according to the following relationship:

$$
\mathrm{SNR}=20 \times \log \left(\frac{1}{2 \times \pi \times \mathrm{f}_{N} \times \mathrm{t}_{J}}\right)
$$

where fin represents the analog input frequency and $t J$ is the total system clock jitter. Clock jitter is especially critical for undersampling applications. For example, assuming that clock jitter is the only noise source, to obtain the specified 68.5 dB of SNR with an input frequency of 20 MHz , the system must have less than 3 ps of clock jitter.

Clock Duty-Cycle Equalizer (DCE) The MAX1206 clock duty-cycle equalizer allows for a wide 20% to 80% clock duty cycle when enabled (DCE = OVDD or VDD). When disabled (DCE = GND), the MAX1206 accepts a narrow 45\% to 60\% clock duty cycle.
The clock duty-cycle equalizer uses a delay-locked loop to create internal timing signals that are duty-cycle independent. Due to this delay-locked loop, the MAX1206 requires approximately 100 clock cycles to acquire and lock to new clock frequencies.
Disabling the clock duty-cycle equalizer reduces the analog supply current by 1.5 mA .

System Timing Requirements

Figure 5 shows the relationship between the clock, analog inputs, DAV indicator, DOR indicator, and the resulting output data. The analog input is sampled on the falling edge of the clock signal and the resulting data appears at the digital outputs 8.5 clock cycles later.
The DAV indicator is synchronized with the digital output and optimized for use in latching data into digital back-end circuitry. Alternatively, digital back-end circuitry can be latched with the falling edge of the clock.

Data Valid Output (DAV)

DAV is a single-ended version of the input clock (CLKP). The output data changes on the falling edge of DAV, and DAV rises once the output data is valid.
The state of the duty-cycle equalizer input (DCE) changes the waveform at DAV. With the duty-cycle equalizer disabled (DCE low), the DAV signal is the inverse of the signal at CLKP delayed by 6.4 ns . With the duty-cycle equalizer enabled (DCE high), the DAV signal has a fixed pulse width that is independent of CLKP. In either case, with DCE high or low, output data at D0-D11 and DOR are valid from 13.9 ns before the

Figure 4. Simplified Clock Input Circuit
rising edge of DAV to 10.7 ns after the rising edge of DAV, and the rising edge of DAV is synchronized to have a 6.4 ns delay from the falling edge of CLKP.
DAV is high impedance when the MAX1206 is in powerdown (PD = high). DAV is capable of sinking and sourcing $600 \mu \mathrm{~A}$ and has three times the drive strength of D0-D11 and DOR. DAV is typically used to latch the MAX1206 output data into an external back-end digital circuit.
Keep the capacitive load on DAV as low as possible ($<25 \mathrm{pF}$) to avoid large digital currents feeding back into the analog portion of the MAX1206 and degrading its dynamic performance. An external buffer on DAV isolates it from heavy capacitive loads. Refer to the MAX1211 evaluation kit schematic for an example of DAV driving back-end digital circuitry through an external buffer.

Data Out-of-Range Indicator (DOR) The DOR digital output indicates when the analog input voltage is out of range. When DOR is high, the analog input is out of range. When DOR is low, the analog input is within range. The valid differential input range is from (VREFP - VREFN) to (VREFN - VREFP). Signals outside this valid differential range cause DOR to assert high as shown in Table 2.

40Msps, 12-Bit ADC

Table 2. Output Codes vs. Input Voltage

GRAY CODE OUTPUT CODE ($G / \bar{T}=1$)				TWO'S COMPLEMENT OUTPUT CODE (G/T=0)				$\left(\begin{array}{c} V_{\text {INP }}-V_{\text {INN }} \\ V_{\text {REFP }}=2.162 V \\ V_{\text {REFN }}=1.138 \mathrm{~V} \end{array}\right)$
BINARY $\text { D11 } \rightarrow \text { D0 }$	DOR	HEXADECIMAL EQUIVALENT OF D11 \rightarrow D0	DECIMAL EQUIVALENT OF D11 \rightarrow D0 (CODE 10)	BINARY $\text { D11 } \rightarrow \text { D0 }$	DOR	HEXADECIMAL EQUIVALENT OF D11 \rightarrow D0	DECIMAL EQUIVALENT OF D11 \rightarrow D0 (CODE 10)	
100000000000	1	0x800	+4095	011111111111	1	0x7FF	+2047	$>+1.0235 \mathrm{~V}$ (DATA OUT OF RANGE)
100000000000	0	0x800	+4095	011111111111	0	0x7FF	+2047	+1.0235V
100000000001	0	0x801	+4094	011111111110	0	0x7FE	+2046	+1.0230V
110000000011	0	0xC03	+2050	000000000010	0	0x002	+2	$+0.0010 \mathrm{~V}$
110000000001	0	0xC01	+2049	000000000001	0	0x001	+1	$+0.0005 \mathrm{~V}$
110000000000	0	0xC00	+2048	000000000000	0	0x000	0	+0.0000V
010000000000	0	0x400	+2047	111111111111	0	0xFFF	-1	-0.0005V
010000000001	0	0x401	+2046	111111111110	0	0xFFE	-2	-0.0010V
000000000001	0	0x001	+1	100000000001	0	0x801	-2047	-1.0235V
000000000000	0	0x000	0	100000000000	0	0x800	-2048	-1.0240V
000000000000	1	0x000	0	100000000000	1	0x800	-2048	<-1.0240V (DATA OUT OF RANGE)

Figure 5. System Timing Diagram

DOR is synchronized with DAV and transitions along with output data D0-D11. There is an 8.5 clock-cycle latency in the DOR function just as with the output data (Figure 5).
DOR is high impedance when the MAX1206 is in power-down ($\mathrm{PD}=$ high). DOR enters a high-impedance state within 10ns of the rising edge of PD and becomes active within 10ns of PD's falling edge.

Digital Output Data (D0-D11), Output Format (G/IT)
The MAX1206 provides a 12-bit, parallel, tri-state output bus. D0-D11 and DOR update on the falling edge of DAV and are valid on the rising edge of DAV.
The MAX1206 output data format is either Gray code or two's complement, depending on the logic input G / \bar{T}. With G / T high, the output data format is Gray code. With G / \bar{T} low, the output data format is two's complement. See Figure 8 for a binary-to-Gray and Gray-tobinary code-conversion example.
The following equations, Table 2, Figure 6, and Figure 8 define the relationship between the digital output and the analog input:

$$
V_{I N P}-V_{\text {INN }}=\left(V_{\text {REFP }}-V_{\text {REFN }}\right) \times 2 \times \frac{\mathrm{CODE}_{10}-2048}{4096}
$$

for Gray code $(G / \bar{T}=1)$.

$$
V_{I N P}-V_{I N N}=\left(V_{\text {REFP }}-V_{R E F N}\right) \times 2 \times \frac{C O D E_{10}}{4096}
$$

for two's complement $(G / \bar{T}=0)$.
where CODE_{10} is the decimal equivalent of the digital output code as shown in Table 2.
The digital outputs D0-D11 are high impedance when the MAX1206 is in power-down (PD = high). D0-D11 go high impedance within 10ns of the rising edge of PD and become active within 10ns of PD's falling edge.
Keep the capacitive load on the MAX1206 digital outputs D0-D11 as low as possible ($<15 \mathrm{pF}$) to avoid large digital currents feeding back into the analog portion of the MAX1206 and degrading its dynamic performance. The addition of external digital buffers on the digital outputs isolate the MAX1206 from heavy capacitive loads. To improve the dynamic performance of the MAX1206, add 220Ω resistors in series with the digital outputs close to the MAX1206. Refer to the MAX1211 evaluation kit schematic for an example of the digital outputs driving a digital buffer through 220Ω series resistors.

Power-Down Input (PD)
The MAX1206 has two power modes that are controlled with the power-down digital input (PD). With PD low, the

Figure 6. Two's Complement Transfer Function ($G / \bar{T}=0$)

Figure 7. Gray Code Transfer Function ($G / \bar{T}=1$)

MAX1206 is in its normal operating mode. With PD high, the MAX1206 is in power-down mode.

40Msps, 12-Bit ADC

Figure 8. Binary-to-Gray and Gray-to-Binary Code Conversion

The power-down mode allows the MAX1206 to efficiently use power by transitioning to a low-power state when conversions are not required. Additionally, the MAX1206 parallel output bus goes high impedance in power-down mode, allowing other devices on the bus to be accessed.
In power-down mode, all internal circuits are off, the analog supply current reduces to 0.045 mA , and the digital supply current reduces to $6 \mu \mathrm{~A}$. The following list shows the state of the analog inputs and digital outputs in power-down mode:

- INP, INN analog inputs are disconnected from the internal input amplifier (Figure 3).
- REFOUT has approximately $17 \mathrm{k} \Omega$ to GND.
- REFP, COM, REFN go high impedance with respect to VDD and GND, but there is an internal $4 \mathrm{k} \Omega$ resistor between REFP and COM, as well as an internal $4 \mathrm{k} \Omega$ resistor between REFN and COM.
- D0-D11, DOR, and DAV go high impedance.
- CLKP, CLKN clock inputs go high impedance (Figure 4).
The wake-up time from power-down mode is dominated by the time required to charge the capacitors at REFP, REFN, and COM. In internal reference mode and buffered external reference mode, the wake-up time is typically 10 ms . When operating in the unbuffered external reference mode, the wake-up time is dependent on the external reference drivers.

Applications Information

Using Transformer Coupling

In general, the MAX1206 provides better SFDR and THD with fully differential input signals than singleended input drive. In differential input mode, evenorder harmonics are lower as both inputs are balanced, and each of the ADC inputs only requires half the signal swing compared to single-ended input mode.
An RF transformer (Figure 9) provides an excellent solution to convert a single-ended input source signal to a fully differential signal, required by the MAX1206 for optimum performance. Connecting the center tap of the transformer to COM provides a VDD / 2 DC level shift to the input. Although a $1: 1$ transformer is shown, a step-up transformer can be selected to reduce the drive requirements. A reduced signal swing from the input driver, such as an op amp, can also improve the overall distortion. The configuration of Figure 9 is good for input frequencies up to Nyquist (fCLK / 2).
The circuit of Figure 10 converts a single-ended input signal to fully differential just as in Figure 9. However,

Figure 9. Transformer-Coupled Input Drive for Input Frequencies Up to Nyquist

Figure 10 utilizes an additional transformer to improve the common-mode rejection, allowing high-frequency signals beyond the Nyquist frequency. The two sets of 49.9Ω termination resistors provide an equivalent 50Ω termination to the signal source. The second set of termination resistors connects to COM, providing the correct input common-mode voltage. Two 0Ω resistors in series with the analog inputs allow high IF input frequencies. These 0Ω resistors can be replaced with lowvalue resistors to limit the input bandwidth.

Single-Ended AC-Coupled Input Signal

Figure 11 shows an AC-coupled, single-ended input application. The MAX4108 provides high speed, high bandwidth, low noise, and low distortion to maintain the input signal integrity.

Buffered External Reference Drives Multiple ADCs

The buffered external reference mode allows for more control over the MAX1206 reference voltage and allows multiple converters to use a common reference. The REFIN input impedance is $>50 \mathrm{M} \Omega$.
Figure 12 shows the MAX6062 precision bandgap reference used as a common reference for multiple converters. The 2.048 V output of the MAX6062 passes through a one-pole 10 Hz lowpass filter to the MAX4250. The MAX4250 buffers the 2.048 V reference before its

40Msps, 12-Bit ADC

Figure 10. Transformer-Coupled Input Drive for Input Frequencies Beyond Nyquist
output is applied to the REFIN input of the MAX1206. The MAX4250 provides a low offset voltage (for high gain accuracy) and a low noise level.

Unbuffered External Reference Drives Multiple ADCs

The unbuffered external reference mode allows for precise control over the MAX1206 reference and allows multiple converters to use a common reference. Connecting REFIN to GND disables the internal reference, allowing REFP, REFN, and COM to be driven directly by a set of external reference sources.
Figure 13 shows the MAX6066 precision bandgap reference used as a common reference for multiple converters. The 2.500 V output of the MAX6066 is followed by a 10 Hz lowpass filter and precision voltage-divider. The MAX4254 buffers the taps of this divider to provide the $+2.000 \mathrm{~V},+1.500 \mathrm{~V}$, and +1.000 V sources to drive REFP, REFN, and COM. The MAX4254 provides a low offset voltage and low noise level. The individual voltage followers are connected to 10 Hz lowpass filters, which filter both the reference voltage and amplifier noise to a level of $3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. The 2.000 V and 1.000 V reference voltages set the differential full-scale range of the associated ADCs at $\pm 1.000 \mathrm{~V}$.

The common power supply for all active components removes any concern regarding power-supply sequencing when powering up or down.
With the outputs of the MAX4254 matching better than 0.1%, the buffers and subsequent lowpass support as many as 8 ADCs.

Grounding, Bypassing, and Board Layout The MAX1206 requires high-speed board layout design techniques. Refer to the MAX1211 evaluation kit data sheet for a board layout reference. Locate all bypass capacitors as close to the device as possible, prefer-

Figure 11. Single-Ended, AC-Coupled Input Drive
ably on the same side as the ADC, using surfacemount devices for minimum inductance. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $2.2 \mu \mathrm{~F}$ ceramic capacitor. Bypass OVDD to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $2.2 \mu \mathrm{~F}$ ceramic capacitor.
Multilayer boards with ample ground and power planes produce the highest level of signal integrity. All MAX1206 GNDs and the exposed backside paddle must be connected to the same ground plane. The MAX1206 relies on the exposed backside paddle connection for a low-inductance ground connection. Use mulitple vias to connect the top-side ground to the bot-tom-side ground. Isolate the ground plane from any noisy digital system ground planes such as a DSP or output buffer ground.

40Msps, 12-Bit ADC

Figure 12. External Buffered (MAX4250) Reference Drive Using a MAX6062 Bandgap Reference

Route high-speed digital signal traces away from the sensitive analog traces. Keep all signal lines short and free of 90° turns.
Ensure that the differential analog input network layout is symmetric and that all parasitics are balanced equally. Refer to the MAX1211 evaluation kit data sheet for an example of symmetric input layout.

Parameter Definitions

Integral Nonlinearity (INL)

Integral nonlinearity is the deviation of the values on an actual transfer function from a straight line. This straight line is either a best-straight-line fit or a line drawn between the end points of the transfer function, once offset and gain errors have been nullified. The static linearity parameters for the MAX1206 are guaranteed by design using the best-straight-line fit method.

40Msps, 12-Bit ADC

MAX1 206

*PLACE AS CLOSE TO THE DEVICE AS POSSIBLE.

Figure 13. External Unbuffered Reference Driving 8 ADCs with MAX4254 and MAX6066

40Msps, 12-Bit ADC

Figure 14. T/H Aperture Timing

Differential Nonlinearity (DNL)

Differential nonlinearity is the difference between an actual step width and the ideal value of 1 LSB . A DNL error specification of less than 1 LSB guarantees no missing codes and a monotonic transfer function.

Offset Error

Ideally, the midscale MAX1206 transition occurs at 0.5 LSB above midscale. The offset error is the amount of deviation between the measured transition point and the ideal transition point.

Gain Error
Ideally, the positive full-scale MAX1206 transition occurs at 1.5 LSB below positive full scale, and the negative full-scale transition occurs at 0.5 LSB above negative full scale. The gain error is the difference of the measured transition points minus the difference of the ideal transition points.

Aperture Jitter
Figure 14 depicts the aperture jitter (t A J), which is the sample-to-sample variation in the aperture delay.

Aperture Delay

Aperture delay ($t_{A D}$) is the time defined between the rising edge of the sampling clock and the instant when an actual sample is taken (Figure 14).

Overdrive Recovery Time

Overdrive recovery time is the time required for the ADC to recover from an input transient that exceeds the full-scale limits. The MAX1206 specifies overdrive recovery time using an input transient that exceeds the full-scale limits by $\pm 10 \%$.

Signal-to-Noise Ratio (SNR)

For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization error only and results directly from the ADC's resoIution (N bits):

$$
\mathrm{SNR}_{\mathrm{dB}}[\max]=6.02 \mathrm{~dB} \times \mathrm{N}+1.76 \mathrm{~dB}
$$

In reality, there are other noise sources besides quantization noise: thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise. RMS noise includes all spectral components to the Nyquist frequency excluding the fundamental, the first six harmonics (HD2-HD7), and the DC offset.

Signal-to-Noise Plus Distortion (SINAD) SINAD is computed by taking the ratio of the RMS signal to the RMS noise plus distortion. RMS noise plus distortion includes all spectral components to the Nyquist frequency, excluding the fundamental and the DC offset.

Effective Number of Bits (ENOB)
ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quantization noise only. ENOB for a full-scale sinusoidal input waveform is computed from:

$$
\mathrm{ENOB}=\left(\frac{\mathrm{SINAD}-1.76}{6.02}\right)
$$

Total Harmonic Distortion (THD)

THD is the ratio of the RMS sum of the first six harmonics of the input signal to the fundamental itself. This is expressed as:

$$
T H D=20 \times \log \left(\frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}+V_{6}^{2}+V_{7}^{2}}}{V_{1}}\right)
$$

where V_{1} is the fundamental amplitude, and V_{2} through V_{7} are the amplitudes of the 2nd- through 7th-order harmonics (HD2-HD7).

Single-Tone Spurious-Free Dynamic Range (SFDR)

SFDR is the ratio expressed in decibels of the RMS amplitude of the fundamental (maximum signal component) to the RMS amplitude of the next-largest spurious component, excluding DC offset.

40Msps, 12-Bit ADC

Two-Tone Spurious-Free Dynamic Range (SFDRTT)

SFDRTT represents the ratio, expressed in decibels, of the RMS amplitude of either input tone to the RMS amplitude of the next-largest spurious component in the spectrum, excluding DC offset. This spurious component can occur anywhere in the spectrum up to Nyquist and is usually an intermodulation product or a harmonic.

Intermodulation Distortion (IMD)
IMD is the ratio of the RMS sum of the intermodulation products to the RMS sum of the two fundamental input tones. This is expressed as:

$$
\mathrm{IMD}=20 \times \log \left(\frac{\sqrt{\mathrm{V}_{\mathrm{IMP} 1^{2}}+\mathrm{V}_{\mathrm{IMP2}}{ }^{2}+\cdots \cdot \bullet+\mathrm{V}_{\mathrm{IMPn}}{ }^{2}}}{\sqrt{\mathrm{~V}_{1}{ }^{2}+\mathrm{V}_{2}{ }^{2}}}\right)
$$

The fundamental input tone amplitudes (V_{1} and V_{2}) are at -7 dBFS . Fourteen intermodulation products (VIMP_) are used in the MAX1206 calculation. The intermodulation products are the amplitudes of the output spectrum at the following frequencies:

- 2nd-order intermodulation products: $\mathrm{f}+\mathrm{f} 2, \mathrm{f} 2-\mathrm{f} 1$
- 3rd-order intermodulation products: $2 \times f 1-f 2,2 \times f 2$ - f1, $2 \times \mathrm{f} 1$ + f2, $2 \times \mathrm{f} 2$ + f1
- 4th-order intermodulation products: $3 \times \mathrm{f} 1-\mathrm{f} 2,3 \times \mathrm{f} 2$ $-\mathrm{f} 1,3 \times \mathrm{f} 1+\mathrm{f} 2,3 \times \mathrm{f} 2+\mathrm{f} 1$
- 5th-order intermodulation products: $3 \times f 1-2 \times f 2,3$ $x f 2-2 x f 1,3 x f 1+2 x f 2,3 x f 2+2 x f 1$

3rd-Order Intermodulation (IM3)

IM3 is the total power of the 3rd-order intermodulation products to the Nyquist frequency relative to the total input power of the two input tones f 1 and f 2 . The individual input tone levels are at -7dBFS. The 3rd-order

Pin Configuration

```
TOP VIEW
```

intermodulation products are $2 \times f 1-f 2,2 \times f 2-f 1,2 \times$ $\mathrm{f} 1+\mathrm{f} 2,2 \times \mathrm{f} 2+\mathrm{f} 1$.

Chip Information
TRANSISTOR COUNT: 18,700
PROCESS: CMOS

40Msps, 12-Bit ADC

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Note: For the MAX1206 exposed pad variations, the package code is T4066-3.

notes:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS
A. THE TERMINAL \#1 IDENTIIIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-O12. DETALLS OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHINTHE
ZONE INDICATED. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
S. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm
FROM TERMINAL TIP.
4. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
5. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS
6. DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR 0.4 mm LEAD PITCH PACKAGE T4866-1.
7. DRAWING CONFORMS TO JEDEC 10220 ,

HDALLAS /V/IXI/VI

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

