## 阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

## Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

## Digitally Controlled Potentiometer (XDCP ${ }^{\text {M }}$ )

The Intersil X9319 is a digitally controlled potentiometer (XDCP). The device consists of a resistor array, wiper switches, a control section, and nonvolatile memory. The wiper position is controlled by a 3-wire interface.

The potentiometer is implemented by a resistor array composed of 99 resistive elements and a wiper switching network. Between each element and at either end are tap points accessible to the wiper terminal. The position of the wiper element is controlled by the $\overline{\mathrm{CS}}, \mathrm{U} / \overline{\mathrm{D}}$, and $\overline{\mathrm{INC}}$ inputs. The position of the wiper can be stored in nonvolatile memory and then be recalled upon a subsequent power-up operation.

The device can be used as a three-terminal potentiometer for voltage control or as a two-terminal variable resistor for current control in a wide variety of applications.

## Applications

- LCD bias control
- DC bias adjustment
- Gain and offset trim
- Laser diode bias control
- Voltage regulator output control


## Features

- Solid-state potentiometer
- 3-wire serial interface
- Terminal voltage, 0 to +10 V
- 100 wiper tap points
- Wiper position stored in nonvolatile memory and recalled on power-up
- 99 resistive elements
- Temperature compensated
- End-to-end resistance range $\pm 20 \%$
- Low power CMOS
- $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Active current, 3mA max.
- Standby current, 1mA max.
- High reliability
- Endurance, 100,000 data changes per bit
- Register data retention, 100 years
- $\mathrm{R}_{\text {TOTAL }}$ value $=10 \mathrm{k} \Omega$
- Package
- 8 Ld SOIC
- Pb-free (RoHS compliant)


## Block Diagram




DETAILED

## Ordering Information

| PART NUMBER <br> (Notes 1, 2, 3) | PART MARKING | $\mathrm{R}_{\text {TOTAL }}(\mathrm{k} \Omega$ ) | TEMP RANGE ( ${ }^{\circ} \mathrm{C}$ ) | PACKAGE (Pb-Free) | PKG. DWG. \# |
| :---: | :---: | :---: | :---: | :---: | :---: |
| X9319WS8Z | X9319W Z | 10 | 0 to +70 | 8 Ld SOIC (150 mil) | M8.15E |
| X9319WS8IZ | X9319W ZI |  | -40 to +85 | 8 Ld SOIC (150 mil) | M8.15E |

NOTES:

1. Add "T1" suffix for tape and reel.
2. Intersil Pb -free plus anneal products employ special Pb -free material sets; molding compounds/die attach materials and $100 \%$ matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see product information page for X9319. For more information on MSL, please see tech brief TB363.

## Pin Configuration



## Pin Descriptions

| SOIC | SYMBOL |  |
| :---: | :---: | :--- |
| 1 | $\overline{\mathrm{INC}}$ | Increment. Toggling $\overline{\mathrm{INC}}$ while $\overline{\mathrm{CS}}$ is low moves the wiper either up or down. |
| 2 | $\mathrm{U} / \overline{\mathrm{D}}$ | Up/Down. The U/ $\overline{\mathrm{D}}$ input controls the direction of the wiper movement. |
| 3 | $\mathrm{R}_{\mathrm{H}}$ | The high terminal is equivalent to one of the fixed terminals of a mechanical potentiometer. |
| 4 | $\mathrm{~V}_{\mathrm{SS}}$ | Ground. |
| 5 | $\mathrm{R}_{\mathrm{W}}$ | The wiper terminal is equivalent to the movable terminal of a mechanical potentiometer. |
| 6 | $\mathrm{R}_{\mathrm{L}}$ | The low terminal is equivalent to one of the fixed terminals of a mechanical potentiometer. |
| 7 | $\overline{\mathrm{CS}}$ | Chip Select. The device is selected when the $\overline{\mathrm{CS}}$ input is LOW, and deselected when $\overline{\mathrm{CS}}$ is high. |
| 8 | $\mathrm{~V}_{\mathrm{CC}}$ | Supply Voltage. |

## Absolute Maximum Ratings

Voltage on $\overline{\mathrm{CS}}, \overline{\mathrm{INC}}, \mathrm{U} / \overline{\mathrm{D}}$ and $\mathrm{V}_{\mathrm{CC}}$ with respect to $\mathrm{V}_{\mathrm{SS}} \ldots . .-1 \mathrm{~V}$ to +7 V
$\mathrm{R}_{\mathrm{H}}, \mathrm{R}_{\mathrm{W}}$, $\mathrm{R}_{\mathrm{L}}$ to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +12 V
IW (10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 6 \mathrm{~mA}$

## Thermal Information

Junction Temperature under bias . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Pb-Free Reflow Profile. $\qquad$ see TB493

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

Potentiometer Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$. Boldface limits apply across the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial) and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Commercial).

| SYMBOL | PARAMETER | TEST CONDITIONS | $\begin{gathered} \text { MIN } \\ \text { (Note 7) } \end{gathered}$ | $\begin{gathered} \text { TYP } \\ \text { (Note 8) } \end{gathered}$ | $\begin{gathered} \text { MAX } \\ \text { (Note 7) } \end{gathered}$ | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | End-to-end resistance tolerance | See ordering information for values | -20 |  | +20 | \% |
| $\mathrm{V}_{\mathrm{RH}} / \mathrm{RL}$ | $\mathrm{R}_{\mathrm{H}} / \mathrm{R}_{\mathrm{L}}$ terminal voltage | $\mathrm{V}_{S S}=0 \mathrm{~V}$ | $\mathrm{V}_{\text {SS }}$ |  | 10 | V |
|  | Power rating |  |  |  | 25 | mW |
| RW | Wiper resistance | $\mathrm{I}_{\mathrm{W}}=1 \mathrm{~mA}$ |  | 40 | 200 | W |
| IW | Wiper current ( Note 9) | See test circuit | -3.0 |  | +3.0 | mA |
|  | Noise (Note 11) | Ref: 1kHz |  | -120 |  | dBV |
|  | Resolution |  |  | 1 |  | \% |
|  | Absolute linearity ( Note 4) | $\begin{aligned} & V(R H)=10 \mathrm{~V}, \\ & V(R L)=0 \mathrm{~V} \end{aligned}$ | -1 |  | +1 | $\begin{gathered} \mathrm{MI} \\ (\text { Note 6) } \end{gathered}$ |
|  | Relative linearity ( Note 5) |  | -0.2 |  | +0.2 | $\begin{gathered} \mathrm{MI} \\ (\text { Note 6) } \end{gathered}$ |
|  | $\mathrm{R}_{\text {TOTAL }}$ temperature coefficient ( Note 9) |  |  | $\pm 300$ |  | ppm $/{ }^{\circ} \mathrm{C}$ |
|  | Ratiometric temperature coefficient (Notes 9, 10) |  | -20 |  | +20 | $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| $\begin{gathered} \mathrm{C}_{\mathrm{H}} / \mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{W}} \\ (\text { Note } 9) \end{gathered}$ | Potentiometer capacitances | See "Equivalent Circuit" on page 4 |  | 10/10/25 |  | pF |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage |  | 4.5 |  | 5.5 | V |

D.C. Operating Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$. Boldface limits apply across the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial) and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Commercial).

| SYMBOL | PARAMETER | TEST CONDITIONS | $\begin{gathered} \text { MIN } \\ \text { (Note 7) } \end{gathered}$ | TYP <br> (Note 8) | $\begin{gathered} \text { MAX } \\ \text { (Note 7) } \end{gathered}$ | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Icc | $\mathrm{V}_{\mathrm{CC}}$ active current (Increment) | $\begin{aligned} & \overline{\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{U} / \overline{\mathrm{D}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \text { and }} \\ & \overline{\mathrm{INC}}=0.4 \mathrm{~V} / 2.4 \mathrm{~V} \text { at min. } \mathrm{t}_{\mathrm{CYC}} \\ & \mathrm{R}_{\mathrm{L}}, \mathrm{R}_{\mathrm{H}}, R_{\mathrm{W}} \text { not connected } \end{aligned}$ |  | 1 | 3 | mA |
| ISB | Standby supply current | $\overline{\mathrm{CS}} \geq 2.4 \mathrm{~V}, \mathrm{U} / \overline{\mathrm{D}} \text { and } \overline{\mathrm{INC}}=0.4 \mathrm{~V}$ <br> $\mathrm{R}_{\mathrm{L}}, \mathrm{R}_{\mathrm{H}}, \mathrm{R}_{\mathrm{W}}$ not connected |  | 300 | 1000 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{LI}}$ | $\overline{\mathrm{CS}}, \overline{\mathrm{INC}}, \mathrm{U} / \overline{\mathrm{D}}$ input leakage current | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {CC }}$ | -10 |  | +10 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | $\overline{\mathrm{CS}}, \overline{\text { INC, }}$ U/ $\overline{\mathrm{D}}$ input HIGH voltage |  | 2 |  | $\mathrm{V}_{\mathrm{CC}}+1$ | V |
| $\mathrm{V}_{\mathrm{IL}}$ | $\overline{\mathrm{CS}}, \overline{\mathrm{INC}}, \mathrm{U} / \overline{\mathrm{D}}$ input LOW voltage |  | -1 |  | 0.8 | V |
| $\mathrm{C}_{\mathrm{IN}}$ (Note 9) | $\overline{\mathrm{CS}}, \overline{\mathrm{INC}}, \mathrm{U} / \overline{\mathrm{D}}$ input capacitance | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ |  |  | 10 | pF |

Endurance and Data Retention $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Full Operating Temperature Range

| PARAMETER | MIN | UNIT |
| :---: | :---: | :---: |
| Minimum endurance | 100,000 | Data changes per bit |
| Data retention | 100 | Years |

## Test Circuit



Equivalent Circuit


## AC Conditions of Test

| Input pulse levels | 0.8 V to 2 V |
| :--- | :--- |
| Input rise and fall times | 10 ns |
| Input reference levels | 1.4 V |

A.C. Operating Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$. Boldface limits apply across the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial) and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Commercial).
$\left.\begin{array}{|c|l|c|c|c|c|}\hline \text { SYMBOL }\end{array} \quad \begin{array}{c}\text { MIN } \\ \text { (Note 7) }\end{array}\right)$

NOTES:
4. Absolute linearity is utilized to determine actual wiper voltage versus expected voltage $=\left[\mathrm{V}\left(\mathrm{R}_{\mathrm{W}(\mathrm{n})(\text { actual })}\right)-\mathrm{V}\left(\mathrm{R}_{\mathrm{W}(\mathrm{n})(\text { expected })}\right)\right] / \mathrm{MI}$ $\mathrm{V}\left(\mathrm{R}_{\mathrm{W}}(\mathrm{n})(\right.$ expected $\left.)\right)=\mathrm{n}\left(\mathrm{V}\left(\mathrm{R}_{\mathrm{H}}\right)-\mathrm{V}\left(\mathrm{R}_{\mathrm{L}}\right) / 99+\mathrm{V}\left(\mathrm{R}_{\mathrm{L}}\right)\right.$, with n from 0 to 99 .
5. Relative linearity is a measure of the error in step size between taps $=\left[V\left(R_{W}(n+1)\right)-\left(V\left(R_{W(n)}\right)-M I\right)\right] / M I$.
6. $1 \mathrm{MI}=$ Minimum Increment $=\left[\mathrm{V}\left(\mathrm{R}_{\mathrm{H}}\right)-\mathrm{V}\left(\mathrm{R}_{\mathrm{L}}\right)\right] / 99$.
7. Parameters with MIN and/or MAX limits are $100 \%$ tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.
8. Typical values are for $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and nominal supply voltage.
9. Guaranteed by device characterization.
10. Ratiometric temperature coefficient $=\left(V\left(R_{W}\right)_{T 1(n)}-V\left(R_{W}\right)_{T 2(n)}\right) /\left[V\left(R_{W}\right)_{T 1(n)}(T 1-T 2) \times 10^{6}\right]$, with $T 1$ and $T 2$ being 2 temperatures, and $n$ from 0 to 99 .
11. Measured with wiper at tap position $31, R_{\mathrm{L}}$ grounded, using test circuit.

## Power-Up and Down Requirements

In order to prevent unwanted tap position changes, or an inadvertent store, bring the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{INC}}$ high before or concurrently with the $\mathrm{V}_{\mathrm{CC}}$ pin on power-up. The potentiometer voltages must be applied after this sequence is completed. During power-up, the data sheet parameters for the DCP do
not fully apply until 1 millisecond after $\mathrm{V}_{\mathrm{CC}}$ reaches its final value. The $V_{C C}$ ramp spec is always in effect.

## A.C. Timing



## Pin Descriptions

## $\mathbf{R}_{\mathbf{H}}$ and $\mathbf{R}_{\mathrm{L}}$

The high $\left(R_{H}\right)$ and low $\left(R_{L}\right)$ terminals of the X 9319 are equivalent to the fixed terminals of a mechanical potentiometer. The terminology of $R_{L}$ and $R_{H}$ references the relative position of the terminal in relation to wiper movement direction selected by the $U / \bar{D}$ input and not the voltage potential on the terminal.

## RW

$R_{W}$ is the wiper terminal and is equivalent to the movable terminal of a mechanical potentiometer. The position of the wiper within the array is determined by the control inputs. The wiper terminal series resistance is typically $40 \Omega$.

## Up/Down (U/D)

The U/D input controls the direction of the wiper movement and whether the counter is incremented or decremented.

## Increment (INC)

The $\overline{\mathrm{INC}}$ input is negative-edge triggered. Toggling $\overline{\mathrm{NC}}$ will move the wiper and either increment or decrement the counter in the direction indicated by the logic level on the U/D input.

## Chip Select (CS)

The device is selected when the $\overline{\mathrm{CS}}$ input is LOW. The current counter value is stored in nonvolatile memory when $\overline{\mathrm{CS}}$ is returned HIGH while the $\overline{\mathrm{NC}}$ input is also HIGH. After the store operation is complete the X 9319 will be placed in the low power standby mode until the device is selected once again.

## Principles of Operation

There are three sections of the X9319: the control section, the nonvolatile memory, and the resistor array. The control section operates just like an up/down counter. The output of this counter is decoded to turn on a single electronic switch connecting a point on the resistor array to the wiper output.

The contents of the counter can be stored in nonvolatile memory and retained for future use. The resistor array is comprised of 99 individual resistors connected in series. Electronic switches at either end of the array and between each resistor provide an electrical connection to the wiper pin, $\mathrm{R}_{\mathrm{W}}$.

The wiper acts like its mechanical equivalent and does not move beyond the first or last position. That is, the counter does not wrap around when clocked to either extreme.

The electronic switches on the device operate in a "make-before-break" mode when the wiper changes tap positions. If the wiper is moved several positions, multiple taps are connected to the wiper for $\mathrm{t}_{\mathrm{IW}}$ (INC to $\mathrm{V}_{\mathrm{W}}$ change). The $\mathrm{R}_{\text {TOTAL }}$ value for the device can temporarily be reduced by a significant amount if the wiper is moved several positions.

When the device is powered down, the last wiper position stored will be maintained in the nonvolatile memory. When power is restored, the contents of the memory are recalled and the wiper is set to the value last stored.

## Instructions and Programming

The $\overline{\mathrm{INC}}, \mathrm{U} / \overline{\mathrm{D}}$ and $\overline{\mathrm{CS}}$ inputs control the movement of the wiper along the resistor array. With $\overline{\mathrm{CS}}$ set LOW, the device is selected and enabled to respond to the $U / \bar{D}$ and $\overline{\mathrm{INC}}$ inputs. HIGH-to-LOW transitions on $\overline{\mathrm{NC}}$ will increment or decrement (depending on the state of the $U / \bar{D}$ input) the seven bit counter. The output of this counter is decoded to select one of one hundred wiper positions along the resistive array.

The value of the counter is stored in nonvolatile memory whenever $\overline{\mathrm{CS}}$ transitions HIGH while the $\overline{\mathrm{INC}}$ input is also HIGH.

The system may select the X9319, move the wiper and deselect the device without having to store the latest wiper position in nonvolatile memory. After the wiper movement is
performed as described above and once the new position is reached, the system must keep $\overline{\mathrm{INC}}$ LOW while taking $\overline{\mathrm{CS}}$ HIGH. The new wiper position will be maintained until changed by the system or until a power-up/down cycle recalled the previously stored data. This procedure allows the system to always power-up to a preset value stored in nonvolatile memory; then during system operation minor adjustments could be made. The adjustments might be based on user preference, system parameter changes due to temperature drift, etc.
The state of U/D may be changed while $\overline{\mathrm{CS}}$ remains LOW. This allows the host system to enable the device and then move the wiper up and down until the proper trim is attained.

## Mode Selection

| $\overline{\mathbf{C S}}$ | $\overline{\text { INC }}$ | U/D | MODE |
| :---: | :---: | :---: | :--- |
| L | - | H | Wiper up |
| L | - | L | Wiper down |

## Basic Configurations of Electronic Potentiometers



FIGURE 1. THREE TERMINAL POTENTIOMETER; VARIABLE VOLTAGE DIVIDER

Mode Selection (Continued)

| $\overline{\mathbf{C S}}$ | $\overline{\text { INC }}$ | U/D | MODE |
| :---: | :---: | :---: | :--- |
| $\boldsymbol{-}$ | H | X | Store wiper position to <br> nonvolatile memory |
| $\mathbf{H}$ | X | X | Standby |
| - | L | X | No store, return to standby |
| - | L | H | Wiper Up (not recommended) |
| - | L | L | Wiper Down <br> (not recommended) |

## Applications Information

Electronic digitally controlled (XDCP) potentiometers provide three powerful application advantages:

1. The variability and reliability of a solid-state potentiometer
2. The flexibility of computer-based digital controls
3. The retentivity of nonvolatile memory used for the storage of multiple potentiometer settings or data.


FIGURE 2. TWO TERMINAL VARIABLE RESISTOR; VARIABLE CURRENT

## Basic Circuits


$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{W}} / \mathrm{R}_{\mathrm{W}}$
FIGURE 3. BUFFERED REFERENCE VOLTAGE


FIGURE 4. CASCADING TECHNIQUES


FIGURE 5. SINGLE SUPPLY INVERTING AMPLIFIER

## Basic Circuits (Continued)



FIGURE 6. VOLTAGE REGULATOR


FIGURE 7. OFFSET VOLTAGE ADJUSTMENT

$V_{U L}=\left\{R_{1} /\left(R_{1}+R_{2}\right)\right\} V_{O}($ max $)$
$\mathrm{V}_{\mathrm{LL}}=\left\{\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right\} \mathrm{V}_{\mathrm{O}}(\mathrm{min})$
FIGURE 8. COMPARATOR WITH HYSTERESIS without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

## Package Outline Drawing

## M8.15E

8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 0, 08/09


